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1.  INTRODUCTION

Arctic ecosystems are changing rapidly as the Arc-
tic is warming twice as fast as the rest of the planet
(Stroeve et al. 2012), with continued decreases in sea
ice extent (Carmack et al. 2016) and changes in pri-
mary production (Arrigo & van Dijken 2015, Frey et
al. 2019). Ongoing shifts in the Arctic environment
are asso ciated with changes in marine community
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ABSTRACT: Alaskan Arctic shelf communities are
currently experiencing dramatic changes that will
likely affect ecosystem functioning of Arctic marine
ben thic communities. Here, functional diversity
based on biological traits was used to assess differ-
ences and similarities in ecosystem functioning be -
tween 2 shelf systems that are geographically close
but vary in many environmental influences: the Arctic
Beaufort and Chukchi Sea epibenthic communities.
We hypothesized that (1) patterns of functional com-
position and diversity metrics reflect patterns in taxo-
nomic composition and diversity metrics in these 2
shelf communities; and (2) patterns in functional
diversity metrics are distinct between the 2 shelves.
We evaluated 9 biological traits (body form, body size,
feeding habit, fragility, larval development, living
habit, movement, reproductive strategy, sociability)
for 327 taxa in 2014 and 2015. For each trait, multiple
modalities (specific expressions within a trait) were
considered. Patterns in functional diversity metrics on
both shelves reflected those in taxonomic diversity
metrics. However, shelf communities were more sim-
ilar in functional- than in taxonomic composition.
Beaufort Sea communities had higher functional dis-
similarity and functional evenness driven by differ-
ences in the modalities within body form, body size,
larval development, and reproductive strategy. These
traits primarily affect nutrient cycling, energy turn-
over, and recovery from disturbances, suggesting a
stronger potential for future maintenance of eco -
system function, and indicating a more even use of
resources in the Beaufort Sea. The combination of
functional and taxonomic diversity metrics enabled
a comprehensive understanding of how ecological
niche space is used and how epibenthic communities
function in Alaskan Arctic shelf systems.
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Differences in functional diversity and functional composi-
tion of epibenthic invertebrate assemblages on Alaskan
Arctic shelves lead to differences in ecosystem functioning.
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composition and ecosystem processes (Huntington
et al. 2020, Waga et al. 2020). For example, environ-
mental changes, such as changes in temperature or
sea ice, can increase stress for Arctic species but
 create habitat conditions suitable for northward-
moving boreal species, thus changing community
composition (Mueter & Litzow 2008, Thorson et al.
2019). Alaskan Arctic shelves are known for region-
ally high productivity and tight pelagic− benthic cou-
pling, leading to some of the most productive benthic
shelf areas in the world (Grebmeier et al. 2006). Arc-
tic benthic assemblages within the Beaufort and
Chukchi Sea shelf communities are of great impor-
tance for these ecosystem processes, as they support
im portant food webs, which can channel anthropo -
genic or climatic perturbations to upper trophic
 levels (Iken et al. 2010, Divine et al. 2015). These
benthivorous upper trophic levels include ecologi-
cally and socially important bearded seals, walruses
(Fay 1982, Oliver et al. 1983), demersal fishes (White-
house et al. 2017), crabs (Divine et al. 2017), and birds
(Lovvorn et al. 2003). Changes in benthic assem-
blages within shelf communities or in the energy
pathways supporting these assemblages will there -
fore have effects on overall Arctic shelf ecosystem
function.

Ecosystem function is broadly defined as the move-
ment or storage of energy or material within an eco-
system (Bellwood et al. 2019). Benthic communities
play important roles in ecosystem functions such as
nutrient cycling (Kristensen 2000), energy turnover
(Hall et al. 2009), trophic transfers (Iken et al. 2010),
remineralization (Ambrose et al. 2001), and resus-
pension of sediments (Snelgrove et al. 2000). Although
different Arctic benthic shelf communities may share
these general functions, adjacent communities such
as on the Beaufort and Chukchi Sea shelves — that
differ distinctly in their oceanographic setting and
primary production levels (Sakshaug 2004, Carmack
& Wassmann 2006) — can be ex pected to differ in the
specific functional roles the benthos plays. The
Chuk chi Sea is a shallow inflow shelf (sensu Car-
mack & Wassmann 2006), characterized by high
nutrient influx from the Bering Sea, leading to high
primary production. In contrast, the Beaufort Sea is a
narrow interior shelf, which has lower primary pro-
duction than the Chukchi Sea, driven by lower nutri-
ent supplies from the Chukchi Sea to the western
Beaufort shelf, upwelling from the shelf break, and
high freshwater influx from the Mackenzie and
Colville Rivers (Hill et al. 2013, 2018, Grebmeier &
Maslowski 2014). These differences in key environ-
mental influences are suspected to play a role in driv-

ing patterns in taxonomic composition (e.g. Rand et
al. 2018) and may also lead to differences in func-
tional composition through differences in biological
traits between the Beaufort and Chukchi Sea shelf
benthic communities. This could result in dif ferent
ecosystem functioning be tween the 2 shelves,
despite their proximity. Consequently, the responses
and resilience (i.e. the ability of communities to main-
tain ecosystem function) of the benthic communities
to perturbations will likely differ between the Beau-
fort and Chukchi Sea shelves.

Functional diversity within a geographical area
can help explain and predict regional ecosystem
func tioning and ecosystem resilience to environmen-
tal change. The Beaufort and Chukchi Sea epiben-
thic communities can be functionally described by
‘what they do’ based on specific functional traits of
the taxa within the community rather than ‘who they
are’ purely based on taxonomy (Petchey & Gaston
2006). Hence, functional diversity is defined as the
range of organismal traits of species within a commu-
nity that, combined, determines ecosystem function-
ing (Tilman 2001, Bremner et al. 2006). Different taxa
can play a similar functional role in a community
based on their traits. Conversely, taxonomically simi-
lar organisms can have different functions within
a community (Hewitt et al. 2008, Krumhansl et al.
2016). Differences in biological trait expression
within a community will lead to differences in re -
source use because biological traits represent how
taxa extract and move resources in their environment
(McGill et al. 2006, Cadotte et al. 2011). In essence,
functional diversity is the balance of the roles of taxa
within communities through different traits and
through redundancy or complementarity of shared
traits that influence overall ecosystem functioning
(Díaz & Cabido 2001).

Arctic marine communities are at particular risk of
experiencing competitive disadvantages relative to
invading boreal species. Although Arctic taxa typi-
cally occupy a narrow temperature range, modeling
studies suggest these taxa may be resilient to envi-
ronmental pressures, including high temperatures
(Renaud et al. 2015, 2019). Therefore, there is a need
to better understand the resilience of these Arctic
shelf communities to ongoing changes in the envi-
ronment. In a resilient system, a specific ecosystem
function would be maintained even if one or several
taxa were removed from the system. High functional
redundancy, where the same biological traits are
represented by several different species within a
community, and high functional diversity, where
many different traits are represented by taxa within
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a community, presumably lead to high ecosystem
stability and increased resilience to change or distur-
bance (Hewitt et al. 2008).

The biodiversity−ecosystem-functioning (BEF) hy -
po thesis states that higher taxonomic diversity
leads to improved ecosystem functioning through
diversified resource use, which ultimately leads to
higher ecosystem stability (Loreau et al. 2001, Car-
dinale et al. 2009, 2012). This theory is based in an
understanding of biodiversity from a taxonomic
perspective, which for epibenthos has been estab-
lished in recent years for the Beaufort and Chukchi
Sea shelf study areas (e.g. Bluhm et al. 2009, Blan-
chard et al. 2013, Ravelo et al. 2014, 2015, 2020).
The underlying assumption of the BEF hypothesis
is that higher taxonomic diversity also reflects higher
functional diversity, but these assumptions are
rarely explicitly tested. Support for this underlying
assumption, for example, has been found for the
macrobenthos in the Bering Sea (Liu et al. 2019).
Despite a long-standing and ongoing debate in the
marine ecology scientific community of this concept
(Naeem et al. 1994), few studies have analyzed the
relationship between taxonomic diversity and eco-
system function in Arctic benthic marine systems
(but see Kokarev et al. 2017, Rand et al. 2018, Liu
et al. 2019), systems that are prone to perturba-
tions. We contend here that, if the BEF assumption
is correct, functional diversity on the 2 Arctic shelf
communities should follow the same patterns as
taxonomic diversity, as functional
diversity is based in biological traits
that are defined by a species’ iden-
tity. However, if functional diversity
provides a comple men tary perspec-
tive to ecosystem functioning that
taxonomy alone does not provide,
then a more com prehensive under-
standing of eco system function can
be expected when functional diver-
sity is analyzed alongside taxono -
mic diversity. Therefore, given dis-
tinct environmental influences on
the 2 shelves, we hypothesized that
(1) differen ces in functional com -
position and diversity metrics in
epi benthic shelf communities reflect
patterns in taxonomic composition
and diversity  metrics; and (2) pat-
terns in functional diversity metrics
of Beaufort and Chuk  chi Sea epi -
benthic shelf communities are dis-
tinct from each other.

2.  MATERIALS AND METHODS

2.1.  Study sites

Epibenthic invertebrates were collected during 4
cruises in 2014 and 2015 on the US Beaufort and
Chukchi Sea shelves (Fig. 1). Here, we define each
station as a representative assemblage of taxa within
each shelf community. Beaufort Sea assemblages
from 46 stations were studied during 3 research
cruises: The US−Canada Transboundary Project
2014 sampled the central Beaufort Sea shelf, and the
Arctic Nearshore Impact Monitoring in Development
Area project III (ANIMIDA 2014, 2015) sampled the
central and eastern Beaufort Sea shelf. Stations
between 9 and 64 m bottom depth were included in
this study. Chukchi Sea shelf assemblages from 67
stations were sampled during the Arctic Marine Bio-
diversity Observing Network survey in 2015
(AMBON 2015). These stations were sampled
between 11 and 54 m bottom depth.

2.2.  Sample collection

Epibenthic invertebrate assemblages were sam-
pled during all cruises towing a 3.05 m wide plumb-
staff beam trawl with a 2.6 m wide and 1.2 m high
mouth opening with a 7 mm mesh and a 4 mm
codend liner (modified after Gunderson & Ellis 1986).

3

Beaufort Sea

Chu
kc

hi
Sea

Alaska

0

68°

100 200 km

70°

72°
N  

170° 160° 150° 140°W

Cruise
AMBON-15
ANIMIDA-14
ANIMIDA-15
Transboundary-14
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Average trawl time at the bottom was 4−5 min at
approximately 1.5−2 knots, depending on station
depth and bottom conditions (see details in Iken et al.
2019). Biomass of all epibenthic invertebrates at each
station was calculated as catch per unit effort by mul-
tiplying the estimated distance trawled by the width
of the net and normalized to g wet weight per
1000 m2. Bottom contact was determined using a
time− depth recorder (Star Oddi). Invertebrates were
identified onboard to the lowest feasible taxonomic
level, and net wet weight of each taxon was recorded
using digital hanging scales. Vouchers for taxa not
identified in the field were fixed in either 10% forma-
lin solution or 190-proof ethanol for later identification
with the help of taxonomic experts listed in the
acknowledgment section. Taxon names followed
those in WoRMS (www. marinespecies.org) to stan-
dardize nomenclature.

2.3.  Biological traits analysis

A dataset of biological traits was compiled for a
total of 327 epibenthic taxa collected from both
shelves. These data can be accessed via Table S1 in
the Supplement (at www. int-res. com/ articles/ suppl/
m651 p001_ supp. xlsx) and with references via The
Arc tic Traits Database (https://www.univie.ac.at/
arctic  traits/). The Beaufort Sea community consisted
of 246 taxa and the Chukchi Sea community con-
sisted of 247 taxa, with 166 shared taxa within these
shelves. Taxonomic resolution varied for these taxa,
but was similar between the 2 shelf communities.
The Beaufort Sea had 163 and Chukchi Sea had
172 taxa identified to species, 60 and 56 to genus, 7
and 5 to family, 4 and 5 to class, 7 and 4 to order,
and the same 5 taxa were identified at the phylum
level (Table S1). Taxonomic identi fications were
based on the same taxonomic expertise (see Ack -
nowledgements), so that the similar taxonomic res-
olution of the 2 sea shelf systems enabled an unbi-
ased comparison of functional diversity based on
biological traits. Biological traits analysis (BTA)
functionally characterizes epibenthic organisms
based on morphology, life history, and behavior.
The BTA included a total of 9 traits related to mor-
phology (body form, body size, fragility, sociability),
behavior (feeding habit, living habit, adult move-
ment), and life history (larval development, repro-
ductive strategy), following the definitions and cat-
egories used by Degen & Faulwetter (2019) (Table
1). The biological traits matrix was assembled
through a combination of qualitative traits based

on observations and our collective knowledge of
Arctic invertebrates (morphological traits) and traits
derived from extensive literature research (life his-
tory traits, behavioral traits). Where specific litera-
ture for a species was unavailable, traits were in -
ferred from closely related species. Each trait was
further separated into modalities to account for dis-
tinct categories within a trait that an organism
could express (Table 1, Table S1).

The BTA was done with a fuzzy-coding approach,
which allowed taxa to be assigned multiple modali-
ties within a trait based on their affinity to those
modalities (Chevenet et al. 1994, Bremner et al.
2006). Using a 0−3 scoring system, where 0 means
no affinity and 3 is a high affinity to a modality,
each taxon was assigned a number based on its
affinity to each modality within a trait (Table S1,
Chevenet et al. 1994). Taxa with equal affinity to
several modalities within a biological trait were
assigned the same score for those modalities. All
fuzzy-coded modality scores within a trait were
then weighted so that they summed to 1 for each
taxon and trait. The scores for all modalities across
all traits created unique taxa biological trait profiles
(taxa by trait matrix). These matrices were multi-
plied by the relative taxa biomass at each station
(taxa by station matrix) to create fuzzy-coded com-
munity weighted means (CWMs) for each station
and trait. Therefore, the resulting station by trait
matrix essentially highlighted the most common
categorical modalities at each station, and therefore
each assemblage, through biomass weighting
(Table 2) (Garnier et al. 2007).

2.4.  Shelf comparisons of functional and taxonomic
diversity metrics

Five functional diversity metrics were calculated
for the Beaufort and Chukchi Sea shelf epibenthic
assemblages to enable a community-level compari-
son (Table 2). Each of the functional diversity metrics
re presented a unique facet of overall functional
diversity (Mason et al. 2005, Mouchet et al. 2010).
These included functional dissimilarity (Rao’s quad-
ratic entropy [Rao’s Q]), functional richness (FRic),
functional evenness (FEve), functional divergence
(FDiv), and functional redundancy (FRed = 1 − mean
pairwise distances [MPD]) (Table 2). Functional dis-
similarity (Rao’s Q) compares how similar the biolog-
ical trait profiles of taxa are to each other among
assemblages (Rao 1982). Functional dissimilarity was
complemented by functional metrics that described
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the available functional niche space (FRic) and how
the space within a given niche was occupied among
assemblages (FEve, FDiv) (Schleuter et al. 2010). As
all traits were fuzzy-coded categorical variables,
functional metrics of Rao’s Q, FRic, FEve, and FDiv
were based on a flexible distance-based framework
(Laliberté & Legendre 2010). First, a Gower distance
matrix among taxa was calculated using a trait by
taxa matrix, followed by a principal coordinates ana -
lysis (PCoA). PCoA axes were then used as new ‘trait
values’ to compute FRic, FEve, and FDiv for all sta-
tions (Laliberté & Legendre 2010). FEve used all
PCoA axes, whereas FRic and FDiv used the maxi-
mum number of PCoA axes allowed where the num-
ber of taxa was greater than the number of traits.
FRed represents the degree to which taxa play simi-
lar roles in communities, and was measured using
the complement of MPD (1 − MPD) (Rosenfeld 2002,
de Bello et al. 2016). All functional diversity metrics
can range from 0−1, where 0 indicates low functional
diversity and 1 indicates the highest possible func-
tional diversity.

Functional diversity metrics were compared to
 complementary taxonomic diversity metrics (Table 3).
Rao’s Q was compared to the Simpson taxonomic-
based diversity index (Simpson 1949). Simpson di -
versity measures the chance that 2 individuals within
a station are from the same taxon. The Simpson
diversity index equals the maximum value of Rao’s Q
if all taxa were functionally completely different (i.e.
each taxon represents unique functions) and the
Simpson index is, thus, commonly used in compar-

isons of functional and taxonomic diversity (Carmona
et al. 2016). Margalef’s richness index measures spe-
cies richness while accounting for sampling effects,
and was compared to FRic. Finally, Pielou’s evenness
index was used to calculate species evenness and
was compared to FEve.

All diversity metrics were compared between the
Beaufort and Chukchi Sea shelf communities using a
linear model of the form:

y = α + β × d + ε (1)

where y is any of the diversity metrics, the intercept
α corresponds to the mean value of index y for the
Chukchi Sea, and d is a dummy variable with values
d = 0 for the Chukchi Sea and d = 1 for the Beaufort
Sea. Hence, the regression coefficient β corresponds
to the mean difference in metric y between the
Chukchi Sea and the Beaufort Sea. The error, ε, was
modeled as a spatial random process with a correla-
tion structure that exponentially declined with dis-
tance between stations to allow for spatial autocorre-
lation. This linear model form was chosen over a
simple univariate test (e.g. ANOVA) due to the spatial
nature of the residuals and the ability to account for
spatial autocorrelation. Models were fit using a gen-
eralized-least-squares approach as implemented in
the ‘nmle’ package in R (Pinheiro et al. 2017). If the
autocorrelation term did not significantly improve the
model fit, metrics were compared using a simple lin-
ear model fit via least squares. To further investigate
the relationship between the number of taxa and
functional diversity on each shelf, Rao’s Q was com-

7

Index Formula Description Source

Simpson diversity index (D)
1

1

1
1

−
−
−=

∑
i

N
i i

i

S S

S S

( )
( )

Equals the maximum value for
Rao’s Q if all species were
completely functionally
different (i.e. each species
represents unique functions)

Simpson (1949)

Margalef’s richness index (d) − 1

ln( )

S

N

Result of the number of
species divided by the
biomass of species at a given
station

Magurran (2004)

Pielou’s evenness index (J’) H

S

’

log( )

Maximum possible value of
the Shannon index (H’)

Pielou (1975), Magurran (2004)

Shannon diversity index (H’)
−

=
∑
i

S

ip pi
1

ln( )
Proportion of species even-
ness relative to species
biomass at a station

Shannon (1948)

Table 3. Summary of the taxonomic-based metrics used in this study, where Si is the biomass of species i, S is the total biomass
of all species at each station, N is the total number of species at each station, and pi is the relative biomass of species i at a station
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pared to Margalef’s index for the Beaufort and
Chukchi Sea shelves using a non-linear generalized
additive model (GAM).

2.5.  Comparisons of functional and taxonomic
composition

Significant differences in functional (based on
CWM) and taxonomic composition (based on taxon
biomass) between the Beaufort and Chukchi Sea
shelf assemblages were determined with analyses of
similarity (ANOSIM) using a Gower distance matrix
for functional composition and a Bray-Curtis dissimi-
larity matrix for taxonomic composition (Clarke &
Warwick 1994). No transformation was performed on
the functional composition matrix, as this matrix was
already fuzzy-coded for CWM. Taxon biomass data
were square root transformed to balance the influ-
ence of rare and dominant taxa (Clarke & Warwick
1994). The 10 most influential taxa on taxonomic
composition were compared between the 2 shelves
(similarity percentages analysis, SIMPER). These
taxa were further compared between shelves in per-
cent total biomass, frequency of occurrence, and
average percent biomass per station. Furthermore,
functional composition based on the proportion of
modalities within biological traits was compared
between the Beaufort and Chukchi Sea shelf com-
munities using a fuzzy correspondence analysis
(FCA; Chevenet et al.1994). To focus on biological
traits that drove patterns in functional composition
on each shelf, correlation ratios from the FCA were
evaluated for the first 2 axes of the FCA. High corre-
lation ratios indicate strong relationships of biologi-
cal traits with the FCA axes. Following previous
studies on biological traits (Conti et al. 2014, Kokarev
et al. 2017), we considered biological traits with cor-
relation ratios >0.1 as most representative of the vari-
ance captured by the FCA axes. All analyses eva -
luating differences in functional and taxonomic
compositions were computed using the ‘vegan’ pack-
age (Oksanen et al. 2019) in R version 4.0.2 (R Core
Team 2020). Functional and taxonomic composition
for each shelf were compared using the RELATE rou-
tine in the Primer V.7 software package (Clarke &
Gorley 2015). Sufficient permutations were possible
for all comparisons, and statistical significance was
set at α = 0.05.

In addition to between-shelf comparisons, the rela-
tionships of functional and taxonomic structures
were evaluated within each shelf using a multistep
process of multivariate statistics. First, we investi-

gated which taxa and modalities best represented
communities for each shelf using the BVSTEP analy-
sis within the BEST routine in Primer V.7 (Clarke &
Gorley 2015). Specifically, we investigated which
subset of taxa or subset of modalities were necessary
to maintain the original structures of taxonomic or
functional composition and were therefore consid-
ered representative of the functional and taxonomic
structure. These representative subsets of modalities
and taxa were determined using a stepwise proce-
dure based on at least 95% Mantel correlations. Sub-
sequently, these subsets were considered as charac-
teristic taxa and influential modalities. Resemblance
matrices from these characteristic species and influ-
ential modalities were then compared using RELATE
tests for each shelf separately.

3.  RESULTS

3.1.  Functional and taxonomic diversity metrics

All diversity metrics except FRed had higher
median values in the Beaufort Sea shelf community
compared to the Chukchi Sea shelf community.
However, only 2 functional diversity metrics (Rao’s
Q, FEve) and the corresponding taxonomic metrics
(Simpson’s diversity, Pielou’s evenness) were signifi-
cantly higher in the Beaufort than Chukchi Sea shelf
community (Fig. 2, p < 0.01). No spatial autocorrela-
tion was detected for Rao’s Q, FRic, Simpson diver-
sity, and Pielou’s evenness, but was present in FEve,
FDiv, Margalef’s index, and FRed (Table 4). Fewer
taxa were required to increase functional dissimilar-
ity (Rao’s Q) in the Beaufort Sea compared to the
Chukchi Sea (Fig. 3).

3.2.  Comparison in functional and taxonomic
composition between shelves

The Beaufort and Chukchi Sea epibenthic shelf
communities moderately differed in functional com-
position, despite substantial overlap (ANOSIM: R =
0.292, p = 0.001, Fig. 4a). The first 2 FCA axes ac -
counted for 42.36% of the total inertia, with 24.70%
explained by axis 1 and 17.66% explained by axis 2
(Fig. 4a). The biological trait movement was mostly
separated along axis 1, while fragility was mostly
separated along axis 2 (Fig. 5). The biological traits
body form, body size, larval development, and repro-
ductive strategy were strongly correlated with both
axes, with correlation ratios ≥0.1 (Table 5, Fig. 5).

8



Sutton et al.: Comparing Arctic shelf functional diversity

Within these biological traits that strongly correlated
with both FCA axes, the Beaufort Sea shelf assem-
blages had proportionally higher biomasses of glo bu -
lose (BF1) and laterally compressed (BF4) body
forms, lecithotrophic (LD2) and direct development
(LD3), small−medium sized (BS2), and sexual−
brooder (R4) modalities compared with Chukchi Sea
assemblages (Fig. 6). Conversely, the Chukchi Sea
shelf assemblages had proportionally higher bio-

masses of dorso-ventrally compressed
(BF3) and upright (BF5) body form,
planktotrophic development (LD1),
medium (BS3) and medium−large size
(BS4), and sexual− external (R2) mo -
dalities (Fig. 6).

The Beaufort and Chukchi Sea epi -
benthic shelf communities also dif-
fered in taxonomic composition (ANO
SIM, R = 0.676, p = 0.001, Fig. 4b). The
Beaufort Sea shelf contained 246 taxa
and the Chukchi Sea shelf harbored
247 taxa, with a total of 327 unique
taxa combined for the 2 shelves. Of the
total taxa, 166 taxa (51% of total) were
shared between the Beaufort and
Chukchi Sea shelf communities. The
holothurian Psolus peronii, the scallop
Similipecten greenlandicus, the brittle
stars Ophiocten sericeum and Ophi ura
sarsii, the snow crab Chionoecetes
opilio, the sand dollar Echinarachnius
parma, the shrimp Argis sp., the
basket star Gorgonocepha lus sp., and
the lyre crab Hyas coarctatus con-
tributed most to differences in taxono -
mic composition be tween the 2 shelves
(SIMPER, Table 6, Fig. 4b). The 2 shelf
communities differed strong ly in the
taxa that contributed most to biomass
and frequency of occurrence (FO) per
shelf. The Beaufort Sea shelf commu-
nity was dominated in total biomass,
average biomass per station, and FO by
P. peronii, S. greenlandicus, and O.
sericeum. In contrast, the Chukchi Sea
shelf community was dominated in
total biomass and average biomass per
station by O. sarsii, C. opi lio, and E.
parma, while FO was highest for C.
opilio, Argis sp., and H. coarctatus
(Table 6).

3.3.  Comparison of functional and taxonomic
composition within each shelf

Patterns in functional and taxonomic composition
were significantly related to each other within both
the Beaufort and Chukchi Sea shelf communities
(RELATE test: rho = 0.497, p = 0.001 for Beaufort Sea;
rho = 0.619, p = 0.001 for Chukchi Sea). Eight taxa
best characterized the Beaufort Sea shelf taxonomic

9

* *

**

Functional divergence (FDiv) Functional redundancy (FRed)

Functional richness (FRic) Margalef’s index

Functional evenness (FEve) Pielou’s evenness

Functional dissimilarity (Rao’s Q) Simpson diversity index

Beaufort Chukchi Beaufort Chukchi

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

2

4

6

8

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.8

1.0

Fig. 2. Diversity metrics for the Beaufort (dark gray) and Chukchi (light gray)
Sea shelf epibenthic assemblages based on community weighted means for
functional diversity indices and square root transformed biomass for taxo-
nomic diversity indices. Thick horizontal lines: median; boxes: inter-quartile
range (IQR); whiskers: highest/lowest values ≤1.5x IQR above/below box;
black points: outliers. *Significant difference between shelf assemblages 

(see Table 4)



Mar Ecol Prog Ser 651: 1–21, 2020

structure (BVSTEP, Spearman’s corre lation coeffi-
cient: 0.952, p = 0.001, Fig. 7a). These taxa were the
amphi pods Acanthostepheia behringiensis and Paro -
edi ceros lyn ceus, the cuma cean Diastylis goodsiri,
the seastars Leptasterias groenlandica and Uras te -
rias lincki, the brittle star O. seri ceum, the holo -
thurian P. peronii, and the shrimp Sabinea septem -
carinata. Six modalities contributed most to
the Beau fort Sea functional structure (BVSTEP,
Spearman’s correlation co efficient: 0.951, p = 0.001).
These mo dalities were dorso-ventrally compressed
(BF3), robust (F3), sessile (MV1), sexual−brooding

(R4), sexual− external reproduction (R2),
and solitary (SO1). These influential
mo dalities were well represented by
the characteristic taxa (Fig. 7a). In this
matrix of characteristic taxa by mo -
dality, 48% of the possible taxa−
modality pairings reflected some af -
finity to each other, often even high
affinity. Resemblance matrices of
the subset of characteristic taxa and
the influential modalities for the Beau-
fort Sea were significantly re lated
(RELATE; rho = 0.569, p = 0.01).

A larger subset of taxa and modali-
ties were needed in the Chukchi than
the Beaufort Sea community to main-
tain taxonomic and functional struc-
ture. We found that 28 taxa best char-

acterized Chukchi Sea shelf taxonomic structure
across all stations (BVSTEP, Spearman’s correlation
coefficient: 0.951, p = 0.01; Fig. 7b). Eleven modali-
ties that most in fluenced the Chukchi Sea functional
structure (BVSTEP, Spearman’s correlation coeffi-
cient: 0.905, p = 0.001) were direct development
(LD1), lecitho trophic development (LD2), fragile
(F1), gregarious (SO2), solitary (SO1), laterally com-
pressed (BF4), up right (BF5), medium size (BS3),
predator (FH4), sessile (MV1), and swimmer (MV4).
Influential moda lities in the Chukchi Sea were
expressed to a lesser degree (39%) by the charac-
teristic taxa, and often at a lower affinity than in the
Beaufort Sea (Fig. 7b). Resemblance matrices of the
subset of characteristic taxa and influential modali-
ties for the Chukchi Sea were significantly related
(RELATE; rho = 0.517, p = 0.01).

4.  DISCUSSION

This study described the functional composition
of the Beaufort and Chukchi Sea epibenthic shelf
communities and explored the functional and taxo-
nomic relationships between the 2 shelf systems.
Overall, functional diversity patterns reflected those
in taxonomic diversity on each shelf, supporting
our first hypothesis. In addition, we found that the
2 shelves were functionally distinct, supporting our
second hypo thesis, albeit with much overlap in
similar proportions of modalities between the 2
shelves. The biological traits that differed between
shelves, especially those related to larval develop-
ment, reproductive strategy, body size, and body
form, can inform about energy flow and resource
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Metric        Spatial auto-               α (CI)                         β            Significance
                    correlation                                                                   (H0: β = 0)

Rao’s Q               No            0.326 (0.294−0.358)         −0.126            <0.001
Simpson             No            0.707 (0.644−0.771)         −0.136             0.002
FEve                  Yes           0.493 (0.449−0.053)         −0.056             0.053
Pielou                Yes           0.588 (0.503−0.672)         −0.137             0.020
FRic                    No            0.431 (0.392−0.470)         −0.003             0.827
Margalef           Yes           4.501 (3.858−5.145)         −0.768             0.078
FDiv                   Yes           0.793 (0.651−0.936)         −0.123             0.464
FRed                  Yes           0.553 (0.461−0.644)         0.228             0.276

Table 4. Metrics compared between the Beaufort and Chukchi Seas, model
structure (with or without spatially autocorrelated residuals), estimated mean
for the Beaufort Sea (intercept α), difference between Chukchi and Beaufort
Sea means (β), and significance level for β. Significant differences (p ≤ 0.05) in
bold. Rao’s Q: Rao’s quadratic entropy (a measure of functional dissimilarity);
FEve: functional evenness; FRic: functional richness; FDiv: functional diver-
gence; FRed: functional redundancy; other indices are defined in Table 3
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partitioning within each shelf as well
as different community responses to
changes and disturbances (Rand et
al. 2018). The overlap in functional
composition, but strong separation of
taxonomic composition between the
Beaufort and Chukchi shelves, sug-
gests that different taxa  fulfill similar
functions in the 2 systems. Therefore,
functional analyses provided com -
plementary perspectives that related
the taxonomic patterns to ecosystem
function on these Arctic shelves.
Specifically, we can use dominant
biological traits to pinpoint which re -
sources (e.g. available food or space)
are most affected by changes or per-
turbations in the available niche
space, and how efficiently those
niche spaces are occupied on these 2
shelf systems.

4.1.  Comparison of taxonomic and
functional diversity metrics

At the core of the BEF concept is
the premise that higher taxonomic
diversity leads to more efficient eco -
system functioning through higher
interaction strength between taxa
and their environment. The principle
is that more species will use a more
diverse set of resources in a system,
ultimately increasing the stability of
the system against perturbations (Lo -
reau et al. 2001, Cardinale et al.
2009, 2012). In our study, taxonomic
diversity (Simpson) and evenness
(Pielou’s) were significantly higher in
the Beaufort Sea shelf assemblages
compared to the Chukchi Sea shelf
assemblages, but there was no dif-
ference in taxonomic richness (Mar-
galef’s index) between the 2 shelves.
This similarity in taxonomic richness
as well as in functional richness be -
tween the 2 shelf systems provided a
unique opportunity to compare func-
tional redundancy of the 2 shelves
in similar taxonomic and functional
space. Fewer modalities and fewer
taxa were needed to describe the
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relationships between taxonomic and functional
composition of the Beaufort Sea community (8 taxa,
6 modalities) compared to the Chukchi Sea com-
munity (28 taxa, 11 modalities; see Fig. 7), reflect-
ing a higher functional redundancy in the Chukchi
Sea. Additionally, fewer taxa were required in the
Beaufort Sea to increase functional dissimilarity
compared to the Chukchi Sea at a given taxon rich-
ness. Together, these relationships point to lower
functional redundancy and highly diverse biological
trait profiles in the Beaufort Sea that tended to be
dominated by single modalities within biological
traits. High functional evenness in the Beaufort Sea
indicated that most biological traits within assem-
blages were expressed evenly in functional space,
albeit with individual taxa dominated by unique
mo dal ities. Likewise, the higher taxonomic even-
ness pointed to more evenly distributed biomass of
taxa on the Beaufort Sea shelf. Our results show
that, in general, functional diversity metrics meas-
ured on Alas kan Arctic shelf systems mirrored
those of taxonomic metrics, following the hypothe-
sized pattern of the BEF concept. Similar patterns
be tween functional and taxonomic composition
were found for the Bering Sea macrobenthos (Liu
et al. 2019).

Given that species are the building blocks of
 ecosystem function (Bellwood et al. 2019), func-
tional diversity can pinpoint which characteristics,
or traits, of species diversity influence ecosystem
function (Tilman 2001). For example, we saw strong
differences between shelves in body size, likely
affecting the movement of energy across the shelves,

and in larval development, reproductive strategy,
and body form, all of which can inform about
resistance to disturbances. This relationship be -
tween the 2 diversity ap proaches emphasizes the
importance of using func tional diversity as a com-
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Trait                                                 RS1                      RS2

Body form                                      0.26                      0.21
Body size                                        0.17                      0.11
Fragility                                          0.06                      0.12
Feeding habit                                0.09                      0.03
Larval development                      0.30                      0.22
Living habit                                    0.08                      0.07
Movement                                      0.26                      0.07
Reproductive strategy                   0.10                      0.19
Sociability                                       0.02                      0.04
                                                                                       
Variance (%)                                24.70                    17.66
Eigenvalues                                    0.15                      0.11

Table 5. Correlation ratios of the biological traits for the first
2 fuzzy correspondence analysis (FCA) axes (see Fig. 4a).
Biological traits (trait details in Table 1) that accounted for
the most variation in the FCA (correlation values [RS] ≥0.1) 

are shown in bold
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Species                    SIMPER results (%) Total biomass (%) Frequency of Average biomass per 
                                                     Indiv.         Cum.             Chuk   Beau occurrence (%) station when present (%)
                                                    contrib.      contrib.                                              Chuk   Beau                     Chuk     Beau
                                                                                                                                 n = 67  n = 52                    n = 67   n = 52
                                                                                                                                                                                              
Chionoecetes opilio                       6.9             6.9                 7.0     <0.1               94.0        7.7                         1.4         0.1
Ophiura sarsii                                6.9             13.8               22.5        0.5               50.8        7.7                         8.4         2.1
Psolus peronii                                 5.2             19.0                 6.0      41.1               26.9      51.9                         4.3       24.7
Echinarachnius parma                  3.9             22.9               33.0        0                   11.9        0                          52.4         0
Ophiocten sericeum                      2.9             25.8              <0.1      11.1                 6.0      80.8                         0.1         4.3
Similipecten greenlandicus          2.5             28.3                 0           7.3                 0         78.9                         0            2.9
Argis sp.                                         2.2             30.6                 0.9        0.1               82.1        7.7                         0.2         0.2
Gorgonocephalus sp.                    2.2             32.8                 2.8     <0.1               43.3        1.9                         1.2         0.4
Hyas coarctatus                             2.1             34.9                 1.3        0.1               82.1        9.6                         0.3         0.5

Number of taxa                                                                     247    246                                                                         
Total average biomass                                                         3849   16910

per station (g wet weight 
per 1000 m2)

Percent of total biomass                                                       73.42    60.20

Table 6. Epibenthic taxa with the largest percent contribution to differences in taxonomic composition between the Beaufort
(Beau) and Chukchi (Chuk) Sea shelves, ordered from highest to lowest contribution. The cumulative percent of total biomass 

for influential taxa is shown
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plement to taxonomic diversity, especially on Arctic
shelves (Rand et al. 2018), considering ecosystem
function is likely to change with expected changes
in taxonomic composition from climatic pressures
(Renaud et al. 2015).

4.2.  Functional diversity metrics

Epibenthic communities on both shelves were over-
all functionally similar, as indicated by comparable
FRic and FDiv. However, we also observed differ-
ences in functional dissimilarity (Rao’s Q) between
the epi benthos of the 2 shelf systems, which were
driven by significant differences in FEve. Differences
in FEve were reflected in the more even distribution
of modalities for the influential biological traits of
body form, body size, and larval development in the
Beaufort Sea compared with the Chukchi Sea com-
munity. Differences in biological trait expressions
within a community will lead to differences in which
resources are used within each community (McGill et
al. 2006, Cadotte et al. 2011). Higher FEve and lower
functional redundancy (although not significantly
lower functional redundancy) in the Beaufort Sea
community pointed to the use of a wider range of
available resources within their respective niche
space (Mason et al. 2005). For example, resource
breadth for epibenthic shelf communities differs for
substrate and food type. Sediments on the narrow
Beaufort Sea shelf are a poorly sorted mix of gravel,
sands, and muds, controlled by variable currents,
river discharge, and ice rafting (Naidu 1974). In con-
trast, sediments on the broader Chukchi Sea shelf
tend to be more uniform over larger regions in accor-
dance with larger current systems (Grebmeier et al.
2015). Also, the Beaufort Sea shelf contains a diverse
range of carbon sources as possible food sources for
the benthos, including large amounts of terrestrial
organic material from massive river discharge, mar-
ine phytoplankton, microphytobenthos, ice algal pro-
duction, and macroalgal stands in the coastal Beau-
fort Sea (Bell et al. 2016, Harris et al. 2018). In
contrast, there are fewer sources of macroalgae and
terrestrial material on the Chukchi shelf. The higher
FEve on the Beaufort shelf affords more opportuni-
ties to exploit such wider resource availability.
Higher FEve also reflects a strong potential for main-
tenance of ecosystem function with loss of species
due to a high degree of niche complementarity
(Hewitt et al. 2008). Greater niche complementarity
usually leads to greater resource partitioning within
communities (Finke & Snyder 2008). In contrast, the

lower FEve in the Chukchi Sea community pointed to
lower niche complementarity and, thus, a potential
underutilization of resources (Mason et al. 2005).
Higher functional redundancy in the Chukchi Sea
could also lead to underutilization of resources, and
is expected to increase with in creasing tempera-
tures through the borealization of the Chukchi Sea
(Alabia et al. 2020). This scenario could lead to a
system that is more vulnerable to invading species
that would be able to capitalize on those available,
underutilized resources (Tilman 2001). This is of
particular importance to an inflow shelf such as the
Chukchi Sea shelf, which receives species that are
increasingly migrating northward from the Bering
Sea in response to continued warming (Mueter & Lit-
zow 2008, Stevenson & Lauth 2019, Thorson et al.
2019, Alabia et al. 2020).

4.3.  Functional trait composition of Beaufort and
Chukchi Sea epibenthos

4.3.1.  Trait similarities between the shelves

Composition of functional traits on the Beaufort and
Chukchi Sea shelves was similar in many aspects, as
demonstrated through similar proportions of modali-
ties within 5 biological traits. Shared trait composition
should support similar ecosystem functioning (Lavo -
rel & Garnier 2002). For example, benthic macrofau-
nal groups in the Baltic Sea clustered into groups
based on shared biological trait composition that had
similar effects on the ecosystem functions of stability
and bioturbation (Villnäs et al. 2018, Liu et al. 2019).
Similar modality composition be tween the Beaufort
and Chukchi Sea shelves were seen in feeding habit,
fragility, living habit, movement, and sociability.
Many of these traits can be used to assess the vulner-
ability of benthic fauna to destructive forces and dis-
turbances. Robustness of taxa, regeneration time,
and position in the sediment have been used to as -
sess benthic fauna vulnerable to disturbances such as
the impact of predators (Weigel et al. 2016, Beau -
chard et al. 2017). Predator impacts may increase in
Arctic shelf communities as ongoing and future habi-
tat ranges of predatory species (e.g. Pacific and
Atlantic cod) extend northward onto Arctic shelves
(Rand & Logerwell 2011, Alabia et al. 2020). Such
impacts could be further amplified if commercial
fisheries were to move north into the Chukchi Sea
from the Bering Sea, following demersal fish migra-
tions (Christiansen et al. 2014). One could expect that
the Beaufort and Chuk chi Sea shelf systems would
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respond in a similar way to those disturbances based
on their similar composition of many functional traits.

Within the shared biological traits of feeding habit
and movement, specifically, deposit feeding habit and
crawling movement can have strong impacts on eco-
system services such as sediment oxygenation, resus-
pension, and remineralization through downward
and horizontal movements of detrital particles (Snel-
grove et al. 2000, Quei rós et al. 2013). For example,
brittle stars are a dominant taxon across the Beaufort
and Chukchi Sea shelves (Ravelo et al. 2015, 2017,
Iken et al. 2019), and the prominent species (Ophi -
octen sericeum and Ophiura sarsii, respectively) gen-
erally express a similar biological trait profile. They
are mostly deposit feeders, have medium/robust
fragility, free-living habits, burrowing and crawling
movement types, and solitary life styles. These dis-
tinctive modalities in ophiuroids affect carbon and
nutrient cycling in a similar way in both Arctic shelf
systems through bioturbation (Kristensen 2000,
Ambrose et al. 2001).

4.3.2.  Trait differences between the shelves

Strong differences existed in modality composition
in 4 biological traits between the Beaufort and Chuk -
chi Sea shelves: larval development, reproductive
strategy, body size, and body form. These traits, to
varying degrees, have been observed to drive varia-
tion in benthic ecosystem function in the North Sea
(Bolam & Eggleton 2014) and the Arctic Ocean
(Degen 2015, Kokarev et al. 2017, Rand et al. 2018).
We suggest that these traits also contribute to differ-
ences in ecosystem functioning between the Beau-
fort and Chukchi Sea shelf communities.

The Chukchi Sea community had a higher propor-
tion of planktotrophic larval development compared
to the Beaufort Sea community. Plankto trophic larval
development and a sexual−external reproductive
strategy provide epibenthic taxa with the ability to
spread fast and far, which increases their ability to
resist or recover after a disturbance (Węsławski et al.
2011). Planktotrophic larvae can spend days to
months in the plankton phase because of their need
to feed during development (Thorson 1950, Pechenik
1990, Buzhinskaja 2006). This planktonic duration is
inversely correlated with temperatures, leading to
typically longer times spent in the plankton for Arctic
larvae (O’Connor et al. 2007, Ershova et al. 2019) due
to reduced metabolic rates compared to regions with
warmer water temperatures (Gillooly et al. 2002). For
example, planktotrophic larval development time of

2 common crustaceans, the shrimp Pandalus borealis
and the hermit crab Pagurus bernhardus, followed
predicted exponential increases in larval duration
with decreased temperature (O’Connor et al. 2007).
Long larval development times, coupled with strong,
large-scale advection driving a strong injection of
larvae from the Bering Sea to the Chukchi Sea shelf
(Ershova et al. 2019), allow Arctic taxa to efficiently
colonize open space across large distances in the
Chukchi Sea. In contrast, the Beaufort Sea shelf com-
munity, which does not possess a similar source of
advected larvae, had high proportions of lecitho -
trophic and direct development. These development
types either spend no time (direct development) or
little time (lecitho trophic development) in the plank-
ton, indicating a high level of preservation of local
ecosystem processes mediated by these low-disper-
sal traits (Degen & Faulwetter 2019). These life his-
tory strategies may be an adaptation to the narrow
Beaufort Sea shelf, likely reducing advective losses
of larvae into unsuitable deep-sea habitats that could
result from seasonally strong flow regimes (Pickart
2004). Also, direct or lecithotrophic development
might be less affected by large-scale water column
stressors. For example, high latitudes are particularly
vulnerable to ocean acidification due to the naturally
occurring low carbonate concentration derived from
low water temperatures (Feely & Chen 1982, Byrne
et al. 2010). These acidic conditions can be particu-
larly detrimental to many of the pela gic early life
stages of invertebrates (Long et al. 2013a,b). Brood-
ing species with direct development are likely less
affected by ocean acidification due to maternal pro-
tection of the developing juveniles compared with
species with plankto trophic larval development that
spend extended time periods in those conditions
(Lucey et al. 2015).

Body size has been referred to as the master or
key trait because it affects numerous aspects of
ecosystem functioning because of its many rela-
tionships with other traits (Degen et al. 2018). For
example, body size is highly correlated with behav-
ioral traits such as predatory feeding habits (Riede
et al. 2010, Nordström et al. 2015), where larger-
sized predators typically consume larger-sized prey
(Riede et al. 2010). Indeed, we found a higher pro-
portion of typical upper trophic level feeding habits
(i.e. scavengers and predators) in the larger-sized
Chukchi epibenthos.

Body size can also influence nutrient cycling and
energy turnover through metabolic rates (Hall et al.
2009). Nutrient cycling can be directly regulated by
organisms, for example, through input of nitrogen to
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a system via excretion and ingestion, and indirectly
regulated through an organism’s influence on micro-
bial communities and primary production (Hall et al.
2009). In addition, communities with smaller-sized
taxa (i.e. the Beaufort Sea community) will have a
larger effect on energy turnover compared to those
dominated by larger taxa, because smaller taxa have
higher metabolic, excretion, and turnover rates (e.g.
shorter generation time) (Pearson & Rosenberg 1978,
Brown et al. 2004). Larger mobile marine inverte-
brates such as in the Chukchi Sea are more likely to
travel greater distances, which would move energy
in the form of biomass across the shelves on a large
scale, similar to the large-scale effects of dispersive
larvae on ecosystem function discussed in this sec-
tion. Higher metabolic, excretion, and turnover rates
of smaller mobile invertebrates, coupled with smaller
dispersal potential in the Beaufort Sea community,
may retain energy more locally compared to the
Chukchi Sea community. This essentially creates a
system where taxa in the Beaufort Sea are more
restricted to use the local resources available, where
high FEve reflects more efficient use of all available
resources by the functionally more dissimilar assem-
blages (high Rao’s Q).

Body form is often related to ecological roles such
as bioturbation and habitat formation that can lead
to ecosystem stability (Degen & Faulwetter 2019).
Taxa with specific body forms can be vulnerable to
common disturbances, which may destabilize eco-
system function (Jørgensen et al. 2015, 2019,
Degen et al. 2018). For example, pressure from
some predators or trawling will likely affect upright
body forms more than vermiform or dorso-ventrally
compressed body forms, because up right body
forms have more above-ground ex posure (Brem ner
et al. 2006, Jørgensen et al. 2019). Dorso-ventrally
compressed body forms, in addition to vermiform
body forms, increase bioturbation, which tends to
foster ecosystem production and stability (Degen &
Faulwetter 2019). Body form is more closely related
to taxonomic identity than most other traits, i.e.
biological traits are assigned to taxa that are typi-
cally identified based on morphological features
(Beauchard et al. 2017). This close relationship
between body form and taxonomy makes body
form a contentious trait to include in functional di -
versity analyses (Beauchard et al. 2017). The in -
clus ion of this trait has advantages and disadvan-
tages due to the strong relationships that exist
be tween body form-related traits and the taxa
present in a region, which gives taxonomy dispro-
portional weight in functional analyses. In our

study, we saw this relationship between dominant
body forms and taxonomy in both shelf systems.
For example, the Chuk chi Sea epibenthos was
mostly dominated by the dorso-ventrally com-
pressed body form, which was re flected in the fre-
quent and high biomass-  contributing species such
as Chionoecetes opilio, Echina rachnius parma, and
Ophiura sarsii. In contrast, the Beaufort Sea epiben-
thos was dominated by globulose, dorso-ventrally
compressed, and laterally compressed body forms,
which were represented by the frequent biomass
contributors Psolus peronii, Ophi oc ten sericeum,
and Simili pecten green landi cus, respectively (note
that S. green landicus and other bi valves were func-
tionally coded as laterally compressed based on
morphology, not necessarily re flecting their position
on the seafloor). Although a tight relationship with
taxon omy did exist, we considered the inclusion of
body form necessary to glean information on com-
munity vulnerability to disturbances such as trawl-
ing. The Chukchi Sea shelf, which is directly north
of the Bering Sea, will likely see increased com-
mercial interest, but may be more resilient to this
type of disturbance if the shelf remains dominated
by taxa that are dorso-ventrally compressed.

5.  CONCLUSIONS

The current benchmark of functional and taxo-
nomic diversity metrics, and of functional and taxo-
nomic composition, of Beaufort and Chukchi Sea
epibenthic communities provided here will aid in
future shelf-wide or among-shelf ecosystem function
comparisons in the Alaskan Arctic. In the rapidly
changing Arctic, these benchmarks will support
interpretation of long-term monitoring data. Cur-
rently, differences in specific biological traits (e.g.
body form, body size, larval development, reproduc-
tive strategy) lead to differences in ecosystem func-
tion be  tween the Beaufort and Chukchi Sea epiben-
thic shelf communities. These differences mirror
differences in taxonomic diversity, with the Beaufort
Sea epibenthic community having significantly
higher diversity. The combination of functional and
taxonomic diversity metrics enables us to have a
comprehensive understanding of how ecological
niche space is currently used in Alaskan Arctic ben-
thic shelf systems. Future studies should evaluate
environmental influences on functional diversity, as
well as on ecosystem function changes over time,
and space so we can predict how the ecology of the
Arctic benthos is likely to change.
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