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1.  INTRODUCTION 

1.1.  Movement and growth in echinoderms 

Studies on growth and movement patterns are 
integral to the development of effective conservation 
and fishery management strategies for exploited 
marine animals (Campana 2001, Nathan et al. 2008, 
Allen & Singh 2016). Knowledge of long-term move-
ment patterns can inform plans for spatial manage-
ment measures such as optimal sizing for no-take 
zones that protect breeding populations and rota-
tional harvest areas (Taggart et al. 2008, Green et al. 
2015). Likewise, age and growth parameters are 
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ABSTRACT: Sea cucumbers are heavily exploited 
worldwide, yet data are lacking on animal mobility 
and life-history parameters for fishery management 
and conservation planning. This study assessed 
movement and growth rates for a medium-sized 
holo thuroid, Pearsonothuria graeffei, harvested 
throughout the Indo-Pacific. We used photographic 
mark−recapture to track long-term movements and 
growth for this species over 2 yr. Recapture rates 
were 67−72%. Movement rates averaged 9 m yr−1, 
and many individuals were found in aggregations 
and recaptured there in 2 successive years. Growth 
was highly variable; small animals (<700 g) tended 
to gain weight while large animals (>700 g) tended 
to lose weight. Some individuals lost weight and 
then regained weight, while others gained weight 
and later lost it. Growth models estimated that P. 
gra effei approach their average maximum weight 
(769 g) in 7−12 yr and are slow-growing (growth 
coefficient = 0.17). Natural mortality (M; 0.48 yr−1) 
was low, and estimated longevity was 18 yr. P. gra-
effei exhibits traits that heighten its vulnerability to 
overfishing: aggregation behaviour, low mobility, 
slow growth, a long lifespan and low M. The site 
fidelity and low mobility infer that a system of small 
reserves would effectively protect breeding popula-
tions and that emigration to new sites is very lim-
ited. This study provides the first published evi-
dence from natural habitats that holothuroids can 
lose and later regain weight. Our empirical findings 
suggest that small- to medium-sized holothuroids 
might be slower growing and longer lived than pre-
viously believed, imploring a more conservative 
approach to conservation policy.  
 
KEY WORDS:  Holothuroidea · Echinoderm · 
Growth modelling · Longevity · Natural mortality · 
Mark−recapture · Marine invertebrate 

OPENPEN
 ACCESSCCESS

A ‘flowerfish’, Pearsonothuria graeffei, crawling down a reef 
slope at Lizard Island, Australia, where more than 100 of the 
animals were photographically marked.  
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used to formulate optimal harvesting rates, catch 
quotas, rotational closures, and time needed for stock 
recovery (Pauly 1983, Morales-Nin 1992). Movement 
and growth studies thus furnish key information for 
planning regulatory measures suited to certain spe-
cies or groups. 

Information on the movement and mobility of ani-
mals in natural habitats improves our understanding 
of population dynamics (Bell et al. 2008, Courchamp 
et al. 2008). Most echinoderms are broadcast spawn-
ers; therefore, successful fertilisation of gametes 
relies heavily on the proximity of mates in order to 
avoid Allee effects (Courchamp et al. 2008, Byrne & 
O’Hara 2017). In low densities, echinoderms with 
low mobility face a reduced likelihood of encounters 
with mates during the spawning season (Babcock et 
al. 1992, Bell et al. 2008). While high mobility pro-
vides animals with opportunities for spatial intermix-
ing of populations and colonisation of new areas, 
highly mobile echinoderms are at increased risk of 
spillover out of marine reserves (Sale et al. 2005, Pur-
cell & Kirby 2006). 

Mark−recapture studies can reveal the movement 
potential and growth rates of echinoderms (e.g. Da 
Silva et al. 1986, Dumont et al. 2006, Purcell et al. 
2016). Two large-bodied (i.e. commonly >1 kg) holo -
thuroids, Bohadschia argus and Thelenota ananas, 
that forage on soft-bottom habitats were found to be 
capable of displacing 10s of m yr−1 (e.g. Purcell et al. 
2016). Although some sea urchins can move consid-
erable distances, others are highly sedentary, moving 
less than 20 cm in 3 wk (Lowe et al. 2015). Little is 
known of the long-term movement potential of small 
sea cucumbers (i.e. <1 kg) and those typical of hard 
reef surfaces. Similarly, while mark−recapture has 
shown that larger holothuroid species (i.e. >1 kg) are 
long-lived (Uthicke et al. 2004, Purcell et al. 2016), 
uncertainty remains about the longevity of smaller 
species that are also commercially targeted. 

Long-term movement patterns have been charac-
terised by animals’ long-term displacements. These 
range from short movements within a home range to 
nomadic movements between locations and seasonal 
migrations (Grüss et al. 2011, Jonzén et al. 2011, Teit-
elbaum & Mueller 2019). Movement rates differ 
greatly among marine animals, contingent upon fac-
tors such as habitat type, resource availability, popu-
lation density, season, trophic level, body size, and 
sex (Hammond 1982, Kramer & Chapman 1999, Sale 
et al. 2005, Frisch 2007). Giant triton snails can travel 
up to 234 m d−1 (Schlaff et al. 2020), greatly out -
pacing the 10 m d−1 movement rates of their prey, the 
crown-of-thorns starfish (Keesing & Lucas 1992). Al-

though often regarded as sedentary (Grantham et al. 
2003), some sea cucumbers are surprisingly mobile, 
often moving more than 5 m d−1 (Siegenthaler et al. 
2015, Purcell et al. 2016, Hammond et al. 2020). 

1.2.  Age and growth in holothuroids 

The formulation of effective fishery management 
plans or recovery strategies relies heavily on estimat-
ing baseline parameters such as growth rate, natural 
mortality (M), and longevity (tmax) (Beverton & Holt 
1959, Pauly 1980, Pine et al. 2003). The underlying 
tenant is that stocks with high tmax and low M are less 
resilient to exploitation and have reduced capacity to 
recover from depletion (Froese et al. 2000, Cochrane 
2002, Hewitt et al. 2007). 

Mark−recapture studies rely upon long-term tag 
retention and non-invasiveness of the tags or mark-
ing method. Physical tags and body etching have had 
poor retention with holothuroids and can interfere 
with behaviour and metabolism (Conand 1991, Shiell 
2006, Wheeling et al. 2007, Rodríguez-Barreras et al. 
2014). Genetic fingerprinting has good application 
for holothuroids (Uthicke & Benzie 2002) but is more 
expensive and sophisticated to apply (Purcell et al. 
2006, Shiell 2006). Photographic mark−recapture 
methods have proven valuable for holothuroids with 
individually distinguishable colour or body patterns 
and have been applied to a few large-bodied species 
(i.e. adults mostly >1 kg) (Purcell et al. 2016, Ham-
mond et al. 2020). 

Growth increments in body size over a known 
period can be used to model life-history parameters. 
Field studies have shown that large-bodied tropical 
holothuroids (i.e. >1 kg) have slow or moderate 
growth rates and lifespans of at least several decades 
(Uthicke & Benzie 2002, Uthicke et al. 2004, Purcell 
et al. 2016). The first of those studies on Holothuria 
whitmaei used genetic fingerprinting (Uthicke et al. 
2004), while the second study on B. argus and T. 
ananas used photographic mark−recapture (Purcell 
et al. 2016). Negative growth, or shrinkage, in 
holothuroids has been reported in several empirical 
mark−recapture studies (Uthicke & Benzie 2002, 
Uthicke et al. 2004, Purcell et al. 2016, Dumestre 
2017). This phenomenon is also known for some 
other invertebrates, including planarians, cnidarians, 
and nemerteans (Hamner & Jenssen 1974, Oviedo et 
al. 2003, Hariharan et al. 2016). Standard fishery 
growth models assume positive growth increments 
and will underestimate tmax in the presence of nega-
tive growth. 
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1.3.  Knowledge gaps for managing and conserving 
sea cucumbers 

Over the past 2 decades, sea cucumber fisheries 
have spread like a contagion, serially over-exploiting 
stocks in all of the world’s oceans (Anderson et al. 
2011, Eriksson et al. 2015). The majority of tropical 
sea cucumber fisheries are ineffectively managed 
(Purcell et al. 2013), and 16 of the 90 or so commer-
cially fished species are threatened with extinction 
(IUCN 2021). The lack of knowledge of life-history 
parameters of most of the commercially exploited sea 
cucumbers has contributed to resource mismanage-
ment and has hampered conservation planning 
(Bruckner et al. 2003, Toral-Granda et al. 2008, Pur-
cell et al. 2013). Early work on the abundant reef 
holothuroid Holothuria atra using chemical marking 
indicated relatively high rates of M (1.02) yet slow 
growth (growth coefficient, K = 0.11) (Ebert 1978). 
Further studies since then have yielded a range of 
estimates for M and the growth constant for various 
holothuroids (discussed later). 

Our focal species, Pearsonothuria graeffei, is one of 
only a few small-bodied, commercially exploited sea 
cucumbers suitable for photographic mark−recap-
ture. Widely distributed across the Indo-Pacific, this 
deposit-feeding holothuroid lives on hard coral reef 
surfaces in depths of up to 25 m (Purcell et al. 2012). 
It is fished heavily in low-income countries despite its 
low commercial value (Conand et al. 2013, Pakoa et 
al. 2013, Mustagfirin et al. 2021). This species can 
sometimes be found in aggregations (Idreesbabu & 
Sureshkumar 2017). They are predominantly active 
diurnally, and daytime movement rates from 51 indi-
viduals averaged 1.1 m h−1 in a short-term study at a 
coral reef in the Philippines (Wheeling et al. 2007). 

1.4.  Study aims 

This study aimed to uncover long-term movement 
rates and life-history parameters of P. graeffei, which 
offers an example of a small-bodied holothuroid typ-
ical of hard reef habitats. We achieved this goal by 
photographically marking animals that were geo -
referenced, measured and weighed, and then re-
photographed and measured in the same way in 2 
successive recapture years. By collecting data at sev-
eral sites, we also assessed the extent of population 
mixing. A key objective of this study was to furnish 
data that could inform spatial management meas-
ures, fishery harvest strategies, and conservation 
measures. 

2.  MATERIALS AND METHODS 

2.1.  Study site 

The study was conducted at Lizard Island (14° 40’ 
S, 145° 28’ E) in  north-eastern Australia, within the 
Great Barrier Reef Marine Park. In the late 1800s, 
Lizard Island was the base for commercial sea 
cucumber fishing (DES 2021). Today, the lagoon and 
reefs around this island group are protected within a 
no-take marine park designated as a Scientific 
Research Zone (SR-14-2004), and the sea cucumbers 
have not been subject to harvesting for many de -
cades. The southern lagoon, delimited by Palfrey and 
South islands, creates sheltered habitats amenable to 
Pearsonothuria graeffei populations. 

2.2.  Field methods 

Fieldwork was undertaken around the same time 
each year over 3 yr: 21 February 2019, 24−26 Febru-
ary 2020, and 19−25 February 2021. As P. graeffei 
can be found in aggregations (the collective noun 
proposed as ‘pickles’ on some internet sites) of high 
abundance in shallower (2−8 m) areas of the lagoon 
between Palfrey and South Island, we chose this area 
as the study site. Broadscale searches identified the 
protected reef edges as the preferred habitat of P. 
graeffei. 

In 2019, we recorded (method below) the first 25 
animals located at the Palfrey Island site, which 
appeared to be the majority of animals at that site. In 
2020, we recorded 34 animals at Palfrey Island and, 
after a broad search to find a second site with reason-
able numbers of P. graeffei, we recorded the first 57 
animals found at a second site near South Island. In 
2021, we expanded the final recapture search area to 
maximise the chance of recapturing potentially 
nomadic animals. The search area extended 30−70 m 
from both sites and included the reef slopes and rub-
ble substrata between the 2 sites (Fig. 1). For the 
2021 survey, we recorded 139 individuals — again, 
all individuals that were encountered. 

As P. graeffei camouflages against the reef and 
sometimes shelters within the reef matrix, searching 
involved checking crevices and holes within the reef 
while keeping an eye out for the characteristic string-
of-beads faecal pellets, which might indicate the 
presence of a cryptic animal (Fig. 2a,b). For the 2019, 
2020, and 2021 surveys, the same procedure was fol-
lowed for photographing, measuring, and weighing 
the sea cucumbers. Two snorkellers searched for the 
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Fig. 1. Lizard Island, Queensland, study sites at (a,c) South Island lagoon and (b) Palfrey Island lagoon and locations and 
 displacements of Pearsonothuria graeffei across 3 sampling periods (February 2019, 2020, 2021). Arrows are displacement 
 distances of individuals photographically matched (square symbols); square symbols without displacement arrows denote 
 animals that moved <1 m (i.e. symbols are overlaid on the same point). Curved black arrows in the middle panel denote  

animal displacements of only a few metres
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animals, and one of them towed a dive float with a 
handheld GPS unit, recording search tracks and ani-
mal locations. Dive watches were synchronised to 
the time on the GPS unit. Upon location of each ani-
mal, we positioned the GPS at the water’s surface 
directly above the animal for 1 min and recorded the 
time to later match up with the time-synced GPS. 
The anterior end of each animal was then pho-
tographed and the lengths and widths (at body mid-
point) of the animals were measured to ±0.5 cm in 
situ in an undisturbed state. We recorded the water 
depth at each sighting using a digital depth gauge 
(±0.1 m) and later corrected it to zero tidal datum. 
Animals were brought to the nearby boat in individ-
ual bags with labels and weighed using an electronic 
hanging balance (±10 g) after a 5 min draining 
period, which was carefully timed and recorded in 
each instance. That draining period allowed the ani-
mals to expel water from their body while minimising 
stress and is a standard procedure to reduce meas-
urement error (following Skewes et al. 2004). Both 
field sites were in sheltered ‘back-reef’ habitats, 
although some light wind chop could cause 10−20 g 
variation in weight measurements using a hanging 
scale, corresponding to a 1−3% error in weight 
measurements relative to mean body weight. We 
then returned the animals to their original position 
on the reef, identified by a numbered marker and 
float. 

2.3.  Photographic mark−recapture method  
and matching 

The tendency of P. graeffei to contort its body, 
even when undisturbed, made it untenable to use 
photo-identification software that requires fixed 

body reference points, as in marine megafauna (e.g. 
Flukebook, Sharkbook). Therefore, we undertook 
photo identification manually, matching the orienta-
tion of at least 10 white papillae, black spots, and/or 
black lines at the anterior end of each animal 
(Fig. A1 in the Appendix). Only animals matched 
with absolute certainty were considered recaptures. 
The only difficulties encountered in matching ani-
mals were those few animals handled through 
necessity (e.g. extracting from a crevice to photo-
graph). Disturbed animals contracted their body 
and retracted their papillae, reducing or obscuring 
reference points for matching. 

2.4.  Long-term movement 

The position of each animal, obtained from the cor-
responding time stamp on the GPS tracks, was 
entered into Google Earth Pro (v.7.3 Google, 2021), 
and displacement of recaptured animals was meas-
ured using the ruler function (±0.1 m). We marked 12 
fixed positions on land with the same GPS unit and 
track settings. After returning to those positions and 
measuring the distances with the same method, the 
average accuracy was found to be 1.28 m. This meas-
urement error is proportionally large for animal dis-
placements of just a few metres and smaller with 
greater displacements. 

Data from all recaptured animals were grouped by 
site (Palfrey or South Island lagoon) for initial analy-
ses. ArcGIS Pro (v.2.4 ESRI, version 2021) density-
based clustering identified major aggregations using 
the distance between neighbours and a reachability 
plot to separate clusters from noise. A minimum of 
15 animals within a search distance of 45 m was con-
sidered a pickle. 
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Fig. 2. (a) Pearsonothuria 
graeffei showing mottled 
colouration that is well 
camouflaged against the 
coral rubble habitat that 
they frequently occupy, 
making sighting them 
difficult. (b) The tell-tale 
string-of-beads faecal 
pellets from P. graeffei 
indicate the presence of a 
cryptic or hidden animal
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An ANCOVA test using SPSS v.17 software (IBM) 
was used to examine mean annual displacement (ln 
transformed) across the 2 sites between 2020 and 
2021 while accounting for water depth and initial 
animal body weight covariates. The natural log 
transformation addressed the non-normality of data 
due to a few animals that had moved long distances. 
Normality of data was checked using box-and-
whisker plots, and homogeneity of variances was 
verified using Levene’s test (p > 0.05). Residuals were 
checked for normality and outliers, and the assump-
tions were met. The relationship between annual dis-
placement and animal size was investigated via non-
linear regression using Datafit™ software, applying 
the best-fitting 2-parameter model in order to avoid 
overfitting. 

2.5.  Growth 

Growth was estimated for 69 animals. For 11 ani-
mals recaptured in both 2020 and 2021, we used data 
only for the 2020 recaptures in growth analyses to 
avoid pseudoreplication. Weight was used as the 
metric for assessing growth because of the flexible 
bodies of sea cucumbers. None of the animals 
weighed in this study eviscerated internal organs. In 
order to illustrate how annual growth increments (i.e. 
weight gained or lost) varied across different starting 
weights of animals, the 2 variables were plotted and 
the trend analysed with linear regression. We also 
separately plotted the weights of the 11 multiple re-
captured animals to explore weight changes of those 
animals across 2019, 2020, and 2021 and applied sim-
ple trend smoothing to illustrate the responses. 

Relative growth rates for individuals were deter-
mined from the change in body weight over time, 
standardised by the initial weight and time, using the 
equation: 

 
                                               

(1)
 

where W1 and W2 are body weights at time t1 and  
t2. Relationships between growth rate and initial 
weight, depth, and displacement were also explored 
via nonlinear regressions using Datafit-9™ software. 

To model growth rates, we first applied Fabens’ 
equation in order to derive von Bertalanffy parame-
ter estimates of asymptotic weight (W∞) and growth 
coefficient (K). This was done by applying our data 
on the time at liberty (T), with growth increments 
determined from initial weight (W1), and final weight 
(W2): 

                                               (2) 

For the von Bertalanffy model, d = 1, which simpli-
fies the equation. The parameters in Fabens’ equa-
tion were given new symbols to be recognised in 
Datafit-9™ as: 

 
                                               

(3) 

where y is the growth increment (W2 − W1), a is W∞, 
x1 is W1, b is K, and x2 is T. Values of W∞ and K were 
used to plot size-at-age curves using the equation: 

 
                                               

(4) 

for the von Bertalanffy model and: 
 
                                               

(5)
 

for the Gompertz model (Purcell et al. 2016). tmax 
(Taylor 1958, Pauly 1984) was approximated by: 

                             tmax ≈ 3 × K –1 (6) 

This simplified equation for tmax assumes that the ani-
mal age at zero weight (t0) is zero. This is an approx-
imation based on fishes in tropical waters (Pauly 
1984), so caution is naturally needed when interpret-
ing results for other taxa such as sea cucumbers. 

Parameters were entered into the online FishBase 
life-history tool for elongate fishes, which yielded a 
standard error estimate (Froese & Pauly 2021). The 
value of M for the population was estimated using 
Pauly’s (1980) empirical model: 

logM = –0.2107 – 0.0824logW∞ + 0.6757logK  
                + 0.4627logTp                                           (7) 

where Tp is the mean annual sea temperature (°C) at 
Lizard Island for 2020 (AIMS 2021). This model was 
used because it applies to data on animal weights 
and uses estimates for K and seawater temperature, 
which were both available. This model is founded on 
a general trend across most finfish whereby M corre-
lates directly with environmental temperature (Pauly 
1980), and it has been similarly applied for other 
holothuroids (Herrero-Pérezrul et al. 1999, Siddique 
& Ayub 2019). 

3.  RESULTS 

In total, we photographically marked and meas-
ured animals on 255 occasions and recaptured ani-
mals on 80 occasions. For the 2020 and 2021 surveys, 
that translated to recapture rates of 67 and 72% of 
animals after 1−2 yr (Table 1). Six animals pho-
tographed in 2019 and not found in 2020 were relo-
cated in 2021, while 11 animals photographed in 
2019 were relocated in 2020 and 2021. 

W2 W1
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100
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3.1.  Long-term movement 

For the 2020−2021 period, average movement rates 
were similar between the 2 sites, averaging (±SE) 9 ± 
10 m yr−1. Across all time periods, individual animal 
displacements ranged from 1 to 64 m yr−1 (Table 1). 
Displacement rates between 2020 and 2021 did not 
differ significantly between the 2 sites (Table 2). 
While depth did not appear to significantly affect 
long-term displacement, annual displacement dis-
tances increased with larger-sized animals (Table 2; 
F1,78 = 9.73, p < 0.01, r2 = 0.11). Density-based cluster 
analysis identified 3 distinct aggregations: 2 at South 
Island lagoon (Fig. 1a,c) and one at Palfrey Island 
lagoon (Fig. 1b), with no exchange of animals 
between aggregations in successive years. Individ-
ual Pearsonothuria graeffei outside these aggrega-
tions exhibited the highest displacement rates (mean 
± SD: 25 ± 22 m). Nine of the 11 animals recaptured 
in 2020 and 2021 at the Palfrey Island site moved in a 
V-shaped trajectory, and all but one were found 
within 12 m (8 ± 5 m) of their location 2 yr earlier. 
Few of the recaptured animals had stayed in exactly 
the same place on the reef. 

3.2.  Growth 

The average body weight of P. graeffei in 2021 was 
697 g; the range for 2020 and 2021 was 150−1275 g. 

In 2021, body lengths averaged 34 cm and ranged 
from 17 to 52 cm. Individual animal growth (by 
weight) across the 2 years and 2 sites was highly vari-
able, with an average (±SD) annual relative growth 
rate of 2.6 ± 15.4%. More than half the animals 
exhibited apparent weight loss (Fig. 3). The individ-
uals with the greatest weight gain and loss were 
located within the same aggregation at Palfrey Island 
lagoon in 2020 and relocated in 2021. The animal 
with the greatest relative weight loss (−39%) was the 
smallest, weighing 245 g in 2020 and dropping to 
150 g in 2021. The animal’s basal area more than 
halved, from 110 to 53 cm2. Conversely, the animal 
with the greatest relative growth rate (46%) was also 
one of the smallest, increasing from 453 to 660 g. The 
change in basal area was not as pronounced, from 
125 to 150 cm2. 

The annual weight increment tended to decline as 
a function of initial body weight, although the rela-
tionship was highly variable (regression: F1,67 = 4.4, 
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Fig. 3. Change in weight (growth increment) as a function of 
initial body weight of Pearsonothuria graeffei during the 
study (2019−2021) at Lizard Island, Queensland (n = 69). 
Red line: point of zero growth; black line: the best fit by 
 linear regression; blue lines: 95% CIs. Points represent 
changes in weight for individuals weighed over the periods  

2019−2020, 2020−2021, and 2019−2021 as indicated

Site                                         Year of first capture            np                 nr             Recapture rate (%)        Displacement (m yr−1) 
 
Palfrey Island lagoon                        2019                        25                18                          72                                    8 ± 6 
                                                           2020                        34                24                          70                                  11 ± 14 
South Island lagoon                          2020                        57                38                          67                                    8 ± 7 

Table 1. Long-term displacement rates (mean ± SD) of Pearsonothuria graeffei at 2 sites at Lizard Island, Queensland. At Pal-
frey Island lagoon site, sea cucumbers were first captured in 2019 and then recaptured in 2020 and 2021. At South Island 
lagoon, sea cucumbers were first captured in 2020 and then recaptured in 2021. Sample sizes are given for animals  

photographed (np) and recaptured (nr) 1−2 yr later

Source                    df              SS                 F                p 
 
Site                          1            0.022           0.043          0.836 
Water depth            1            0.427           0.838          0.364 
Body weight            1           34.599          9.017          0.004 
Residual                 58          29.581                                   

Table 2. ANCOVA results for mean displacement rates (m 
yr−1) (ln transformed) for Pearsonothuria graeffei from 
2020−2021 and 2 sites at Lizard Island, Qld (n = 62). Water  

depth and body weight are covariates in the analysis
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p = 0.04, r2 = 0.06). As a rough comparison, a majority 
of animals smaller than 700 g gained weight, while a 
majority of animals larger than 700 g lost weight 
(Fig. 3). 

Of the 11 animals recaptured in both 2020 and 
2021, weight fluctuated across the years inconsis-
tently among individuals (Fig. 4). Some individuals 
gained weight in 2019, then lost weight in 2020 and 
vice versa, while others maintained a relatively con-
sistent weight trajectory. Note that the measurement 
error was only 1−3% of the body weight of the ani-
mals and cannot account for the large weight gain 
and weight loss results, which were also corrobo-
rated by corresponding changes in body lengths. 

The modelling from growth increments incorpo-
rated into Fabens’ equation was statistically signifi-
cant (F1,67 = 4.43, p = 0.039). The model revealed an 
average (±SE) expected W∞ of 769 ± 81 g for the 
Lizard Island population of P. graeffei — closely con-
curring with the point of zero growth in Fig. 3 — and 
a K of 0.17 ± 0.08. The constructed age-at-weight 
curves provide 2 growth scenarios: animals are pre-
dicted to approach the average maximum size at 
around 7 yr of age in the von Bertalanffy model and 
around 12 yr of age in the Gompertz model (Fig. 5). 
Under the von Bertalanffy model, an individual of 
500 g would be about 3 yr old, while one of 700 g 
would be about 6 yr old. Those above 750 g are likely 
to be older than 8 yr. While the models assume con-
tinuing growth up until average maximum size, they 
do not account for the variability in growth shown in 
Fig. 4. 

The rate of M for P. graeffei at Lizard Island was 
estimated to be 0.48 yr−1 based on Pauly’s (1980) 

model, using weight data. The value of tmax was then 
approximated to be 18 yr, with an asymmetric SE 
range of 12−37 yr. 

4.  DISCUSSION 

4.1.  Photographic mark−recapture 

The non-invasiveness and low costs of photo-
graphic mark−recapture offer promise for future 
studies on holothuroid species with distinct external 
makings. The high recapture rates (67 and 72%) 
are comparable to those found for Bohadschia argus 
and Thelenota ananas (Purcell et al. 2016). Consid-
ering also that the animals occurred in aggregations 
and do not release Cuvierian tubules, which for B. 
argus is problematic for studies, these results signal 
Pearsonothuria graeffei as an ideal candidate for 
future studies. In contrast, Conand (1991) recap-
tured just 2−16% of Actinopyga echinites and A. 
mauritiana using physical tags over 1−2 yr, while 
Uthicke & Benzie (2002) recaptured 27−42% of 
Holothuria whitmaei (then described as H. nobilis) 
using genetic fingerprinting. Photographic marking 
avoids the issues with ejection of tags as seen in 
Conand’s (1991) study. Recapture rates in our study 
are boosted by the apparent site fidelity of P. graef-
fei and the relative ease of matching the character-
istic papillae and spots, which was somewhat prob-
lematic for photo-matching of T. ananas (Purcell et 
al. 2016). 
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Fig. 4. Body weights of 11 Pearsonothuria graeffei identified 
across 3 sampling periods (February 2019, 2020, 2021) at 
Palfrey Island lagoon, Lizard Island, Queensland. Lines are  

smoothed trends among years

Fig. 5. Predicted age vs. body weight of Pearsonothuria gra-
effei at Lizard Island, Queensland, reconstructed using von 
Bertalanffy and Gompertz growth models. Note that these 
curves are constructed using the asymptotic weight and 
growth coefficient parameters derived from Fabens’ equa-
tion which is itself based on the actual study data. Hence, no  

data can be plotted
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We saw fresh fecal casts of P. graeffei in some 
places but could not locate the animals. Further, 
some animals photographically marked in 2019 were 
not found in 2020 but were recaptured in 2021. These 
observations show that cryptic/refuging behaviour 
played a role in some of the non-recaptures. Some 
animals may have died during the study and others 
might have moved beyond our search areas. 

4.2.  Long-term movement 

Despite reports of P. graeffei being capable of sub-
stantial short-term movement (1.1 m h−1: Wheeling et 
al. 2007), most animals in this study remained within 
small home ranges of around 8−11 m radius over 
annual timescales. This displacement range is more 
than 6 times greater than the average error of the 
GPS tracking methodology (mean: 1.28 m). The trend 
of tight home ranging is further underscored by data 
from the 11 animals relocated in both recapture years 
showing that they appear to move back towards the 
centre of the aggregations. However, a general trend 
of the animals moving at least a few metres suggests 
that either they venture far from refuges or show 
 little fidelity to specific refuges within sites over the 
long term. 

Using injected T-bar tags in New Caledonia, 
Conand (1991) found that 2 reef holothuroids, A. 
echinites and A. mauritiana, often moved less than 
10 m during 1 yr. At 2 sites at Lizard Island, Australia, 
long-term movement of the large-bodied holothuroid 
T. ananas averaged 15 and 31 m in 2 yr (Purcell et al. 
2016), which is also comparable to our data on P. gra-
effei. On the other hand, another large-bodied 
holothuroid, B. argus, in the same study had greater 
average displacements of 45 and 47 m over 2 yr, and 
several individuals were found more than 100 m 
away from the places where they were first captured 
(Purcell et al. 2016). At least some individuals of Sti-
chopus herrmanni, another large-bodied species for-
aging on soft-bottom reef habitats, also exhibit long-
term site fidelity (Wolfe & Byrne 2017). The site 
fidelity in P. graeffei suggests, from an ecological 
viewpoint, that small reef-dwelling holothuroids 
might not need large reserves to be well protected 
from exploitation. The findings of low mobility also 
imply that if harvested to low population density, 
finding mates could become difficult for individual P. 
graeffei, potentially inciting extirpation. 

Similar average yearly displacements between 
sites and years (Table 1) and similar displacements of 
these sea cucumbers found in shallow and deeper 

waters give strength to generalizing our findings 
more broadly. The tendency of some larger animals 
(>700 g) to move longer distances (>12 m) could 
relate to their increased foraging requirements, as 
demonstrated for certain reef fishes (Grant 1997) and 
crown-of-thorns starfish (Keesing & Lucas 1992). 
Larger individuals might venture farther beyond 
social groups since they are (presumably) less 
 vulnerable to predators, e.g. by size or chemical 
defences (Kramer & Chapman 1999). With this 
behaviour, individuals presumably avoid resource 
limitations (Kramer & Chapman 1999) as occurs in 
ophiuroids (Rosenberg et al. 1979), although we can 
only speculate at this stage. 

Bare sand seemed to act as a natural barrier to 
movement, with no crossover of animals between the 
2 reef patches at the South Island site. Some sea 
urchins and starfish are believed to be similarly con-
strained (Kriegisch et al. 2016, Pratchett et al. 2017). 
Seascape topography is thus a key consideration for 
predicting echinoderm movements on reefs (Eriks-
son et al. 2012, Tanita et al. 2022). Our study on P. 
graeffei indicates that some reef-dwelling holo -
thuroids are unlikely to emigrate to repopulate dis-
turbed or overfished areas as suggested for other 
benthic invertebrates (Pridmore et al. 1991, Cum-
mings et al. 1995). 

Habitat-use patterns of sea cucumbers can inform 
fisheries management planning (Eriksson et al. 2012, 
Tanita et al. 2022). While some holothuroids are 
found in flat habitats such as seagrass beds and sand-
flats, others such as P. graeffei and Actinopyga vari-
ans occur mostly on topographically complex reef 
structures (Tanita et al. 2022). In this study, we 
observed P. graeffei mostly on complex reef outcrops 
and coral rubble substrata. Bare sand substrata away 
from hard reef appear to act as barriers to movement 
for such species. Natural borders between discrete 
areas of reef are advocated as boundaries of marine 
reserves for certain fish (Meyer & Holland 2005) and 
could also serve to reduce the dispersal of commer-
cially harvested macroinvertebrates into unprotected 
areas. 

4.3.  Growth, longevity and mortality 

Growth increments varied greatly among individu-
als in this study, and the majority (80%) of animals 
gained or lost up to 20% of their body weight in a 
year. We interpret these results cautiously because 
slight errors in measuring somatic weight can occur 
due to variable amounts of sediments in the digestive 
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tracts and small errors in weight readings taken on 
an anchored boat, although the latter error was only 
1−3% of average body weight. Weight variability 
due to changing gonad size is likely limited, as sam-
pling was undertaken at the end of the 4 mo spawn-
ing period for P. graeffei at Lizard Island (Uthicke 
1994). P. graeffei gonads account for a maximum of 
11% of whole-body weight, reducing as spawning 
season progresses (Mustagfirin et al. 2021). 

Growth variability is a common phenomenon in 
sea cucumbers, influenced by factors such as food 
availability, stocking density (Battaglene et al. 1999, 
Slater & Carton 2007), and genetics (Liang et al. 
2010). Growth variability is exacerbated by the abil-
ity of sea cucumbers to store large amounts of 
organic material (mainly proteins) in their body wall, 
to be reabsorbed during periods of nutrient depriva-
tion (Prim et al. 1976), stress (Conand 1993), and pos-
sibly gametogenesis (Morgan 2000), resulting in 
shrinkage in weight and length. 

The tendency of larger P. graeffei to shrink is con-
sistent with mark−recapture studies on other holo -
thuroids (Uthicke & Benzie 2002, Uthicke et al. 2004, 
Purcell et al. 2016, Dumestre 2017). Shrinkage of the 
body or test has been reported for some echinoderms 
and could be adaptive or a consequence of tissue 
 resorption during periods of stress (Ebert 1996). While 
negative growth, or ‘degrowth’, has been reported for 
several other invertebrates, including planarians, 
cnidarians, and nemerteans (Hamner & Jenssen 1974, 
Oviedo et al. 2003, Hariharan et al. 2016), sea cucum-
bers are perhaps one of the only commercially fished 
animals displaying this phenomenon. We can under-
stand that readers unfamiliar with these animals 
would turn to measurement errors or artefacts as 
likely explanations for negative growth increments. 

Classic fisheries growth models do not account for this 
unusual trait. The asymptotic size-at-age curve gen-
erated from the estimates of K and W∞ underestimates 
the age-at-maximum-size and tmax. Hence, while K  in 
this study resulted in an approximated tmax of 18 yr, 
the lifespans of the animals could be several decades 
or more. Our finding pairs closely with longevity 
 estimates determined for other tropical holothuroids 
(H. whitmaei, B. argus) based on mark−recapture 
(Uthicke et al. 2004, Purcell et al. 2016). 

The estimated K (0.17) indicates that P. graeffei is 
relatively slow-growing, with a coefficient similar to 
those published for Holothuria atra, T. ananas, A. 
mauritiana, and Isostichopus fuscus and slower 
growing than B. argus, Stichopus chloronotus, and S. 
vastus (Table 3). The growth models suggest that 
individuals of P. graeffei attain 90% of their maxi-
mum size at about 7−12 yr of age. 

Recaptures in 2 successive years in this study rein-
force that weight change is variable and unpre-
dictable among individuals. Some individuals gained 
weight, others lost weight, lost and regained weight, 
or gained and then lost weight in successive years. In 
subtropical waters, Holothuria leucospilota is known 
to undergo seasonal weight loss (Dumestre 2017). 
Our data provide the first evidence in the primary lit-
erature that tropical sea cucumbers can lose and later 
regain weight from year to year. The variable pat-
terns of weight change among individuals imply that 
the circumstances of individuals play a large role in 
the process. In contrast, annual variations in food 
availability or environmental conditions would influ-
ence growth in a similar way across individuals at a 
site, which was not apparent. 

Since the study populations were within a strictly 
controlled no-take scientific marine reserve and this 
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Species                                   K yr−1     ∞ length or weight     M yr−1         Region                      Source 
 
Actinopyga echinites             0.09                29.5 cm                0.64          New Caledonia        Conand (1989) 
A. mauritiana                          0.12                 34 cm                  1.45          New Caledonia        Conand (1989) 
Bohadschia argus               0.33−0.39       1552−1576 g             ND           GBR, Australia         Purcell et al. (2016) 
Holothuria arenicola          0.40−0.50           38.9 cm            0.85−1.02      Pakistan                    Siddique & Ayub (2019) 
H. atra                                     0.11                32.4 cm                1.02          Micronesia                Ebert (1978) 
Isostichopus badionotus    0.20−0.70               ND               0.41−0.62      Mexico                      Romero-Gallardo et al. (2018) 
I. fuscus                                   0.18                36.1 cm                0.51          Mexico                      Herrero-Pérezrul et al. (1999) 
I. fuscus                                   0.21                42.5 cm                0.79          Galapagos                Ramírez-González et al. (2020) 
Pearsonothuria graeffei         0.17                  769 g                  0.48          GBR, Australia         Present study 
Stichopus chloronotus            0.45                34.2 cm                1.79          GBR, Australia         Conand (1988) 
S. vastus                                  0.55                31.6 cm                0.30          Indonesia                  Sulardiono et al. (2012) 
Thelenota ananas                   0.20                66.3 cm            0.50−0.63      New Caledonia        Conand (1988) 

Table 3. Estimated life-history parameters reported for adult tropical and sub-tropical sea cucumbers in various regions.  
K: growth coefficient; ∞: asymptotic size (length or weight); M: natural mortality; ND: no data; GBR: Great Barrier Reef
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species is not exploited in Australia, the uncaptured 
animals could not be attributed to loss by fishing. We 
found that P. graeffei has a low rate of M compared 
with other sea cucumbers (Table 3). Potential reasons 
could include overestimation of M in earlier studies 
based on indirect methods or that P. graeffei might 
be less prone to predation due to its cryptic coloura-
tion, association with highly complex hard-reef 
structures, or defences against predation. Its defen-
sive arsenal, which includes high levels of toxic 
saponins (Van Dyck et al. 2010) and cryptic colouring 
and behaviour, offers an explanation for this low rate 
of M. Indeed, the juveniles of this species have a 
colouration that mimics the stunning colouration of 
the toxic nudibranch Phyllidia varicosa (Putz et al. 
2010). 

Our study gives estimates of movement and life-
history parameters from a holothuroid that is rela-
tively small-sized among the commercially exploited 
species. Similarly sized holothuroids typical of hard 
reef surfaces, for which life-history data are lacking, 
include A. lecanora, A. mauritiana, Apostichopus 
californicus, A. japonicus, Holothuria cinerascens, H. 
forskali, H. lubrica, H. sanctori, and Stichopus 
chloronotus. 

5.  CONCLUSIONS 

We present the first published evidence of the 
long-term persistence of sea cucumbers within dense 
aggregations. The potential benefits of such aggre-
gations to sea cucumbers or the demography of their 
populations are not yet clear. At least in terms of 
movement behaviour, Pearsonothuria graeffei and 
the photographic mark−recapture method are good 
choices for further examination of this phenomenon. 

This empirical study adds to the growing evi-
dence that sea cucumbers can shrink after reaching 
a large body size. This phenomenon undermines 
age and longevity estimations using indirect meth-
ods (e.g. length−frequency analysis). Novel mathe-
matical models that incorporate negative growth 
are sorely needed for further life-history studies on 
holo thuroids. 

P. graeffei exhibits many traits that are known in 
sea cucumbers to result in high vulnerability to over-
exploitation: aggregation behaviour, low mobility, 
slow growth, high longevity, and low natural mortal-
ity (Parrish 1999, Uthicke et al. 2004, Purcell et al. 
2010, O’Hara & Byrne 2017). The animals appear to 
take up to a decade to reach a maximum body size, 
and they have a lifespan of several decades or more. 

These biological traits are at odds with rotational har-
vest strategies with short (e.g. triennial) cycles. The 
findings also foreshadow that recovery of heavily 
fished populations is likely to be slow for certain spe-
cies—even those that are relatively small-bodied. 
Indeed, the long timeframe for P. graeffei to reach 
maximum body size provides some explanation for 
why fishing moratoria have been variably effective 
across holothuroid species (Friedman et al. 2011). 
The evidence from this study implores a more con-
servative approach to conservation policy and more 
realistic inputs to harvest strategy models for compa-
rable species. 
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Appendix

Fig. A1. Examples of the photo-
graphic mark−recapture technique 
using the orientation of at least 10 
white papillae, black dots and/or 
black lines to match 2 animals (a 
and b) from 2020 and 2021. Photos: 
(a,b) left: S. W. Purcell; (a,b) right:  
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