Vol. 52: 1–15, 2023 https://doi.org/10.3354/esr01266

Molecular data validate historical and contemporary distributions of *Pleurobema riddellii* (Bivalvia: Unionidae) and help guide conservation and recovery efforts

Nathan A. Johnson^{1,*}, Caitlin E. Beaver¹, Alexander H. Kiser², Matthew A. Duplessis³, Matthew D. Wagner⁴, Robert J. Ellwanger⁵, Clinton R. Robertson⁶, Sean D. Kinney³, Beau B. Gregory³, Steve Wolverton⁷, Charles R. Randklev², Paul D. Hartfield⁴, James D. Williams⁸, Chase H. Smith⁹

¹US Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL 32653, USA
²Texas A&M Natural Resources Institute, Texas A&M AgriLife Research Center at Dallas, Dallas, TX 75252, USA
³Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA 70898, USA
⁴US Fish and Wildlife Service, Mississippi Ecological Services Field Office, Jackson, MS 39213, USA
⁵Mississippi Department of Wildlife, Fisheries, and Parks, Mississippi Museum of Natural Science, Jackson, MS 39213, USA
⁶Texas Parks and Wildlife Department, Fisheries Management and Conservation Branch, San Marcos, TX 78666, USA
⁷University of North Texas, Department of Geography and the Environment, Denton, TX 76203, USA
⁸University of Florida, Florida Museum, Gainesville, FL 32611, USA

ABSTRACT: Accurate taxonomic and distributional information are arguably the most critical components of conservation status assessments but can be greatly affected by misidentifications. The Louisiana pigtoe *Pleurobema riddellii* is a freshwater mussel proposed as threatened under the US Endangered Species Act. The species belongs to the tribe Pleurobemini, which includes multiple taxa that are inherently challenging to identify without molecular data. We validated historical and recent survey records of P. riddellii using a combination of DNA sequence data and morphological characters to provide a more definitive assessment of range and spatiotemporal trends in distribution. Our comprehensive assessment identified specimens collected from the Pearl drainage as *P. riddellii*, extending the species' known range into eastern Gulf of Mexico drainages. Contemporary records were unavailable from the Trinity drainage; however, we designed novel minibarcode PCR primers and used historical DNA from a specimen collected in the late 1800s to confirm the historical presence of *P. riddellii* at the species' type locality in the Trinity River near Dallas, Texas, USA. Our range-wide genetic diversity assessment provides strong support for 2 main geographic groups, the Ouachita and all remaining populations, with individuals from the Pearl and Trinity drainages sharing haplotypes with conspecifics from other drainages. Available data suggest P. riddellii has been extirpated from a significant portion of the historical range, including the entire Trinity drainage. Additional surveys in Lake Pontchartrain, Trinity, and other drainages in the eastern periphery of the species' range may provide additional clarity on the distribution and conservation status of *P. riddellii*.

KEY WORDS: Phylogeography \cdot Range extension \cdot Historical DNA \cdot DNA barcoding \cdot Misidentification \cdot Ambleminae \cdot Pleurobemini \cdot Louisiana pigtoe

*Corresponding author: najohnson@usgs.gov

1. INTRODUCTION

Accurate distributional information is critical for the management and conservation of imperiled species, considering that range reductions are among the most important criteria when assessing conservation status (Smith et al. 2018, Grace et al. 2019). The utility of the occurrence data, however, can be greatly affected by misidentifications due to false-positive and falsenegative errors (Shea et al. 2011). Freshwater mussels (Bivalvia: Unionida) are a diverse group with approximately 70% of the 350 species recognized from North America designated as extinct or of conservation concern (Williams et al. 1993, 2017, Haag & Williams 2014, Lopes-Lima et al. 2018, Graf & Cummings 2021). Despite high imperilment levels, extensive morphological variation and convergence in many lineages has confounded the ability to establish accurate distributional information for many unionid species without using molecular data to confirm identifications (Pfeiffer et al. 2016, Inoue et al. 2018, Johnson et al. 2018, Smith et al. 2019, 2021a, 2022, Patterson et al. 2021). The utility of molecular tools to resolve taxonomic uncertainties and facilitate the development of effective conservation and recovery strategies for several taxa (Smith & Johnson 2020, Garrison et al. 2021, Geist et al. 2021, Smith et al. 2021b, Gladstone et al. 2022) has prompted many researchers to consider molecular research as a priority for imperiled freshwater mussels (FMCS 2016, Lopes-Lima et al. 2018, Ferreira-Rodríguez et al. 2019).

The freshwater mussel genus Pleurobema Rafinesque, 1819 consists of 23 recognized species (Williams et al. 2017). The genus was once widespread in North America, from the Mississippi River and Great Lakes drainages to Gulf of Mexico drainages from Florida to Texas (Williams et al. 2008, 2014, Watters et al. 2009). Today, Pleurobema spp. have experienced both localized and widespread declines, leading to the extinction of 4 species, with several others on the brink of extinction (Garner et al. 2004, Williams et al. 2008). Causes of extinction and decline for some *Pleurobema* spp. have been attributed to large-scale habitat modifications like the construction of the Tennessee-Tombigbee Waterway (Williams et al. 2008). In addition to being among the most imperiled groups of unionids, Pleurobema spp. often exhibit high levels of intraspecific variation and interspecific convergence in morphology (Williams et al. 2008, 2017, Watters et al. 2009, Inoue et al. 2018). This variation has led to inaccurate taxonomic hypotheses in Pleurobema when relying on morphology alone for identification, while molecular data have proven useful in delineating species ranges and boundaries (Campbell & Lydeard 2012, Inoue et al. 2018, Morrison et al. 2021, Olivera-Hyde et al. 2023).

The Louisiana pigtoe Pleurobema riddellii (Lea, 1861) is currently listed as threatened in Texas (TPWD 2020) and is proposed for listing as threatened under the US Endangered Species Act (ESA) (USFWS 2009, 2023). Despite its imperilment, uncertainty remains regarding the distribution of the species due to difficulties identifying specimens morphologically, including its historical presence at the type locality in the Trinity River and eastern Gulf of Mexico drainages (Frierson 1911, Ortmann 1912, Randklev et al. 2020). The distribution of P. riddellii, as currently understood, includes populations in the Mississippi Embayment (i.e. Bayou Teche, Ouachita, and Red drainages) and Sabine-Trinity (i.e. Calcasieu, Sabine, Neches, San Jacinto, and Trinity drainages) provinces (Vidrine 1993, Howells et al. 1996, Haaq 2010, Randklev et al. 2020). P. riddellii has not been collected in the Trinity drainage since the early 1900s (Simpson 1914, Strecker 1931, Athearn 1970, Howells et al. 1996), which has led researchers to presume it is extirpated, or even question its recent presence, in the Trinity River drainage (Randklev et al. 2020). The utility of historical DNA (hDNA) from museum specimens has increased in recent years; in particular, sequencing mitochondrial genes (reviewed by Raxworthy & Smith 2021) and confirming the historical presence of *P. riddellii* in the Trinity drainage will likely require a hDNA approach (Randklev et al. 2020).

The distribution of *P. riddellii* in Gulf drainages east of the Mississippi River remains unclear. Early malacologists reported *P. riddellii* from the Pearl River (Frierson 1911, Ortmann 1912, 1914); however, subsequent researchers adopted a different concept of the species and its distribution that did not include eastern Gulf drainages (Vidrine 1993, Howells et al. 1996, Jones et al. 2005, 2021). Similarly, an undescribed species of *Pleurobema* was also reported from the Amite and Pearl rivers in Louisiana but ultimately considered to be *P.* cf. *beadleianum* (Hartfield 1988). Confirming the identity of *Pleurobema* specimens in the Trinity River and eastern Gulf of Mexico is a critical research objective to assess the conservation status of *P. riddellii*.

In this study, we used DNA sequences and occurrence data from field and museum collections to better inform the ESA listing process by assessing the range and spatiotemporal trends in the distribution of *P. riddellii*. The specific objectives of this study were to (1) compile historical and contemporary distribution records for *P. riddellii* using field surveys and museum collections; (2) confirm identifications using DNA sequences to validate records, including the use of hDNA to determine the identity of specimens collected from the Trinity River drainage (type locality for *P. riddellii*) in the late 1800s; (3) evaluate spatiotemporal changes in the historical and contemporary distribution while revising the known distribution of *P. riddellii*; (4) assess phylogeographic structure and genetic diversity within and among extant populations; and (5) discuss implications of findings on future conservation and management options.

2. MATERIALS AND METHODS

2.1. Taxon sampling

We compiled or generated molecular data for specimens tentatively identified as *Pleurobema riddellii* collected from 8 river drainages: Calcasieu, Neches,

Ouachita, Pearl, Red, Sabine, San Jacinto, and Trinity (Fig. 1, Table 1). This included DNA sequence data obtained from a dried tissue sample residing within a historical specimen (pre-1900) putatively identified as P. riddellii from the Trinity River near Dallas, Texas (University of Michigan Museum of Zoology [UMMZ] 113389, Fig. 2A). We also generated DNA sequences from specimens collected from the Pearl River, Louisiana, that could not be readily identified and assigned to a known species during tactile surveys for freshwater mussels conducted 2017-2022 (Fig. 2B, Table 1). After further examination, internal and external conchological characters suggested the specimens belonged to the genus Pleurobema but appeared to be morphologically distinct from P. beadleianum (Lea, 1861), which, at the time of collection, was the only member of Pleurobema recognized in the Pearl River basin (Vidrine 1993, Jones et al. 2005, 2021). The unidentified specimens have a deeper umbo pocket when compared

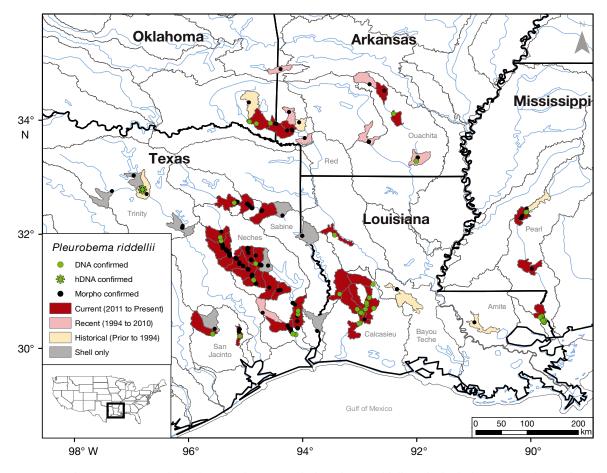


Fig. 1. Map providing spatiotemporal distribution information of *Pleurobema riddellii* at the hydrologic unit code (HUC) 10-level. Color shading of HUCs indicate the most recent date of collection for *P. riddellii*. All known *P. riddellii* records are plotted with colors to indicate locations where DNA data were used to confirm identifications. Green star denotes the type locality for *P. riddellii* (Trinity River near Dallas, Texas), which is the same collection location for the specimen identified using historical DNA (hDNA)

Table 1. Collection details for specimens included in genetic analyses with associated GenBank accession numbers for COI sequences. The taxon field corresponds to labels in Fig. 1, and additional metadata for each specimen are available from Johnson et al. (2023). LA: Louisiana; PA: Pennsylvania; TX: Texas; MS: Mississippi; AR: Arkansas; OK: Oklahoma; ASUMZ: Arkansas State University Museum of Zoology; JBFMC: Joseph Britton Freshwater Mussel Collection; MMNS: Mississippi Museum of Natural Sciences; UF: Florida Museum; UAUC: University of Alabama Unionid Collection; UMMZ: University of Michigan Museum of Zoology

Taxon	Drainage	State	Source	Catalog no.	GenBank	
Fusconaia cerina	Pearl	LA	Inoue et al. (2018)	UF439077	MF961897	
Pleurobema beadleianum	Pearl	LA	This study	UF439433	OR177673	
Pleurobema clava	Ohio	PA	Campbell et al. (2005)	UAUC1477	AY655013	
Pleurobema riddellii						
CpusSaJ081	San Jacinto	TX	This study	JBFMC11020.1	OR177663	
FcerPrl029	Pearl	MS	This study	MMNS15702	OR177664	
FcerPrl031	Pearl	MS	This study	MMNS15702	OR177665	
FcerPrl032	Pearl	MS	This study	MMNS15702	OR177666	
FflaCal090	Calcasieu	LA	This study	JBFMC12067.3	OR177667	
FspeSal027	Ouachita	AR	This study	UF439572	OR177668	
FspeSal029	Ouachita	AR	This study	UF439572	OR177669	
FspeSal030	Ouachita	AR	This study	UF439572	OR177670	
FspeSal032	Ouachita	AR	This study	UF439572	OR177671	
FspeSal033	Ouachita	AR	This study	UF439572	OR177672	
Prid_01_AR_SA_MF961974	Ouachita	AR	Inoue et al. (2018)	No voucher	MF961974	
Prid_02_AR_SA_MF961975	Ouachita	AR	Inoue et al. (2018)	No voucher	MF961975	
Prid_03_AR_SA_MF961976	Ouachita	AR	Inoue et al. (2018)	No voucher	MF961976	
Prid_04_AR_SA_MF961977	Ouachita	AR	Inoue et al. (2018)	No voucher	MF961977	
Prid_05_AR_SA_MF961978	Ouachita	AR	Inoue et al. (2018)	No voucher	MF961978	
Prid JF326434	Neches	TX	Campbell & Lydeard (2012)	Unavailable	JF326434	
Prid_Little4630_MF961991	Red	OK	Inoue et al. (2018)	ASUMZ4630	MF961991	
Prid_Little4917_MF961992	Red	OK	Inoue et al. (2018)	ASUMZ4917	MF961992	
Prid_Little4934_MF961993	Red	OK	Inoue et al. (2018)	ASUMZ4934	MF961993	
Prid_MF961990	Red	OK	Inoue et al. (2018)	ASUMZ4629	MF961990	
Prid_NEC01	Neches	TX	Pieri et al. (2018)	JBFMC8149.1	MH133603	
Prid_NEC03	Neches	TX	This study	JBFMC8154.2	OR177712	
Prid NEC04	Neches	TX	Pieri et al. (2018)	JBFMC8025.1	MH133604	
Prid_NEC05	Neches	TX	Pieri et al. (2018)	JBFMC8025.2	MH133605	
Prid_NEC06	Neches	TX	Pieri et al. (2018)	JBFMC8025.3	MH133606	
Prid_NEC07	Neches	TX	Pieri et al. (2018)	JBFMC8025.4	MH133607	
Prid_NEC09	Neches	TX	This study	JBFMC8042.2	OR177723	
Prid_NEC10	Neches	TX	Pieri et al. (2018)	JBFMC8042.3	MH133608	
Prid_NEC11	Neches	TX	This study	JBFMC8042.4	OR177724	
Prid_NEC12	Neches	TX	This study	JBFMC8042.5	OR177725	
Prid_NEC13	Neches	TX	This study	JBFMC8316.1	OR177726	
Prid_NEC14	Neches	TX	This study	JBFMC8316.2	OR177720	
Prid_NEC15	Neches	TX	This study	JBFMC8316.3	OR177728	
Prid NEC16	Neches	TX	This study	JBFMC8316.4	OR177729	
Prid_NEC17	Neches	TX	This study	JBFMC8316.5	OR177730	
Prid_Ouachita2765_MF961979	Ouachita	AR	Inoue et al. (2018)	ASUMZ2765	MF961979	
Prid_Ouachita2771_MF961980	Ouachita	AR	Inoue et al. (2018)	ASUMZ2703	MF961980	
Prid_Ouachita2773_MF961981	Ouachita	AR	Inoue et al. (2018)	ASUMZ2773	MF961981	
Prid_Ouachita27788_MF961982	Ouachita	AR	Inoue et al. (2018)	ASUMZ2788	MF961982	
Prid RED01	Red	OK	This study	ASUMZ1378	OR177747	
Prid_RED02	Red	OK	This study	ASUMZ1378	OR177748	
Prid_RED02	Red	OK	This study	ASUMZ1378	OR177748	
Prid RED07	Red	OK	This study	ASUMZ1378	OR177750	
Prid_RED07 Prid_RED08	Red	OK	This study	ASUMZ1378	OR177751	
Prid RED09	Red	OK	This study	ASUMZ1378	OR177753	
—			1			
Prid_RED10 Drid_RED11	Red	OK	This study	ASUMZ1378	OR177754	
Prid_RED11 Prid_RED12	Red	OK	This study	ASUMZ1378	OR177755	
Prid_RED12	Red	OK	This study	ASUMZ1378	OR177756	
Prid_RED13	Red	OK	This study	ASUMZ1378	OR177757	
Prid_RED15	Dod					
Prid_RED16	Red Red	OK OK	This study This study	ASUMZ1378 ASUMZ1378	OR177758 OR177759	

4

(Table 1 continued on next page)

Taxon	Drainage	State	Source	Catalog no.	GenBank	
Prid_RED17	Red	OK	This study	ASUMZ1378	OR177760	
Prid_RED19	Red	OK	This study	ASUMZ1378	OR177761	
Prid_RED20	Red	OK	This study	ASUMZ1378	OR177762	
Prid_RED21	Red	OK	This study	ASUMZ1380	OR177763	
Prid_Saline3253_MF961983	Ouachita	AR	Inoue et al. (2018)	ASUMZ3253	MF961983	
Prid_Saline3257_MF961984	Ouachita	AR	Inoue et al. (2018)	ASUMZ3257	MF961984	
Prid_Saline3264_MF961985	Ouachita	AR	Inoue et al. (2018)	ASUMZ3264	MF961985	
Prid_Saline3274_MF961986	Ouachita	AR	Inoue et al. (2018)	ASUMZ3274	MF961986	
Prid_Saline3780_MF961987	Ouachita	AR	Inoue et al. (2018)	ASUMZ3780	MF961987	
Prid_Saline4640_MF961988	Ouachita	AR	Inoue et al. (2018)	ASUMZ4640	MF961988	
Prid_Saline4641_MF961989	Ouachita	AR	Inoue et al. (2018)	ASUMZ4641	MF961989	
Prid_VillageTX09_MF962002	Neches	TX	Inoue et al. (2018)	No voucher	MF962002	
Prid_VillageTX10_MF962003	Neches	TX	Inoue et al. (2018)	No voucher	MF962003	
Prid_VillageTX11_MF962004	Neches	TX	Inoue et al. (2018)	No voucher	MF962004	
PridCal041	Calcasieu	LA	This study	JBFMC9593.1	OR177674	
PridCal042	Calcasieu	LA	This study	No voucher	OR177675	
PridCal047	Calcasieu	LA	This study	No voucher	OR177676	
PridCal050	Calcasieu	LA	This study	No voucher	OR177677	
PridCal052	Calcasieu Calcasieu	LA LA	This study	No voucher JBFMC12030.1	OR177678 OR177679	
PridCal071 PridCal072	Calcasieu	LA LA	This study	JBFMC12030.1 JBFMC12030.2	OR177680	
PridCal072 PridCal073	Calcasieu	LA LA	This study This study	JBFMC12030.2 JBFMC12030.3	OR177681	
PridCal073	Calcasieu	LA LA	This study	JBFMC12030.3 JBFMC12030.4	OR177682	
PridCal074 PridCal075	Calcasieu	LA	This study	JBFMC12030.5	OR177683	
PridCal076	Calcasieu	LA	This study	JBFMC12067.1	OR177684	
PridCal077	Calcasieu	LA	This study	JBFMC12067.2	OR177685	
PridCal078	Calcasieu	LA	This study	JBFMC12067.4	OR177686	
PridCal079	Calcasieu	LA	This study	JBFMC12067.5	OR177687	
PridCal080	Calcasieu	LA	This study	JBFMC12067.6	OR177688	
PridCal081	Calcasieu	LA	This study	JBFMC12067.7	OR177689	
PridCal083	Calcasieu	LA	This study	JBFMC12135.1	OR177690	
PridCal084	Calcasieu	LA	This study	JBFMC12135.2	OR177691	
PridCal086	Calcasieu	LA	This study	JBFMC12137.1	OR177692	
PridCal087	Calcasieu	LA	This study	JBFMC12137.2	OR177693	
PridCal088	Calcasieu	LA	This study	JBFMC12137.3	OR177694	
PridCal089	Calcasieu	LA	This study	JBFMC12137.4	OR177695	
PridCal090	Calcasieu	LA	This study	JBFMC12139.1	OR177696	
PridCal091	Calcasieu	LA	This study	JBFMC12139.2	OR177697	
PridCal092	Calcasieu	LA	This study	JBFMC12118.1	OR177698	
PridCal093	Calcasieu	LA	This study	JBFMC12119.1	OR177699	
PridCal094	Calcasieu	LA	This study	JBFMC12120.1	OR177700	
PridCal095	Calcasieu	LA	This study	JBFMC12120.2	OR177701	
PridCal096	Calcasieu	LA	This study	JBFMC12121.1	OR177702	
PridCal097	Calcasieu	LA	This study	JBFMC12121.2	OR177703	
PridCal098	Calcasieu	LA	This study	JBFMC12121.3	OR177704	
PridCal099	Calcasieu	LA	This study	JBFMC12121.4	OR177705	
PridCal100	Calcasieu	LA	This study	JBFMC12121.5	OR177706	
PridCal101	Calcasieu	LA	This study	JBFMC12121.6	OR177707	
PridCal103	Calcasieu	LA	This study	JBFMC12117.1	OR177708	
PridCal106	Calcasieu	LA	This study	JBFMC12108.3	OR177709	
PridNec003	Neches	TX	Inoue et al. (2018)	UF438929	MF961994	
PridNec004 PridNec005	Neches	TX	Inoue et al. (2018)	UF438929	MF961995	
PridNec005 PridNec006	Neches	TX	Inoue et al. (2018)	UF438929	MF961996	
PridNec006	Neches	TX	Inoue et al. (2018)	UF438929	MF961997	
PridNec007 PridNec011	Neches Neches	TX TX	Inoue et al. (2018)	UF438934	MF961998 MF961999	
	Neches	TX	Inoue et al. (2018)	No voucher No voucher		
PridNec012 PridNec015	Neches	TX	Inoue et al. (2018) This study	JBFMC8322.1	MF962000	
PridNec015 PridNec029	Neches	TX	1	JBFMC8322.1 JBFMC9513.1	OR177710 OR177711	
PridNec029 PridNec030	Neches	TX	This study This study	JBFMC9513.1 JBFMC9513.2	OR177713	
PridNec031	Neches	TX	This study	JBFMC9513.2 JBFMC9513.3	OR177714	
1110140001	INCOLOS	1 / 1	This Study	10110103010.0	0.1///14	

Taxon	Drainage	State	Source	Catalog no.	GenBank	
PridNec032	Neches	TX	This study	JBFMC9513.4	OR177715	
PridNec033	Neches	TX	This study JBFMC9513.5		OR177716	
PridNec034	Neches	TX	This study JBFMC9562.3		OR177717	
PridNec035	Neches	TX	This study	JBFMC9562.4	OR177718	
PridNec036	Neches	TX	This study	JBFMC9562.1	OR177719	
PridNec037	Neches	TX	This study	JBFMC9562.2	OR177720	
PridNec039	Neches	TX	This study	JBFMC9580.1	OR177721	
PridNec040	Neches	TX	This study	JBFMC9580.2	OR177722	
PridPrl013	Pearl	LA	This Study	UF439345	OR177731	
PridPrl014	Pearl	LA	This study	UF439345	OR177732	
PridPrl020	Pearl	LA	This study	UF439412	OR177733	
PridPrl021	Pearl	LA	This study	UF439405	OR177734	
PridPrl023	Pearl	LA	This study	UF439408	OR177735	
PridPrl024	Pearl	LA	This study	UF439411	OR177736	
PridPrl025	Pearl	LA	This study	UF561636	OR177737	
PridPrl026	Pearl	LA	This study	UF561637	OR177738	
PridPrl027	Pearl	MS	This study	MMNS17490	OR177739	
PridPrl029	Pearl	MS	This study	MMNS17490	OR177740	
PridPrl030	Pearl	MS	This study	MMNS17490	OR177741	
PridPrl031	Pearl	MS	This study	MMNS17491	OR177742	
PridPrl032	Pearl	MS	This study	MMNS17491	OR177743	
PridPrl033	Pearl	MS	This study	MMNS17491	OR177744	
PridPrl035	Pearl	MS	This study	MMNS17492	OR177745	
PridPrl036	Pearl	MS	This study	MMNS17492	OR177746	
PridRed082	Red	LA	This study	JBFMC12098.1	OR177752	
PridSab002	Sabine	LA	Pfeiffer et al. (2016)	UF441165	KT285646	
PridSab038	Sabine	TX	This study	JBFMC9578.1	OR177764	
PridSaJ026	San Jacinto	TX	This study	JBFMC9503.1	OR177765	
PridSaJ027	San Jacinto	TX	This study	JBFMC9503.2	OR177766	
PridSaJ028	San Jacinto	TX	This study	JBFMC9503.3	OR177767	
PridSaJ060	San Jacinto	TX	This study	JBFMC11064.1	OR177768	
PridSaJ061	San Jacinto	TX	This study	JBFMC11064.2	OR177769	
PridSaJ062	San Jacinto	TX	This study JBFMC11064.3		OR177770	
PridSaJ063	San Jacinto	TX	This study	JBFMC11055.1	OR177771	
PridSaJ064	San Jacinto	TX	This study	JBFMC11055.2	OR177772	
PridSaJ065	San Jacinto	TX	This study	JBFMC11055.3	OR177773	
PridSaJ066	San Jacinto	TX	This study	JBFMC11055.4	OR177774	
PridSaJ067	San Jacinto	TX	This study	JBFMC11055.5	OR177775	
PridSaJ068	San Jacinto	TX	This study	JBFMC11055.6	OR177776	
PridSaJ069	San Jacinto	TX	This study	JBFMC11055.7	OR177777	
PridTri025	Trinity	TX	This study	UMMZ113389	OR177778	
Psin_RED10	Red	OK	This study	ASUMZ1382	OR177788	
PsinOua214	Ouachita	AR	This study	UF439547	OR177779	
PsinOua215	Ouachita	AR	This study	UF439547	OR177780	
PsinOua216	Ouachita	AR	This study	UF439547	OR177781	
PsinOua218	Ouachita	AR	This study	UF439547	OR177782	
PsinOua219	Ouachita	AR	This study	UF439547	OR177783	
PsinOua221	Ouachita	AR	This study	UF439547	OR177784	
PsinOua222	Ouachita	AR	This study	UF439547	OR177785	
PsinOua223	Ouachita	AR	This study	UF439547	OR177786	
PsinOua224	Ouachita	AR	This study	UF439547	OR177787	

Table 1 (continued)

to *P. beadleianum* (Fig. 2C) and lack the wide, shallow sulcus, which is diagnostic for *Fusconaia cerina* (Conrad, 1838) (Fig. 2D). After comparing the unknown individuals to specimens in museum collections, including the holotype (USMN 84635, Fig. 2E) and material identified by Hartfield (1988) as *Pleu*-

robema sp. (Fig. 2F), we tentatively identified the specimens from the Pearl River as *P. riddellii*. Given the potential impact of a possible range extension, all identifications were pending verification using a combination of DNA sequencing and morphological assessment.

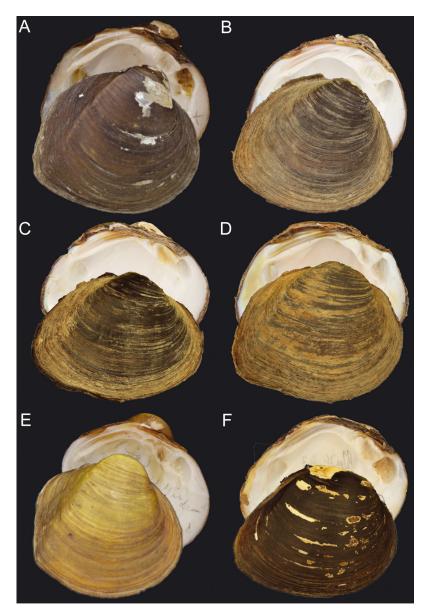


Fig. 2. Representative photos of *Pleurobema riddellii*, *P. beadleianum*, and *Fusconaia cerina* specimens showing a range of intraspecific variation and interspecific similarity. (A) *P. riddellii* historical DNA (hDNA) sample, Trinity River near Dallas, Texas (47 mm, UMMZ 113389.1). (B) *P. riddellii* West Pearl River near Picayune, Mississippi (58 mm, UF 439408). (C) *P. beadleianum*, West Pearl River near Picayune, Mississippi (66 mm, UF 439409). (D) *F. cerina*, Bogue Chitto River (Pearl River drainage) near Picayune, Mississippi (50 mm, UF 439077). (E) *P. riddellii* Holotype, Trinity River near Dallas, Texas (33 mm, USNM 84635). (F) *P. riddellii*, Amite River near Port Vincent, Mississippi (61 mm, MMNS 2485)

2.2. DNA extraction, PCR, and sequencing

We extracted DNA from buccal swabs, fresh mantle tissue stored in cell lysis buffer, mantle tissue preserved in 95% EtOH, and desiccated tissue from a specimen collected in the late 1800s using the Qiagen PureGene extraction kit following the manufacturer's protocols. We amplified and sequenced a 658 bp segment of cytochrome c oxidase subunit I (COI) using the primers reported in Campbell et al. (2005). Due to DNA degradation in the isolation from the museum specimen originally collected from the Trinity River (UMMZ 113389), reliable COI sequences could not be obtained using previously published primers (Campbell et al. 2005). We designed 4 minibarcode primers based on published Fusconaia and Pleurobema COI sequences to identify the museum specimen: FB-R1, AGG RAT AAG CCA ATT ACC AA; FB-F2, CGC ATG CTT TTA TAA TRA TT; FB-R2, CGG AAT TCG CTC AGC AAC; and FB-F3, CTT GCT GGT GCA TCT TCT AT. Individual PCRs were performed using the following primer pairs: (1) the forward primer reported in Campbell et al. (2005) and FB-R1, (2) FB-F2 and FB-R2, and (3) FB-F3 and the reverse primer reported in Campbell et al. (2005). For all PCR reactions (both minibarcodes and full amplicons), thermal cycling conditions and PCR chemistry followed Johnson et al. (2018). The thermal cycling profile consisted of an initial denaturation at 95°C for 3 min followed by 5 cycles of 95°C for 30 s, 45°C for 40 s, 72°C for 45 s, then 35 cycles of 95°C for 30 s, 51°C for 40 s, 72°C for 45 s, with a final elongation at 72°C for 10 min, and hold at 4°C. Our PCR reactions consisted of 12.5 µl mixture containing distilled deionized water (4.25 $\mu l),~MyTaq^{\text{TM}}$ Red Mix (6.25 µl) (Bioline), primers (0.5 µl each at 10 μ M) and DNA template (1 μ l at 50 ng). Bidirectional sequencing was performed at the Molecular Cloning Laboratories (South San Francisco, CA, USA) on an ABI 3730XL (Life Technologies). Geneious v. 10.2.1 (Kearse

et al. 2012) was used to edit chromatograms and assemble consensus sequences. All COI sequences were aligned in Mesquite v. 3.7.0 (Madison & Madison 2021) using the L-INS-i method in MAFFT v. 7.299 (Katoh & Standley 2013) and translated into amino acids to ensure absence of stop codons and gaps. All sequences were submitted to GenBank, and detailed information regarding individuals are available electronically (Johnson et al. 2023).

2.3. Molecular analyses

Phylogenetic inference was performed in BEAST v. 2.6.7 (Bouckaert et al. 2019). We included sequences for F. cerina, P. beadleianum, and P. clava to serve as an outgroup following relationships depicted in previous phylogenetic studies (Campbell & Lydeard 2012, Inoue et al. 2018). Before the analysis, the best partitioning scheme for each codon position and nucleotide substitution models were determined using ModelFinder (Kalyaanamoorthy et al. 2017). A strict molecular clock was fitted to each partition and the Yule process was used as the tree prior. The BEAST analysis was run for 2×10^7 MCMC generations sampling every 5000 generations with an initial 10%burn-in. Effective sample size (ESS) greater than 200 was ensured using Tracer 1.7 (Rambaut et al. 2018), and a maximum clade credibility tree was created using TreeAnnotator v. 2.6 (Bouckaert et al. 2019).

To visualize the geographic distribution of genetic variation within *P. riddellii*, we constructed a TCS haplotype network (Clement et al. 2002) using PopArt (Leigh & Bryant 2015). Missing data were handled using complete deletion. To evaluate intraspecific and inter-drainage genetic variation within *P. riddellii*, we calculated pairwise genetic distance values using uncorrected p-distances and pairwise deletion of missing data in MEGA11 (Tamura et al. 2021). Individuals of *P. riddellii* were grouped according to drainage of capture (Calcasieu, Neches, Ouachita, Pearl, Red, Sabine, San Jacinto, and Trinity) for both haplotype networks and pairwise genetic distance calculations.

2.4. Conservation map

We compiled distributional information from museum specimens, field notes, and surveys to update the known distribution of *P. riddellii*. Sources of information included, but were not limited to, Arkansas State University Museum of Zoology (ASUMZ), Carnegie Museum of Natural History (CM), Florida Museum (UF), Joseph Britton Freshwater Mussel Collection (JBFMC), Louisiana Department of Wildlife and Fisheries (LDWF), Mississippi Museum of Natural Sciences (MMNS), Ohio State Museum (OSUM), Smithsonian National Museum of Natural History (USNM), Texas A&M Natural Resources Institute, Texas Parks and Wildlife Department (TPWD), University of Alabama Unionid Collection (UAUC), UMMZ, US Geological Survey, and US Fish and Wildlife Service. Due to the inherent uncertainties that accompany morphological identifications among members of Pleurobemini, we used DNA to confirm identifications when possible; however, our identifications for a subset of records were dependent on morphology alone. The date of collection, locality information, collector(s), initial field-based identification, and source of each record are available from Johnson et al. (2023).

We produced a conservation status assessment map using ArcMap 10.8.2 (ESRI) following the protocol produced by Georgia Department of Natural Resources (2014) to evaluate spatiotemporal changes in the distribution of *P. riddellii*. Conservation status maps play an important role in conservation planning for mussels by identifying range size, survey needs, and high priority areas for protection (Johnson et al. 2016, McLeod et al. 2017, Smith et al. 2021a). We plotted all known records using the Mussels of Texas database (MOTX; Randklev et al. 2021) and recent survey data from Arkansas, Louisiana, Mississippi, Oklahoma, and Texas. Occurrence data of *P. riddellii* were then georeferenced and mapped at the hydrologic unit code (HUC)-10 level based on last known observation. We selected 3 separate time frames to show collection history: current (2011-present), recent (1994-2010), and historical (prior to 1994). These time frames were chosen as they represent major collection efforts in the region (see Randklev et al. 2021). Occurrence data were then categorized based on the type of identification, which included DNA, hDNA, or morphology only. The input file used to generate the maps is available from Johnson et al. (2023) to facilitate reproducibility and future analyses as more records become available.

3. RESULTS

3.1. Taxon sampling and molecular analyses

Our alignment for phylogenetic analyses consisted of 163 *P. riddellii* collected across 8 major river drainages (Figs. 1 & 3, Table 1): Calcasieu (n = 37), Neches (n = 38), Ouachita (n = 30), Pearl (n = 19), Red (n = 22), Sabine (n = 2), San Jacinto (n = 14), and Trinity (n = 1). The total alignment length was 658 nucleotides (3.43% missing data), and

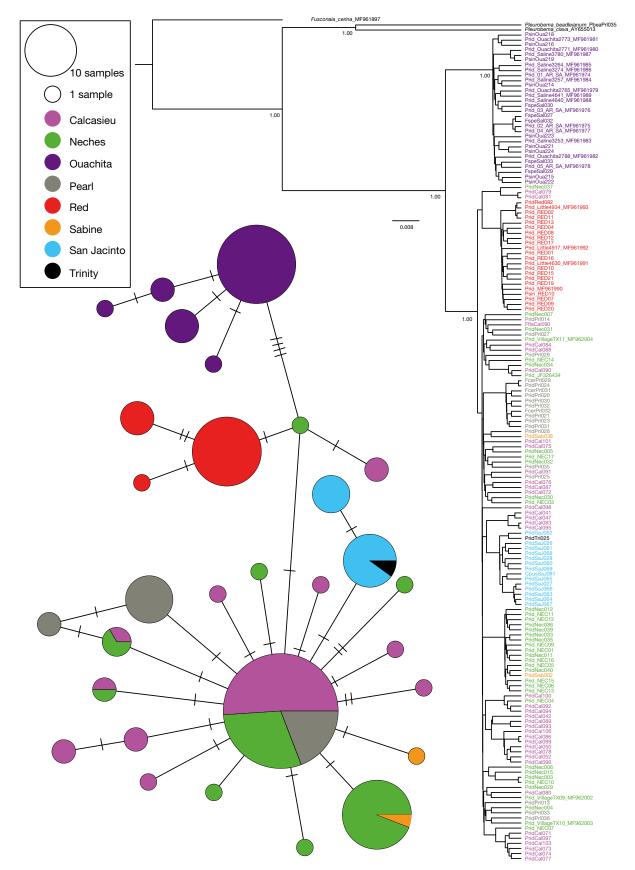


Fig. 3. TCS haplotype network and Bayesian phylogeny with posterior probability (PP) nodal support values for well-supported clades (PP = 1.00) based on mitochondrial COI data for *Pleurobema riddellii*. Colors correspond to drainage of capture

no stop codons or indels were present. Our final dataset included 125 COI sequences generated as part of our study (GenBank accessions: OR177663–OR177788) and 38 COI sequences obtained from GenBank representing *P. riddellii* (Table 1). Included were specimens confirmed to be *P. riddellii* using DNA sequences that were initially identified as the following: *F. cerina* (n = 3), *Fusconaia flava* (n = 1), *Fusconaia* sp. (n = 5), *Pleurobema sintoxia* (n = 10), and *Pustulosa pustulosa* (n = 1). Our final DNA alignment and detailed collection information, including initial and DNA identifications, are available electronically (Johnson et al. 2023).

ModelFinder determined that 2 partitions and nucleotide substitution models best fit our data for the BEAST analysis: COI codon 1 and 2 - HKY + F + I, and COI codon 3 - HKY + F + G4. The phylogenetic reconstruction depicted 2 main geographic groups of *P. riddellii* with strong support (PP = 1.0): (1) Ouachita drainage; and (2) Calcasieu, Neches, Pearl, Red, Sabine, San Jacinto, and Trinity drainages (Fig. 3). Specimens from the Pearl and Trinity drainages showed little divergence from P. riddellii specimens collected in the Calcasieu, Neches, Red, Sabine, and San Jacinto drainages (Fig. 3). Haplotype networks showed similar patterns of divergence as phylogenetic analysis, with specimens from the Pearl and Trinity drainages depicting little differentiation from, and even shared haplotypes with, P. riddellii from other drainages (Fig. 3). Intra-drainage genetic pdistances ranged from 0.09-0.33% with the highest level of variation in the Sabine River population, followed by Neches, Pearl, Calcasieu, Red, and San Jacinto drainages (Table 2). Genetic distance values were not calculated for the Trinity River drainage due to the low sample size (n = 1). Inter-drainage genetic p-distances ranged from 0.07 % (San Jacinto and Trinity drainages) to 1.87% (Ouachita and San Jacinto drainages), with an average p-distance of

1.77% between the Ouachita River samples and all other populations averaged. Inter-drainage comparisons across samples from the other sampled drainages were much lower (average 0.44%) (Table 2).

3.2. Distribution

We compiled distributional data from freshwater mussel survey and museum records from the known range of *P. riddellii* to assess its contemporary and historical geographic distribution. In total, 467 records of both live individuals and shell were obtained for P. riddellii collected from pre-1900-2022 (Table 1; also see Johnson et al. 2023). The exact collection date for the Trinity River specimen (UMMZ 113389) could not be determined; however, the specimen originally resided in the collection of James Lewis, who was actively publishing research on unionids from 1854-1879 (Simpson 1900). The specimen was later transferred to the Bryant Walker Collection and eventually to UMMZ in the late 1930s. Based on these dates, we conservatively estimate the Trinity River specimen was collected before 1900.

Overall, the distributional information we compiled included 9 river basins spanning from the Trinity and San Jacinto rivers in Texas, east to the Pearl River in Mississippi, and north to the Red and Ouachita rivers in Oklahoma and Arkansas, respectively (Fig. 1). Using DNA sequences, we confirmed the presence of extant populations and recent records for the Calcasieu, Neches, Ouachita, Pearl, Red, Sabine, and San Jacinto drainages. Records of *P. riddellii* were distributed across 54 HUC-10 boundaries (Arkansas 11, Louisiana 13, Mississippi 4, Oklahoma 4, Texas 27; note some HUC-10 boundaries were split by state borders). The status of each HUC-10 was categorized as follows: 7 HUCs with shell only (Texas 5; shared border of Texas and Louisiana 2); 33 HUCs had cur-

Table 2. Mean uncorrected pairwise genetic distances between drainages (below diagonal) and within drainages (along diagonal) for COI sequences representing *Pleurobema riddellii* from 8 river drainages. *: intra-drainage distance could not be computed due to limited sample size

	Ouachita	Sabine	Neches	Pearl	Calcasieu	San Jacinto	Red	Trinity
Ouachita	0.0013							
Sabine	0.0182	0.0033						
Neches	0.0174	0.0025	0.0025					
Pearl	0.0180	0.0031	0.0030	0.0022				
Calcasieu	0.0168	0.0028	0.0027	0.0027	0.0021			
San Jacinto	0.0187	0.0038	0.0037	0.0037	0.0034	0.0009		
Red	0.0173	0.0068	0.0064	0.0067	0.0058	0.0074	0.0012	
Trinity	0.0180	0.0032	0.0031	0.0031	0.0027	0.0007	0.0066	*

rent (2011 to present) collections of live individuals (Arkansas 3, Louisiana 8, Mississippi 2, Oklahoma 1, Texas 17); 7 HUCs had recent (1995–2010) collections (Arkansas 6, Oklahoma 1, Texas 1); and 6 HUCs had historical (prior to 1995) collections (Arkansas 1, Mississippi 1, Louisiana 2, Oklahoma 1, Texas 1). Only historical records (pre-2000) were available for the Trinity and Amite drainages. Using hDNA, we validated the historical presence of *P. riddellii* in the Trinity River at the type locality; however, material suitable for DNA-based identifications were unavailable for specimens from the Amite River.

4. DISCUSSION

4.1. Molecular identification and revised distribution of *Pleurobema riddellii*

Prior to our study, the presumptive distribution of *P*. riddellii did not include the Pearl or Lake Pontchartrain drainages (Vidrine 1993, Howells et al. 1996, Jones et al. 2005, 2021). Using DNA sequences, we were able to confirm the presence of P. riddellii in the Pearl River basin; however, individuals from Lake Pontchartrain drainages were unavailable for molecular analysis. Based on morphological characters, we tentatively identify the specimen from the Amite River (MMNS 2485) reported by Hartfield (1988) as P. riddellii (Fig. 2). Our findings expand the known distribution of P. riddellii eastward to include the Amite and Pearl drainages and likely other tributaries of Lake Pontchartrain, although additional surveys and molecular confirmation are needed due to difficulties with morphological identifications in this group.

P. riddellii was described from the Trinity River near Dallas, Texas, in 1861 (USNM 84635, Fig. 2). Recent survey efforts in the Trinity River drainage have failed to locate P. riddellii despite extensive geographic coverage of the historical distribution and using DNA barcoding to ensure species identification (Pieri et al. 2018, Randklev et al. 2020). Previous assessments of archeological material have suggested that *P. riddellii* could have been commonly distributed throughout the Trinity River drainage in the late Holocene (Randklev et al. 2010, 2020). However, historical specimens of P. riddellii are difficult to confirm with morphological characters alone due to high levels of morphological variation and similarities with other sympatric species (Randklev et al. 2020). This led Randklev et al. (2020) to suggest findings from archeological material warranted molecular confirmation, presumably using ancient DNA or

hDNA, to confirm the presence of *P. riddellii*. Our approach of using hDNA from the Trinity drainage validates the findings of Randklev et al. (2020) and confirms *P. riddellii* was extant in the Trinity drainage less than 200 yr ago. Confirmation of the species at the type locality is also important for confirming the validity of the species and may have conservation implications given the species is likely extirpated from the Trinity drainage (see Section 4.3).

Our molecular identifications of P. riddellii reinforce concerns regarding misidentifications with species of Fusconaia, Pleurobema, and to a lesser extent, Pustulosa (Inoue et al. 2018, Johnson et al. 2018, Pieri et al. 2018, Randklev et al. 2020, Smith et al. 2022). Reevaluating morphological characters of DNA confirmed P. riddellii specimens that were initially identified as other taxa in the field revealed diagnostic features that may help separate these morphologically similar taxa. For example, P. riddellii is sympatric with F. askewi, F. cerina, F. chunii, or F. flava throughout most of its distribution. Most of the P. riddellii specimens we received that were initially identified as Fusconaia sp. lacked the wide, shallow sulcus and were comparatively more inflated than co-distributed Fusconaia sp., which are the most reliable external morphological characters that separate P. riddellii from sympatric Fusconaia sp. Additionally, the soft parts (e.g. foot, gills, mantle) of Fusconaia sp. are typically orange to light brown in color with all 4 gills marsupial (tetragenous), whereas soft parts in Pleurobema sp. are cream-colored with only the outer gills marsupial (ectobranchus). In the Pearl and Lake Pontchartrain drainages, P. riddellii is sympatric with congener P. beadleianum; however, the former has a deeper umbo pocket, thicker hinge plate, more robust lateral and pseudocardinal teeth, and tends to be less elongate and more inflated when compared to P. beadleianum. In the Red and Ouachita drainages, the anteriorly positioned umbo, thicker hinge plate, and lack of a shallow sulcus are useful for separating sympatric P. rubrum and P. sintoxia from P. riddellii. Although DNA-based identifications are not practical in all situations, it can be invaluable when accurate identification is critical, such as confirming range extensions, historical presence, or during broodstock selection for captive propagation.

4.2. Genetic variation within P. riddellii

Our study provides the most comprehensive genetic and geographic assessment for *P. riddellii* to date and strongly supports the existence of 2 mtDNA haplogroups coinciding with the Ouachita drainage and individuals throughout the remainder of the species' range (Fig. 3). Inter-population comparisons with the Ouachita drainage also yielded the highest genetic p-distances. These findings align with a previous study that hypothesized the Ouachita drainage population likely represents an undescribed species (Inoue et al. 2018). Although the Ouachita drainage population appears to be molecularly diagnosable, sampling gaps remain across the putative distribution of P. riddellii in tributaries of the lower Mississippi River (Fig. 1). Future efforts incorporating material throughout the range of P. riddellii, with an emphasis on material from the lower Mississippi River, may be necessary to assess whether the taxon in the Ouachita River drainage should be considered a separate species from P. riddellii.

Throughout the remainder of the range, molecular data showed moderate levels of genetic variation with respect to geography in P. riddellii (Fig. 3). We observed unique haplotypes in each drainage (except the Trinity due to limited sampling) and fine structuring that aligned with geographic sub-provinces as defined by Haaq (2010) and de Moulpied et al. (2022): Calcasieu-Sabine-Neches, Pascagoula-Pearl-Pontchartrain, Red, and Trinity-San Jacinto (Fig. 3). We also observed a high level of haplotype sharing between eastern and western Gulf of Mexico drainages (Calcasieu, Neches, Pearl and Sabine), suggesting relatively recent contact between these populations. Samples from the Trinity-San Jacinto had unique haplotypes, aligning with other studies that have highlighted the genetic distinctiveness of the Trinity-San Jacinto sub-province (Pieri et al. 2018, Smith et al. 2019, 2021b, 2022, de Moulpied et al. 2022). However, we observed haplotype sharing between the Trinity and San Jacinto drainage, which may have implications toward recovery planning (see below).

4.3. Implications on conservation and management

Distributional and taxonomic uncertainty surrounding *P. riddellii* has complicated conservation assessments and management strategies and has potential implications as the species is proposed for listing under the ESA (USFWS 2009, 2023). Despite expanding the known range of *P. riddellii* to include several eastern Gulf of Mexico drainages, the eastern range limit of *P. riddellii* remains uncertain. Many freshwater mussel species found in the Pearl and Pontchartrain drainages also occur in the Pascagoula drainage (Haag 2010, Smith & Johnson 2020, Jones et al. 2021), and additional surveys in the Pascagoula drainage could help to determine if the Pearl drainage represents the eastern periphery of *P. riddellii*.

Our findings indicate the current distribution of P. riddellii in the eastern Gulf of Mexico drainages has likely been greatly reduced. It is unclear whether populations in Pontchartrain drainages (i.e. Amite, Tangipahoa) are extirpated, below detectable levels, or lack sufficient survey effort (Fig. 1). Given the species has been overlooked in eastern Gulf of Mexico drainages, we hypothesize extant populations likely exist in Pontchartrain drainages. Hartfield (1988) reported collections in the Amite River between Magnolia and Port Vincent, Louisiana, and future tactile surveys could target P. riddellii in suitable habitat in this stream segment. The high number of observations of P. riddellii in the Neches and Sabine rivers of Texas indicates these streams either continue to support subpopulations or their absence in the recent past was due to insufficient sampling. In the last 10 yr both rivers have been the focus of intensive surveys (Randklev et al. 2020). Thus, it is entirely possible the lack of distributional data for P. riddellii in other river systems is due to limited sampling. Because of this, targeted sampling throughout its known range could yield new records and reconfirm the existence of populations considered extirpated. Based on our maps and occurrence information, we recommend future surveys focus on the Lake Pontchartrain basin (e.g. Amite, Tangipahoa, and Tickfaw rivers), Louisiana, Lower Bayou Boeuf, Louisiana, Saline River, Arkansas and Louisiana, Red River from Texarkana, Texas to Shreveport, Louisiana, Bayou Pierre, Louisiana, and Black River, Louisiana. These areas either historically harbored P. riddellii or are located near reaches or basins where occurrences have been reported.

Extensive survey efforts have been performed in the Trinity drainage, yet P. riddellii has not been detected since the early 1900s, which suggests the species has been extirpated, similar to several other freshwater mussel species (Randklev et al. 2010, 2020, Wolverton & Randklev 2016). Our molecular assessment provides evidence that the Trinity and San Jacinto drainage populations are closely related, which may have significant implications for recovery planning. Extant populations have only been recently discovered in the San Jacinto drainage, including the East Fork San Jacinto and West Fork San Jacinto drainages. If these populations are found to be selfsustaining, captive propagation or translocation using broodstock from the San Jacinto drainage may be a promising recovery option for re-establishing populations in the Trinity drainage. However, the San Jacinto drainage had the lowest mean intra-population genetic distance values of all populations sampled (Table 2), suggesting this population may have suffered a genetic bottleneck in the past and may benefit from genetic rescue efforts (see Frankham 2015). Regardless, additional surveys and assessments of suitable habitat for *P. riddellii* in the Trinity drainage could be beneficial before inter-drainage translocations or captive propagation are performed. Our thorough sampling of range-wide genetic diversity in P. riddellii provides a foundation for guiding future recovery efforts involving captive propagation. Additionally, our findings and datasets facilitate the development of species-specific eDNA assays, which could serve as a rapid assessment tool to increase detection probabilities and focus additional tactile survey efforts in basins like the Trinity River where the contemporary status of P. riddellii remains unknown.

Acknowledgements. We thank Jack Dudding, John Harris, Michael Hart, Kentaro Inoue, Jess Jones, Kendall Moles, Jennifer Morton, Susan Oetker, Bill Posey, Joe Skorupski, Jeff Thompson, Eric Tsakiris, and Jonathan Winslow for assistance in the field; Ellen Strong (USNM), Taehwon Lee (UMMZ), John Slapcinsky (UF), and Steve Smith (OSU) for assistance with museum collections; and Elizabeth Black for assistance in the laboratory. Feedback provided by Todd Slack and 2 anonymous reviewers greatly improved the final manuscript. Funding for this project was provided by the US Geological Survey Wetland and Aquatic Research Center, US Fish and Wildlife Service Jackson MS Ecological Services Office, and the Stengl-Wyer Endowment at the University of Texas at Austin. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by The U.S. Government.

LITERATURE CITED

- Athearn AD (1970) Discussions of Dr. Heard's paper. Symposium on Endangered Mollusks. Malacologia 10: 28–31
- Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S and others (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLOS Comput Biol 15:e1006650
- Campbell DC, Lydeard C (2012) The genera of Pleurobemini (Bivalvia: Unionidae: Ambleminae). Am Malacol Bull 30:19–38
- Campbell DC, Serb JM, Buhay JE, Roe KJ, Minton RL, Lydeard C (2005) Phylogeny of North American amblemines (Bivalvia, Unionoida): prodigious polyphyly proves pervasive across genera. Invertebr Biol 124: 131–164
- Clement M, Snell Q, Walke P, Posada D, Crandall K (2002) TCS: estimating gene genealogies. In: Proceedings 16th International Parallel and Distributed Processing Symposium. Ft. Lauderdale, FL. doi:10.1109/IPDPS. 2002.1016585

- de Moulpied M, Smith CH, Robertson CR, Johnson NA, Lopez R, Randklev CR (2022) Biogeography of freshwater mussels (Bivalvia: Unionida) in Texas and implications on conservation biology. Divers Distrib 28:1458–1474
- Ferreira-Rodríguez N, Akiyama YB, Aksenova OV, Araujo R and others (2019) Research priorities for freshwater mussel conservation assessment. Biol Conserv 231:77–87
- Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618
 - FMCS (Freshwater Mollusk Conservation Society) (2016) A national strategy for the conservation of native freshwater mollusks. Freshw Mollusk Biol Conserv 19:1–21
 - Frierson LS (1911) A comparison of the Unionidae of the Pearl and Sabine rivers. Nautilus 24:134–136
 - Garner JT, Blalock-Herod HN, Bogan AE, Butler BS and others (2004) Freshwater mussels and snails. In: Mirarchi RA (ed) Alabama wildlife, Vol 1. A checklist of vertebrates and selected invertebrates: aquatic mollusks, fishes, amphibians, reptiles, birds, and mammals. University of Alabama Press, Tuscaloola, AL, p 13–58
- Garrison NL, Johnson PD, Whelan N (2021) Conservation genomics reveals low genetic diversity and multiple parentage in the threatened freshwater mussel, *Margaritifera hembeli*. Conserv Genet 22:217–231
- Geist J, Bayerl H, Stoeckle BC, Kuehn R (2021) Securing genetic integrity in freshwater pearl mussel propagation and captive breeding. Sci Rep 11:16019
- Georgia Department of Natural Resources (2014) Conservation status assessment mapping algorithm. https:// georgiabiodiversity.org/StatusMaps/ (accessed 8 March 2023)
- Gladstone NS, Garrison NL, Lane T, Johnson PD, Garner J, Whelan N (2022) Population genomics reveal low differentiation and complex demographic histories in a highly fragmented and endangered freshwater mussel. Aquat Conserv 32:1235–1248
- Grace M, Resit Akçakaya H, Bennett E, Hilton-Taylor C and others (2019) Using historical and palaeoecological data to inform ambitious species recovery targets. Philos Trans R Soc 374:20190297
- Graf DL, Cummings KS (2021) A 'big data' approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species. J Molluscan Stud 87:eyaa034
- Haag WR (2010) A hierarchical classification of freshwater mussel diversity in North America. J Biogeogr 37:12–26
- Haag WR, Williams JD (2014) Biodiversity on the brink: an assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 735:45–60
 - Hartfield P (1988) Status survey for the Alabama heelsplitter mussel *Potamilus inflatus* (Lea, 1831). US Fish and Wildlife Service, Jackson, MS
 - Howells RG, Neck RW, Murray HD (1996) Freshwater mussels of Texas. Texas Parks and Wildlife Press, Austin, TX
- Inoue K, Hayes DM, Harris JL, Johnson NA and others (2018) The Pleurobemini (Bivalvia: Unionida) revisited: molecular species delineation using a mitochondrial DNA gene reveals multiple conspecifics and undescribed species. Invertebr Syst 32:689–702
- Johnson NA, McLeod JM, Holcomb J, Rowe M, Williams JD (2016) Early life history and spatiotemporal changes in distribution of the rediscovered Suwannee moccasinshell Medionidus walkeri (Bivalvia: Unionidae). Endang Species Res 31:163–175

- Johnson NA, Smith CH, Pfeiffer JM, Randklev CR, Williams JD, Austin JD (2018) Integrative taxonomy resolves taxonomic uncertainty for freshwater mussels being considered for protection under the U.S. Endangered Species Act. Sci Rep 8:15892
- Johnson NA, Beaver CB, Kiser AH, Duplessis M and others (2023) Molecular and distributional data used to investigate misidentifications, population genetic diversity, and spatiotemporal trends in distribution for *Pleurobema riddellii* to help guide ESA listing decisions. US Geological Survey Data Release. doi:10.5066/P9VGXMGN
- Jones RL, Slack WT, Hartfield PD (2005) The freshwater mussels (Mollusca: Bivalvia: Unionidae) of Mississippi. Southeast Nat 4:77–92
 - Jones RL, Wagner MD, Slack WT, Peyton S, Hartfield P (2021) Guide to the identification and distribution of freshwater mussels (Bivalvia: Unionidae) in Mississippi, 2nd edn. Mississippi Department of Wildlife, Fisheries, and Parks, Jackson, MS
- Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14: 587–589
- Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780
- Kearse M, Moir R, Wilson A, Stones-Havas S and others (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649
- Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6: 1110–1116
- Lopes-Lima M, Burlakova LE, Karatayev AY, Mehler K, Seddon M, Sousa R (2018) Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810:1–14
- Madison WP, Madison DR (2021) Mesquite: a modular system for evolutionary analysis. https://www.mesquiteproject. org/
- McLeod JM, Jelks HL, Pursifull S, Johnson NA (2017) Characterizing the early life history of an imperiled freshwater mussel (*Ptychobranchus jonesi*) with host-fish determination and fecundity estimation. Freshw Sci 36:338–350
- Morrison CL, Johnson NA, Jones JW, Eackles MS and others (2021) Genetic and morphological characterization of the freshwater mussel clubshell species complex (*Pleurobema clava* and *Pleurobema oviforme*) to inform conservation planning. Ecol Evol 11:15325–15350
- Olivera-Hyde M, Jones JW, Hallerman EM (2023) Phylogenetic assessment of endangered and look-alike pigtoe species in a freshwater mussel diversity hotspot. Ecol Evol 13:e9717
- Ortmann AE (1912) Notes upon the families and genera of the Najades. Ann Carnegie Mus 8:222–365
- Ortmann AE (1914) Studies in Najades. Nautilus 28:28-34
- Patterson LN, Geda SR, Johnson NA (2021) Rediscovery and genetic confirmation of the threeridge mussel, *Amblema plicata* (Say, 1817) (Bivalvia, Unionidae), in the Choctawhatchee River, Florida, USA. Check List 17:783–790
- Pfeiffer III JM, Johnson NA, Randklev CR, Howells RG, Williams JD (2016) Generic reclassification and species boundaries in the rediscovered freshwater mussel 'Quadrula' mitchelli (Simpson in Dall, 1896). Conserv Genet 17:279–292

- Pieri AM, Inoue K, Johnson NA, Smith CH, Harris JL, Robertson C, Randklev CR (2018) Molecular and morphometric analyses reveal cryptic diversity within freshwater mussels (Bivalvia: Unionidae) of the western Gulf coastal drainages of the USA. Biol J Linn Soc 124:261–277
- Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904
- Randklev CR, Wolverton S, Lundeen B, Kennedy JH (2010) A paleozoological perspective on unionid (Mollusca: Unionidae) zoogeography in the upper Trinity River basin, Texas. Ecol Appl 20:2359–2368
 - Randklev CR, Wolverton S, Johnson NA, Smith CH, DuBose TP, Robertson CR, Conley J (2020) The utility of zooarchaeological data to guide listing efforts for an imperiled mussel species (Bivalvia: Unionidae: *Pleurobema riddellii*). Conserv Sci Pract 2:1–12
- Randklev CR, Ford NB, Fisher M, Anderson R and others (2021). Mussels of Texas Project Database. https://mussels.nri.tamu.edu/
- Raxworthy CJ, Smith BT (2021) Mining museums for historical DNA: advances and challenges in museomics. Trends Ecol Evol 36:1049–1060
- Shea CP, Peterson JT, Wisniewski JM, Johnson NA (2011) Misidentification of freshwater mussel species (Bivalvia: Unionidae): contributing factors, management implications, and potential solutions. J N Am Benthol Soc 30:446–458
- Simpson CT (1900) Synopsis of the naiades, or pearly freshwater mussels. Proc US Natl Mus 22:501–1044
 - Simpson CT (1914) A descriptive catalogue of the Naiades, or pearly fresh-water mussels. Parts I–III. Bryant Walker, Detroit, MI
- Smith CH, Johnson NA (2020) A comparative phylogeographic approach to facilitate recovery of an imperiled freshwater mussel (Bivalvia: Unionida: Potamilus inflatus). Diversity (Basel) 12:281–301
- Smith DR, Allan NL, McGowan CP, Szymanski JA, Oetker SR, Bell HM (2018) Development of a species status assessment process for decisions under the U.S. Endangered Species Act. J Fish Wildl Manag 9:302–320
- Smith CH, Johnson NA, Inoue K, Doyle RD, Randklev CR (2019) Integrative taxonomy reveals a new species of freshwater mussel, *Potamilus streckersoni* sp. nov. (Bivalvia: Unionidae): implications for conservation and management. Syst Biodivers 17:331–348
- Smith CH, Johnson NA, Havlik K, Doyle RD, Randklev CR (2021a) Resolving species boundaries in the critically imperiled freshwater mussel species, *Fusconaia mitchelli* (Bivalvia: Unionidae). J Zool Syst Evol Res 59:60–77
- Smith CH, Johnson NA, Robertson CR, Doyle RD, Randklev CR (2021b) Establishing conservation units to promote recovery of two threatened freshwater mussel species (Bivalvia: Unionida: *Potamilus*). Ecol Evol 11: 11102–11122
- Smith CH, Robertson CR, Randklev CR (2022) DNA barcoding identifies a novel population of the imperiled Trinity pigtoe, *Fusconaia chunii* (Lea, 1862) (Bivalvia, Unionidae), in the San Jacinto River drainage in Texas. Check List 18:1255–1262
 - Strecker JK (1931) The distribution of the naiades or pearly fresh-water mussels of Texas. Baylor University Museum Special Bulletin 2, Waco, TX
- Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027

- TPWD (Texas Parks and Wildlife Department) (2020) Threatened and endangered nongame species, Chap 65. Wildlife sub-chapter G. Rule §65.175. Adopted rules. Texas Secretary of State, Austin, TX
- USFWS (US Fish and Wildlife Service) (2009) Endangered and threatened wildlife and plants: 90-day finding on petitions to list nine species of mussels from Texas as threatened or endangered with critical habitat. Fed Regist 74:66260–66271
- USWFS (2023) Endangered and threatened wildlife and plants: endangered species status with critical habitat for Texas heelsplitter, and threatened status with Section 4(d) Rule and critical habitat for Louisiana pigtoe. Fed Regist 88:16776–16832
- Vidrine MF (1993) The historical distributions of freshwater mussels in Louisiana. Gail O. Vidrine Collectables, Eunice, LA
- Watters GT, Hoggarth MA, Stansbery DH (2009) The freshwater mussels of Ohio. The Ohio State University Press, Columbus, OH

Editorial responsibility: Brendan Godley, University of Exeter, Cornwall Campus, UK Reviewed by: David Christopher Campbell, 2 anonymous reviewers

- Williams JD, Warren ML, Cummings KS, Harris JL, Neves RJ (1993) Conservation status of freshwater mussels of the United States and Canada. Fisheries (Bethesda, Md) 18:6–22
 - Williams JD, Bogan AE, Garner JT (2008) Freshwater mussels of Alabama and the Mobile Basin in Georgia, Mississippi and Tennessee. University of Alabama Press, Tuscaloosa, AL
 - Williams JD, Butler RS, Warren GL, Johnson NA (2014) Freshwater mussels of Florida. University of Alabama Press, Tuscaloosa, AL
- Williams JD, Bogan AE, Butler RS, Cummings KS and others (2017) A revised list of the freshwater mussels (Mollusca: Bivalvia: Unionida) of the United States and Canada. Freshw Mollusk Biol Conserv 20: 33–58
- Wolverton S, Randklev CR (2016) Archaeological data Indicate a broader late holocene distribution of the sandbank pocketbook (Unionidae: *Lampsilis satura* Lea 1852) in Texas. Am Malacol Bull 34:133–137

Submitted: March 21, 2023 Accepted: July 14, 2023 Proofs received from author(s): September 5, 2023