Tropical phytoplankton species and pigments of continental shelf waters of North and North-West Australia

G. M. Hallegraeff and S. W. Jeffrey

Division of Fisheries Research, CSIRO Marine Laboratories, G.P.O. Box 1538, Hobart, Tas. 7001, Australia

ABSTRACT: The phytoplankton of the shelf waters of the Gulf of Carpentaria, Arafura Sea, Timor Sea and North-West Australia is basically a diatom flora, distinctly different from the oceanic, predominantly dinoflagellate flora of the Coral Sea and Indian Ocean. Large morphologically elaborate tropical diatoms and dinoflagellates of this shelf region show great species diversity (more than 200 spp. identified) and a variety of symbiotic associations (28 species-pairs recognised). In contrast, the tropical nanoplankton (2 to 20 µm; mainly small diatoms, prymnesiophytes and dinoflagellates; 70 spp.) are remarkably similar in species composition to those of subtropical and temperate Australian waters. Water-column chlorophyll values in both North-West Shelf and Gulf waters ranged from 10 to 55 mg m⁻². Nanoplankton accounts for 70 to 97 % of total phytoplankton chlorophyll, except in local diatom or *Trichodesmium* blooms (30 to 60 %).

INTRODUCTION

The continental shelf waters of North and North-West Australia are areas of high biological productivity. The shallow (30 to 60 m) Gulf of Carpentaria is the site of a multispecies prawn fishery and the shallow (40 to 200 m) and wide (200 km) North-West Shelf has a large demersal trawl fishery (Sainsbury, 1979; Bain, 1982). Both Gulf and North-West Shelf waters sustain a high zooplankton biomass (up to 1900 mg dry weight m⁻²; Tranter and Kerr, 1977; Rothlisberg and Jackson, 1982), but the phytoplankton organisms that support the food chains in these areas are largely unknown. Previous surveys in northern Australian waters and the Java Sea have been restricted to examination of netphytoplankton (>35 µm) and spectrophotometric chlorophyll analyses (Allen and Cupp, 1935; Desrosières, 1965; Humphrey, 1966; Humphrey and Kerr, 1969; Markina, 1972; Newell, 1973; Motoda et al., 1978).

An opportunity to study the phytoplankton populations of the North-West Shelf in more detail occurred in June 1980 and 1983 (early winter) and December 1982 (summer), and of the Gulf of Carpentaria and Arafura Sea in March 1982 (autumn). The methodology used (Jeffrey and Hallegraeff, 1980a, b; Jeffrey, 1981; Hallegraeff, 1983) allowed characterisation of the complete phytoplankton flora, including many of the delicate flagellates, and the full range of photosynthetic pigments (chlorophylls, carotenoids and chlorophyll degradation products). Tropical inshore communities of the Gulf of Carpentaria and North-West Shelf were clearly distinguished from tropical oceanic phytoplankton communities of the Coral Sea and Indian Ocean.

MATERIALS AND METHODS

Sampling locations. Fig. 1 shows the location of the stations from which phytoplankton samples were taken, and Table 1 summarises cruise numbers, dates and number of stations occupied. Samples from the North-West Shelf were collected along transects from inshore waters (17 to 40 m depth) to the edge of the continental shelf (euphotic zone depth 150 m). The cruise in the Gulf of Carpentaria and Arafura Sea covered water column depths of 26 to 68 m.

Collection and preparation of samples. Sea water samples for pigment analysis and species identification were collected throughout the upper 150 m of the water column using 8 l Niskin bottles. To determine the proportion of nanoplankton (< 15 μ m fraction; Hallegraeff, 1981), subsamples were fractionated through 10 μ m-mesh plankton gauze and prepared for

© Inter-Research/Printed in F. R. Germany

Fig. 1. Map of northern Australia with sampling stations

pigment analysis. Additional collections of the larger phytoplankton species were made with a 37 μ m-mesh free-fall plankton net (Heron, 1982).

Pigment analysis. Chlorophyll a was determined spectrophotometrically from stored and frozen samples (Jeffrey and Humphrey, 1975), followed by separation of all pigment fractions by thin-layer chromatography (Jeffrey, 1981). This method, which uses washed cellulose as adsorbant, separates the major chlorophylls, carotenoids and chlorophyll degradation products in a two-dimensional system that takes only 10 min per sample.

Species identification. Phytoplankton species were examined microscopically on board ship in the living state. Fluorescence microscopy (using a Zeiss epifluorescence microscope with G436 exciter filter and LP520 barrier filter) was used to distinguish photosynthetic (red or orange fluorescent chloroplasts) from non-photosynthetic algal cells (no fluorescence or golden-green fluorescent cytoplasm). Species abundances were estimated by the inverted microscope technique (Utermöhl, 1958) from water samples concentrated

with a continuous-flow plankton centrifuge and preserved with 3 % glutaraldehyde (Jeffrey and Hallegraeff, 1980a). Cell counts were converted to volume estimates by approximating cell shape to the closest solid geometric configuration (Smayda, 1978). Net samples, preserved with 2 % formaldehyde neutralised with hexamine, were used to supplement identification of the larger diatoms and dinoflagellates. Species identifications were achieved by a combination of light microscopy (LM), scanning electron microscopy (SEM) for coccolithophorids, diatoms and armoured dinoflagellates and transmission electron microscopy (TEM) for acid-cleaned diatoms and shadow-cast whole mounts of scale-bearing flagellates. Identification sources were Allen and Cupp (1935); Subrahmanyan (1946) and Simonsen (1974) for diatoms and Taylor (1976) for dinoflagellates. A wide range of individual papers was consulted for nanoplankton (see Hallegraeff, 1983; 1984).

Hydrological measurements. Temperature, salinity and nitrate were measured from water bottle samples using standard methods (Major et al., 1972).

Cruise no	Date	Number of stations	Area
SO 4/80	8–18 Jun 1980	10	North-West Shelf
SO 6/82	3-16 Dec 1982	19	North-West Shelf
SO 3/83	14 Jun-1 Jul 1983	17	North-West Shelf
SP 3B/82	18–30 Mar 1982	13	Gulf of Carpentaria, Arafura Sea
SP 16/80	5-19 Nov 1980	13	Coral Sea
SP 3A/82	4–18 Mar 1982	5	Coral Sea
SP 4/82	22 Apr-5 May 1982	5	Timor Sea, West Coast of Australia
SP 5/82	6-19 May 1982	5	West Coast of Australia

Table 1. Summary of cruises, stations and areas sampled

RESULTS

Phytoplankton chlorophyll biomass

Table 2 summarizes the chlorophyll concentrations of all samples taken on the North-West Shelf and the Gulf of Carpentaria and Arafura Sea. Chlorophyll maxima reached 1.07 μ g l⁻¹ on the North-West Shelf, 2.34 μ g l⁻¹ in the Gulf of Carpentaria and 1.26 μ g l⁻¹ in the Arafura Sea. Total water column values in these areas ranged from 10 to 55 mg m⁻². The nanoplankton (< 15 µm fraction) formed a major component of the phytoplankton (70 to 97 % of total chlorophyll) in 23 out of 30 stations, whereas the other 7 stations showed values of 30 to 60 % (Table 3). Chlorophyll profiles showed deep (40 to 80 m) maxima in autumn in the central part of the Gulf (Fig. 2a) and in summer on the North-West Shelf when the water column was stratified (Fig. 2b).

 Table 2. Concentration of phytoplankton chlorophyll a in continental shelf waters of North and North-West Australia as determined by spectrophotometry

Area	Month	Chlorophyll a concer	Number of	
		Water column total (mg m ⁻²)	Water column maximum (µgl ⁻¹)	observations
North-West Shelf	Jun 1980	36.3 ± 12.0 (range 21.9–54.7)	0.49 ± 0.18 (range 0.22–0.69)	10
	Dec 1982	27.4 ± 6.8 (range 10.0–38.1)	0.60 ± 0.21 (range 0.27–1.07)	19
	Jun 1983	22.2 ± 13.3 (range 7.0-49.7)	0.43 ± 0.16 (range 0.25–0.85)	17
Gulf of Carpentaria	Mar 1982	36.1 ± 8.2 (range 25.8–48.4)	1.42 ± 0.56 (range 0.78–2.34)	10
Arafura Sea	Mar 1982	37.5 ± 3.4 (range $34.1-40.9$)	1.02 ± 0.29 (range 0.70–1.26)	3

Table 3. Nanoplankton (<15 µm) chlorophyll at selected stations

Area	Month	% of total water column chlorophyll (mean \pm SD)	Number of observations
North-West Shelf	Jun 1980	84 ± 9 (range 67–97)	10
	Dec 1982	64 ± 4 (range 60–68)	3
	Jun 1983	73 ± 16 (range 53–88)	6
Gulf of Carpentaria	Mar 1982	72 ± 21 (range 30–96)	9
Arafura Sea	Mar 1982	68 ± 18 (range 55–88)	2

Fig. 2. Typical chlorophyll depth profiles in the Gulf of Carpentaria (a) and on the North-West Shelf (b, c, d) under stratified (a, b) and non-stratified (c, d) conditions, compared with nutrient and temperature structure of the water column. (a) SP 3B/82 cruise, Stn. 2; (b) SO 6/82, Stn. 57; (c) SO 4/80, Stn. 3; (d) SO 4/80, Stn. 10

Chlorophyll profiles showed an uniform distribution with depth when the water column was well-mixed (Fig. 2c), both in autumn in the Arafura Sea and inshore waters of the Gulf of Carpentaria (Stns. 4, 5, 6) and in winter on the North-West Shelf. Nutrient-rich water ($NO_3 - N > 3 \mu gat l^{-1}$) was always present at the shelf edge at depths below 100 m (Fig. 2d), but under certain stratified conditions this nutrient layer penetrated into shallower waters, both in the Gulf of Carpentaria (Fig. 2a) and on the North-West Shelf (Fig. 2b).

Phytoplankton pigment composition

Sixty thin-layer pigment chromatograms were examined from North-West Shelf phytoplankton. Selected examples are shown in Fig. 3a, b, c. Dominant pigments were chlorophyll *a* and carotene (present in all algal types), fucoxanthin, chlorophyll *c* (from diatoms and golden brown flagellates), chlorophyll *b* (green flagellates) and 2 unidentified yellow and 1 pink xanthophyll (Fractions 13, 14 and 15). Trace amounts of peridinin (from photosynthetic dinoflagellates) were present on 20 % of the chromatograms. Small amounts of chlorophyll degradation products were also detected (17 to 19 % of total chlorophyll *a*; Table 4) and these were more clearly identified in pooled samples where ample pigment was available for analysis (Fig. 3b, c). Chlorophyll *a* degradation products detected included pheophytin *a* (Fraction 5), 1 or 2 unidentified blue-green derivatives (Fractions 6, 7), 1 to 3 chlorophyllide-like zones (Fractions 8, 9, 10), unidentified brown origin material (Fraction 11) and a pheophorbide-like pigment (Fraction 12). White fluorescent material at the solvent front and sometimes also at the origin of the chromatogram was identified as lipid by staining with iodine vapour. Pigment ratios were estimated by quantitative elution of fractions from three selected chromatograms (Table 4).

Phytoplankton species abundance and diversity

In terms of cell number, the most abundant species were found in the nanoplankton, the large diatoms and the blue-green alga *Trichodesmium* were moderately abundant, with the large dinoflagellates less important. Maximum cell concentrations of the nanoplankton ranged from 10^3 to 10^6 cells 1^{-1} . Small (1 to 3 µm) flagellates (e.g. *Micromonas pusilla*) occurred at maximum concentrations of 10^5 to 10^6 cells 1^{-1} , small diatoms (*Nitzschia bicapitata, Nitzschia closterium, Thalassiosira* spp.) at 10^4 to 10^5 1^{-1} and coc-

Fig. 3. Cellulose thin-layer chromatograms of photosynthetic pigments from North-West Shelf samples. (A) SO 3/83 cruise, hydrology Stations 10, 11, combined water samples; (B) SO 6/82 cruise, Stns. 62, 63, 64, 67, combined water column samples; (C) SO 4/80 cruise Stns. 4, 9, combined water column samples. Solvent systems, first dimension; n-propanol in light petroleum (60 to 80 °C), 1.5:98.5 (v/v); second dimension; chloroform, light petroleum, acetone, 20:80:0.5 (v/v/v). Pigment fractions: 1: carotenes (yellow); 2: chlorophyll *a* (blue-green); 3: chlorophyll *b* (olive-green); 4: chlorophyll *c* (light-green); 5: pheophytin *a* (grey); 6, 7: unidentified chlorophyll *a* derivatives (blue-green); 8, 9, 10: chlorophyllide *a*-like derivatives (blue-green); 11: unidentified chlorophyll *a* derivative (brown origin material); 12: pheophorbide *a*-like derivative (grey); 13, 15: unidentified xanthophylls (yellow); 14: unidentified xanthophyll (pink); 16: fucoxanthin (orange); 17: peridinin (red); 18: neofucoxanthin (orange); 19: unidentified xanthophyll (blue); 20: unidentified xanthophyll (orange); 21: unidentified xanthophyll (yellow); SF = solvent front

Pigments	Total pigment fraction per chromatogram (μg)		Chlorop as % of t	ohyll <i>a</i> der total 'chlor	ivatives ophyll <i>a</i> '	Pigment ratios			
	1	2	3	1	2	3	1	2	3
Chlorophyll a	3.22	1.03	7.29	83	81	82			
Chlorophyll b	0.43	0.14	2.36						
Chlorophyll c	0.53	0.15	1.10						
Pheophytin a	0.17	-	0.45	5	-	5			
• Unidentified chlorophyll a derivatives (brown origin)	0.38	0.13	1.19	12	10	13			
•• Unidentified chlorophyll a derivatives (blue-green)	-	0.12	-	-	9				
Fucoxanthin	0.98	0.35	2.63						
Peridinin	trace	trace	0.17						
Chlorophyll a:b							7.49	7.36	3.09
Chlorophyll a:c							6.08	6.87	6.63
Chl a: fuxoxanthin							3.29	2.94	2.77
Chl a: peridinin							—	-	43
• Fraction 11 (Fig. 3) •• Fract	ion 5 + 6 +	7+8+9	(Fig. 3)						

Table 4. Relative proportions of photosynthetic pigments in North-West Shelf samples, determined by quantitative elution of pigment fractions from selected chromatograms. (1) SO 4/80 cruise, Stns. 4, 9, combined water column samples; (2) SO 4/80 cruise, Stns. 1, 8, 10, subsurface samples combined; (3) SO 6/82, Stns. 62, 64, 67, combined water column samples

colithophorids (Gephyrocapsa oceanica) and other golden brown flagellates at 10^3 to 10^4 l⁻¹. The larger diatoms were present with 10^3 to 10^4 cells l⁻¹ for Nitzschia species (e.g. N. fraudulenta, N. lineola), 10^3 l⁻¹ for Chaetoceros and Rhizosolenia species, and

Fig. 4. Species diversity of tropical (North-West Shelf, Coral Sea) and subtropical phytoplankton (East Australian Current), as characterised by dominance-diversity curves. Relative species abundance (by cell volume) plotted on log-scale on ordinate; species ranked from most (rank no. 1) to least abundant (rank no. 63) on abscissa. For each region, water-column-integrated cell counts of all species were combined from 7 to 10 different sampling stations. Individual data

points have been omitted from graphs for clarity

 $10^2 l^{-1}$ for *Thalassionema* and *Thalassiothrix* species. Local blooms of the blue-green alga *Trichodesmium* spp. (up to 10^3 trichomes l^{-1}) were observed in large windrows which extended at times for several kilometres. Large dinoflagellates were less important numerically and occurred with < 10 cells l^{-1} .

Species diversity was characterised by dominancediversity curves (Hallegraeff and Ringelberg, 1978; Jeffrey and Hallegraeff, 1980a). Fig. 4 compares a typical curve of North-West Shelf phytoplankton with curves for Coral Sea and less diverse East Australian Current phytoplankton. Cell numbers were integrated over the water column and relative species abundance (by cell volume) plotted on a log scale on the ordinate, with species ranked from most (rank no. 1) to least abundant (rank no. 63) on a linear abscissa. The North-West Shelf samples showed flat sigmoid curves with long intermediate segments, indicative of a great species diversity with both an even distribution of species abundances as well as a large number of species present. A total of 43 to 63 phytoplankton species were recognised per station from water samples, and net samples added a further 5 to 17 species.

Phytoplankton species composition

The complete phytoplankton species list of all stations in the Gulf of Carpentaria and on the North-West Shelf is given in Table 5.

A wide variety of nanoplankton (70 species) from 8 algal classes was identified from water bottle samples. These included prymnesiophytes (36 spp.), small Table 5. Phytoplankton species list of the Gulf of Carpentaria and North-West Shelf samples: Diatoms (DIAT, 151 spp.), dinoflagellates (DIN, 112 spp.), prymnesiophytes (PRYM, 36 spp.), chrysophytes (CHRYS, 3 spp.), prasinophytes (PRAS, 4 spp.), cryptomonads (CRYP, 3 spp.), cyanobacteria (CYAN, 2 spp.) and euglenoids (EUGL, 1 spp.)

Dominant and sub	dominant specie	es (1 to 100 % of phytoplankton biomass)	
	NANOPLAN	KTON (2 to 20 μm)	
Amphidinium sp.	DIN	*Helladosphaera cornifera	PRYM
Amphora sp.	DIAT	Hemiselmis sp.	CRYP
Anoplosolenia brasiliensis	PRYM	*Meringosphaera mediterranea	CHRYS
*Anthosphaera robusta	PRYM	 Minidiscus trioculatus 	DIAT
Calciopappus caudatus	PRYM	*Michaelsarsia elegans	PRYM
 Calciosolenia murrayi 	PRYM	•Micromonas pusilla	PRAS
Calyptrolithophora gracillima	PRYM	Nanoneis hasleae	DIAT
Calyptrolithophora pirus	PRYM	Navicula sp.	DIAT
Calyptrosphaera oblonga	PRYM	Nephroselmis pyriformis	PRAS
 Caneosphaera molischii 	PRYM	*Nitzschia bicapitata	DIAT
*Chilomonas marina	CRYP	*Nitzschia constricta	DIAT
Cochlodinium sp.	DIN	Nitzschia cf. fonticola	DIAT
Corisphaera wetsteinii	PRYM	*Oolithotus fragilis subsp. cavum	PRYM
*Coronosphaera mediterranea	PRYM	*Oxytoxum nanum	DIN
*Crenalithus sessilis	PRYM	•Oxytoxum variabile	DIN
Cryptomonas spp.	CRYP	*Phaeocystis pouchetii	PRYM
 Calcidiscus leptoporus 	PRYM	*Pyramimonas obovata	PRAS
*Chrysochromulina pringsheimii	PRYM	Pyramimonas sp.	PRAS
Chrysochromulina spp. (3)	PRYM	*Rhabdosphaera claviger	PRYM
Deutschlandia anthos	PRYM	Scrippsiella sp.	DIN
*Dictyocha fibula	CHRYS	*Scyphosphaera apsteinii	PRYM
Dictyocha fibula v. regularis	CHRYS	*Syracosphaera lamina	PRYM
*Discosphaera tubifer	PRYM	*Syracosphaera pirus	PRYM
*Distephanus speculum v. octonarius	CHRYS	*Syracosphaera pulchra	PRYM
*Emiliania huxleyi	PRYM	*Thalassionema nitzschioides v. parva	DIAT
*Eutreptiella sp.	EUGL	*Thalassiosira allenii	DIAT
 Gephyrocapsa ericsonii 	PRYM	*Thalassiosira diporocyclus	DIAT
*Gephyrocapsa oceanica	PRYM	*Thalassiosira lineata	DIAT
 Grammatophora oceanica 	DIAT	*Thalassiosira mala	DIAT
•Gymnodinium nanum	DIN	 Thalassiosira oceanica 	DIAT
 Gymnodinium punctatum 	DIN	Thalassiosira oestrupii v. venrickae	DIAT
*Gymnodinium simplex	DIN	Thalassiosira partheneia	DIAT
Gymnodinium spp.	DIN	Thalassiosira subtilis	DIAT
Gyrodinium sp.	DIN	Umbellosphaera irregularis	PRYM
*Halopappus adriaticus	PRYM	 Umbilicosphaera hulburtiana 	PRYM
*Helicosphaera carteri	PRYM	 Umbilicosphaera sibogae 	PRYM
		Umbilicosphaera sibogae var. foliosa	PRYM
	Dominant diato	ms and cyanobacteria	
Bacteriastrum comosum	DIAT	*Chaetoceros radicans	DIAT
*Bacteriastrum furcatum	DIAT	*Detonula pumila	DIAT
Bacteriastrum hvalinum	DIAT	Fucampia cornuta	DIAT
Bellerochea horologicalis	DIAT	*Eucampia zodiacus	DIAT
•Chaetoceros affine	DIAT	*Lauderia annulata	DIAT
*Chaetoceros anastomosans	DIAT	*Nitzschia fraudulenta	DIAT
Chaetoceros atlanticus	DIAT	Nitzschia heimii	DIAT
Chaetoceros atlanticus v. neapolitana	DIAT	Nitzschia lineola	DIAT
Chaetoceros coarctatus	DIAT	*Nitzschia pungens	DIAT
Chaetoceros compressus	DIAT	*Rhizosolenia alata	DIAT
*Chaetoceros pseudocurvisetus	DIAT	Rhizosolenia alata f. indica	DIAT
*Chaetoceros didymus	DIAT	Rhizosolenia bergonii	DIAT
Chaetoceros diversus	DIAT	Rhizosolenia calcar-avis	DIAT
*Chaetoceros laciniosum	DIAT	Rhizosolenia clevei	DIAT
Chaetoceros laevis	DIAT	Rhizosolenia cylindrus	DIAT
*Chaetoceros lorenzianus	DIAT	*Rhizosolenia hebetata	DIAT
Chaetoceros messanensis	DIAT	Rhizosolenia hvalina	DIAT
Chaetoceros peruvianus	DIAT	*Rhizosolenia imbricata	DIAT

* Ubiquitous species also known from Sydney coastal waters

Table 5. Continued

	Dominant diatom	s and cyanobacteria	
Rhizosolenia phuketensis	DIAT	Thalassiosira sackettii	DIAT
*Rhizosolenia robusta	DIAT	Thalassiosira spinosa	DIAT
*Rhizosolenia setigera	DIAT	Thalassionema bacillaris	DIAT
*Rhizosolenia stoltherfothii	DIAT	 Thalassionema nitzschioides 	DIAT
*Rhizosolenia styliformis	DIAT	 Thalassiothrix delicatula 	DIAT
• Thalassiosira eccentrica	DIAT	 Thalassiothrix frauenfeldii 	DIAT
Thalassiosira leptopus	DIAT	 Thalassiothrix longissima 	DIAT
Thalassiosira punctifera	DIAT	*Trichodesmium erythraeum	CYAN
Thalassiosira simonsenii	DIAT	Trichodesmium thiebautii	CYAN
	Rare diatoms a	nd dinoflagellates	
	(0.0001 to 1 % of ph	ytoplankton biomass)	
Actinocyclus ehrenberaii	DIAT	*Ceratium teres	DIN
* Actinoptychus undulatus	DIAT	 Ceratium trichoceros 	DIN
Actinoptychus splendens	DIAT	•Ceratium tripos	DIN
Actinoptychus trilingulatus aff.	DIAT	Ceratium tripos v. indicum	DIN
Asterolampra marvlandica	DIAT	*Ceratium tripos v. pulchellum	DIN
Asteromphalus arachne	DIAT	*Ceratium vultur	DIN
*Asteromphalus flabellatus	DIAT	Ceratocorys armata	DIN
*Asteromphalus heptactis	DIAT	Ceratocorvs horrida	DIN
*Asteromphalus sarcophagus	DIAT	Citharistes apsteinii	DIN
Amphisolenia asymmetrica	DIN	•Climacodium frauenfeldianum	DIAT
•Amphisolenia bidentata	DIN	Cocconeis sp.	DIAT
Amphisolenia thrinax	DIN	*Corethron criophilum	DIAT
*Bacillaria paradoxa	DIAT	*Corvthodinium elegans	DIN
Biddulphia tuomevi	DIAT	*Coscinodiscus concinnus	DIAT
Blenharocysta splendor-maris	DIN	Coscinodiscus gigas	DIAT
Campylodiscus sp	DIAT	Coscinodiscus granii	DIAT
Cerataulina pelagica	DIAT	Coscinodiscus janischii	DIAT
Ceratium biceps	DIN	Coscinodiscus jonesianus	DIAT
Ceratium breve	DIN	Coscinodiscus podulifer	DIAT
Ceratium candelabrum	DIN	Coscinodiscus perforatus	DIAT
*Ceratium carriense	DIN	Coscinodiscus radiatus	DIAT
Ceratium cenhalotum	DIN	Coscinodiscus reniformis	DIAT
Ceratium contortum	DIN	Coscinodiscus stellaris	DIAT
Ceratium contrarium	DIN	Cyclotella striata	DIAT
Ceratium declinatum	DIN	Cymatosira lorenziana	DIAT
Ceratium dens	DIN	*Dinophysis caudata	DIN
Ceratium depressum	DIN	Dinophysis circumsutum	DIN
Ceratium digitatum	DIN	*Dinophysis cuneus	DIN
*Ceratium furca	DIN	Dinophysis doryphorum	DIN
*Ceratium fusus	DIN	*Dinophysis hastata	DIN
Ceratium geniculatum	DIN	Dinophysis miles v. indica	DIN
Ceratium gibberum	DIN	*Dinophysis ovum	DIN
Ceratium gravidum	DIN	Dinophysis rapa	DIN
*Ceratium horridum	DIN	•Dinophysis rotundatum	DIN
Ceratium humile	DIN	*Dinophysis sphaerica	DIN
Ceratium incisum	DIN	Dinlopeis hombus	DIAT
Ceratium kofoidii	DIN	Diploneis crabro	DIAT
Ceratium lunula	DIN	Diploneis debvii	DIAT
Ceratium macroceros	DIN	Diploneis nitiscens	DIAT
Ceratium massiliense	DIN	Diploneis weissflogii	DIAT
Ceratium paradovides	DIN	*Dissodium asymmetricum	DIN
Ceratium pentagonum	DIN	*Dissodium lunula	DIN
Ceratium platycorpe	DIN	Ditylum sol	DIAT
Ceratium praelongum	DIN	Functia sp	DIAT
Ceratium ranines	DIN	Fracilaria sp.	DIAT
Ceratium schroeteri	DIN	Gonvaulay birostris	DIN
Coratium sofacoum	DIN	Gonyaulax buolina	DIN
Ceratium symmetricum	DIN	Gonyaulax nyaulla Gonyaulay nacifica	DIN
Ceratium symmetricum	DIN	Conyadiax pacifica	DIN

• Ubiquitous species also known from Sydney coastal waters

Table 5. Continued

	(0 0001 to 1 % of a	hytoplankton biomass)	
	(0.0001 to 1 % of p	nytoplankton biomass)	DIAT
Gonyaulax polygramma	DIN	Pleurosigma sp.	DIAI
Gossieriena tropica	DIAT	Podolampas ologans	DIN
Guinardia naccida	DIAT	Podolampas elegans	DIN
Gyrosigma sp.	DIAT	Podolampas paimipes	DIN
Hemiaulus sinensis	DIAT	Podolampas reticulata	DIN
Hemidiscus cuneiformis	DIAI	Podolampas spiniera	DIN
Heterodinium milneri	DIN	Podosira stelliger	DIAI
Heterodinium rigdenae	DIN	Prorocentrum lima	DIN
Histioneis dolon	DIN	Prorocentrum micans	DIN
Histioneis mitchellana	DIN	Prorocentrum rostratum	DIN
Flistionels pulchra	DIN	Prorocentrum triestinum	DIN
Leptocylindrus danicus	DIAT	Protoceratium areolatum	DIN
Leptocylindrus mediterraneus	DIAT	Protoperidinium depressum	DIN
Licmophora sp.	DIAT	Protoperidinium diabolus	DIN
*Mastogloia rostrata	DIAT	Protoperidinium divaricatum	DIN
Neostreptotheca subindica	DIAT	* Protoperidinium divergens	DIN
Nitzschia americana	DIAT	Protoperidinium leonis	DIN
Nitzschia braarudii	DIAT	Protoperidinium murrayi	DIN
*Nitzschia closterium	DIAT	 Protoperidinium oceanicum 	DIN
Nitzschia fluminensis	DIAT	*Protoperidinium pallidum	DIN
*Nitzschia longissima	DIAT	Protoperidinium sourniai	DIN
Nitzschia marina	DIAT	Protoperidinium tubum	DIN
Nitzschia panduriformis	DIAT	Pseudoeunotia doliolus	DIAT
Nitzschia punctata	DIAT	Pyrocystis fusiformis	DIN
Nitzschia sicula	DIAT	Pyrocystis noctiluca	DIN
*Nitzschia sigma	DIAT	*Pyrocystis robusta	DIN
*Odontella mobiliensis	DIAT	*Pyrophacus horologicus	DIN
Odontella sinensis	DIAT	Raphoneis amphiceros	DIAT
Ornithocercus francescae	DIN	Raphoneis surirella	DIAT
Ornithocercus heteroporus	DIN	• Roperia tesselata	DIAT
*Ornithocercus magnificus	DIN	*Skeletonema costatum	DIAT
Ornithocercus splendidus	DIN	*Skeletonema menzellii	DIAT
Ornithocercus quadratus	DIN	*Stauroneis membranacea	DIAT
Ornithocercus skogsbergiii	DIN	Stephanopyxis palmeriana	DIAT
Ornithocercus steinii	DIN	Surirella sp.	DIAT
Ornithocercus thumii	DIN	Synedra toxoneides	DIAT
*Oxytoxum subulatum	DIN	Trachyneis aspera	DIAT
Parahistioneis para	DIN	*Triadinium polyedricus	DIN
Palmeria hardmaniana	DIAT	Triadinium sphaericum	DIN
*Paralia sulcata	DIAT	 Triceratium pentacrinus 	DIAT
Pinnularia spp.	DIAT	Triceratium broeckii	DIAT
*Planktoniella sol	DIAT	Triceratium dubium	DIAT
Pleurosigma directum	DIAT	Triceratium favus	DIAT
Pleurosigma diversestriatum	DIAT	Trigonium alternans	DIAT
Plourogiama normanii	DIAT	Trinocolonia bicomic	DINI

obiquitous species unso known nom byuney coustar waters

diatoms (15), small dinoflagellates (10), prasinophytes (4), cryptomonads (3), chrysomonads (3), euglenoids (1) and cyanophytes (2).

The diatom and dinoflagellate floras, taken from net samples, were remarkably similar in the Gulf of Carpentaria, Arafura Sea, Timor Sea and North-West Shelf. The large (30 to 1000 μ m) diatom flora included *Bacteriastrum* (3 spp.), *Chaetoceros* (15), *Coscinodiscus* (10), *Nitzschia* (13), *Rhizosolenia* (13) and *Thalassiosira* (6). The large dinoflagellate flora included Ceratium (37 spp.), Dinophysis (10), Ornithocercus (7) and Protoperidinium (8). These species exhibit elaborate morphologies. Examples of morphological extremes are the spines of the dinoflagellate Ceratocorys horrida (Fig. 5), the wing-like extensions of the dinoflagellates Ornithocercus steinii (Fig. 6) and Ceratium cephalotum (Fig. 7) and the diatom Planktoniella sol (Fig. 8), and the long setae of the diatoms Bacteriastrum furcatum (Fig. 9) and Bacteriastrum hyalinum (Fig. 10).

Fig. 5 to 10. Morphological characteristics of tropical dinoflagellates and diatoms (scale bar = 10 μm). 5: Dinoflagellate Ceratocorys horrida with spine-like extensions of hypotheca. SEM. 6: Dinoflagellate Ornithocercus steinii with wing-like extensions of hypotheca and epitheca. SEM. 7: Dinoflagellate Ceratium cephalotum with enlarged, flattened epitheca. LM. 8: Diatom Planktoniella sol with marginal wing. SEM. 9 and 10: Chain-forming diatoms Bacteriastrum furcatum and Bacteriastrum hyalinum with long setae surrounding the cells

B
H
F.
aı
0
0
T.
'n.
A
7
ö
5
0
Ħ.
F
B
E
IG
st
2
4
F
-
^o
ž
EI.
S
St.
10
ä
0
Ē
iŝ
õ
S
as
U
Ē
0
P
B
X
S
9
e
10
al
H

Host	Symbiont	Coral Sea	Area NW Shelf	Gulf	Morphological characteristics of the association	Figure
Dinoflagellate	Blue-green alga					J
Amphisolenia bidentata	Synechococcus carcerarius	+	+		Endocytic	19 a, b
Amphisolenia thrinax	Synechococcus carcerarius	+	+		Endocytic	18
Citharistes apsteinii	Synechococcus carcerarius	+			In intercingular chamber	1
Dinophysis miles	Synechococcus carcerarius?		+		Endocytic	t
Dinophysis rapa	Synechococcus carcerarius?		+		Endocytic	3
Histioneis mitchellana	Synechococcus carcerarius		+		In intercingular chamber	ņ
Histioneis pulchra	Synechococcus carcerarius	+			In intercingular chamber	1
Ornithocercus francescae	Synechococcus carcerarius		+		Loose association with girdle lists	r !
Ornithicercus heteroporus	Synechococcus carcerarius	+	+	+	Loose association with girdle lists	17
Ornithocercus magnificus	Synechococcus carcerarius	+	+	+	Loose association with girdle lists	t
Ornithocercus quadratus	Synechococcus carcerarius	+	+	+	Loose association with girdle lists	ı
Ornithocercus steinii	Synechococcus carcerarius		+	+	Loose association with girdle lists	L
raiamsuomens para	office and carcelains	H			m mercindara champer	
Diatom	Blue-green alga					
Chaetoceros compressus	Richelia intracellularis		+		Epiphytic	ł
Neostreptotheca subindica	Synechocystis consortia	+	+		Endocytic	21
Rhizosolenia clevei	Richelia intracellularis	+	+	+	Endocytic	20 b
Rhizosolenia cylindrus	Richelia intracellularis	+			Endocytic	20 a
Diatom	Coccolithophorid					
Planktoniella sol	unidentified coccolithophorid		+		Casual attachment to marginal wing	3
Thalassiosira punctifera	Crenalithus sessilis	+	+	+	Casual attachment to girdle area	11
Diatom	Diatom					
Bellerochea horologicalis	Licmophora sp.		+		Casual attachment	13
Odontella sinensis	Nitzschia sp.			+	Casual attachment	1
Thalassiosira subtilis	{ Licmophora sp. { Nitzschia bicapitata		+	+	Casual attachment	12
Diatom	Ciliates					
Chaetoceros coarctatus	Vorticella oceanica	+	+	+	Epiphytic	14
Coscinodiscus qiqas	unidentified ciliate		+	+	Epiphytic	15
Palmeria hardmaniana	Amphorella borealis		+		Epiphytic	16 a, b
Microzooplankton	Dinoflagellate					
Acantharians	Symbiodinium microadriaticum	+	+	+	In cytoplasm	1
Foraminiferans	Symbiodinium microadriaticum?	+	+	* +	In cytoplasm	ť
Radiolarians	Symbiodinium microadriaticum	+	+	+	In cytoplasm	1

Species	Photosynthetic (red chloroplast fluorescence)	Partially fluorescent (green fluorescence with red patches)	Non-photosynthetic (diffuse green cytoplasm fluorescence)	Blue-green algal symbionts (orange fluorescence)
Amphisolenia asymmetrica			+	
Amphisolenia bidentata			+	+
Amphisolenia thrinax			+	+
Blepharocysta splendor-maris			+	
Ceratium biceps	+			
Ceratium breve	+			
Ceratium candelabrum	+			
Ceratium carriense	+			
Ceratium cephalotum	+	+		
Ceratium contortum	+			
Ceratium contrarium	+			
Ceratium dens	+			
Ceratium depressum	+			
Ceratium digitatum	+	35		
Ceratium furca	+	Ŧ		
Ceratium rusus	- -			
Ceratium geniculatum	+			
Ceratium borridum				
Ceratium incisum	- -			
Ceratium hofoidii	- -			
Ceratium limulus	+			
Ceratium lunula	+			
Ceratium massiliense	+			
Ceratium paradoxides	+			
Ceratium pentagonum	+			
Ceratium platycorne	+			
Ceratium praelongum	+			
Ceratium schroeteri	+			
Ceratium teres	+		+	
Ceratium trichoceros	+			
Ceratium tripos	+			
Ceratium tripos v. pulchellum	+			
Ceratium vultur	+			
Ceratocorys horrida	+	+	+	
Ceratocorys armata			+	
Citharistes apsteinii			+	+
Corythodinium elegans	+			
Corythodinium tesselatum	+	120		
Dinophysis caudata	+	+		
Dinophysis circumsutum			+	
Dinophysis cuneus			+	
Dinophysis doryphorum			+	35
Dinophysis miles v. indica	+			Ŧ
Dinophysis ovum	+	2	T.	
Dinophysis rapa				
Convoular birectric	1		+	
Gonyaulax birostris	т 1			
Convaulax pacifica	+			
Gunyaulax polygramma	+			
Gymnodinium sp.	2020		+	
Histioneis mitchellana			+	+
Histioneis pulchra			+	+
Ornithocercus francescae			+	+
Ornithocercus heteroporus			+	+
Ornithocercus magnificus			+	+
Ornithocercus quadratus			+	+
Ornithocercus steinii			+	+

Table 7. Fluorescence characteristics of tropical Australian dinoflagellates

Species	Photosynthetic (red chloroplast fluorescence)	Partially fluorescent (green fluorescence with red patches)	Non-photosynthetic (diffuse green cytoplasm fluorescence)	Blue-green algal symbionts (orange fluorescence)
Oxytoxum scolopax	+			
Oxytoxum subulatum			+	
Parahistioneis para			+	+
Podolampas bipes			+	
Podolampas palmipes			+	
Pronoctiluca pelagica			+	
Prorocentrum lima	+			
Prorocentrum micans	+			
Protoperidinium elegans			+	
Protoperidinium depressum			+	
Protoperidinium divergens			+	
Protoperidinium leonis			+	
Protoperidinium pallidum	Ş		+	
Pyrocystis fusifomis	+			
Pyrocystis (Dissodinium) lunula	+			
Pyrocystis noctiluca	+			
Pyrophacus horologicum	+			
Scrippsiella trochoidea	+			
Triadinium polyedricus	+			
Triposolenia bicornis			+	

Table 7. Continued

Many symbiotic associations were recognised (Table 6). Twenty-eight associations ranged from casual attachment between diatoms and coccolithophorids (Fig. 11), diatoms and diatoms (Fig. 12 and 13), diatoms and ciliates (Fig. 14, 15 and 16) to more specialised relations (Fig. 17, 18, 19, 20 and 21). The colourless dinophysoid dinoflagellates with winglike extensions often contained orange fluorescent blue-green algae in a possibly symbiotic relation. In *Ornithocercus* up to 100 symbiotic cells (3 to 8 µm diameter) were found extracellularly in the girdle list region (Fig. 17), but in *Citharistes* and *Histioneis* similar cells were contained in special chambers (Fig. 18). A specialised endocytic relationship was observed for *Amphisolenia* (Fig. 19). These blue-green algal symbionts are all thought to belong to the same 2 species *Synechococcus carcerarius* (spherical cells) and *Synechocystis consortia* (elongated cells; Norris, 1967), but their ultrastructure is unknown. Some symbionts (e.g. dinoflagellate *Symbiodinium microadriaticum*, and blue-green *Synechococcus carcerarius*) occurred with a wide range of host species, but others appeared

Fig. 22. Distribution of selected tropical phytoplankton species in coastal waters of northern Australia. Solid Bar = common (10^4 to 10^6 cells l^{-1}); broken bar = rare (10 to 10^3 cells l^{-1})

to be remarkably host-specific. The coccolithophorid *Crenalithus sessilis* associated only with the diatom *Thalassiosira punctifera*, and the blue-green alga *Richelia intracellularis* only with the diatoms *Rhizosolenia clevei* and *R. cylindrus*. Symbionts were always present in these species found in tropical waters but the host species were without their symbionts when found in the cooler waters of the Great Australian Bight and Tasman Sea.

Phytoplankton species distribution

Most nanoplankton and also many diatom and dinoflagellate species were found throughout the northern coasts of Australia, from the Coral Sea into the Indian 22). The diatoms Bacteriastrum, Ocean (Fig. Chaetoceros and Rhizosolenia exhibited great abundance and species diversity in continental shelf waters but were less abundant in the offshore Coral Sea and Indian Ocean. A few dinoflagellate species were more restricted in their distribution: Ceratium dens and Dinophysis miles were found only in shelf waters, and Citharistes apsteinii, Gonyaulax birostris and Histioneis spp. only in open ocean environments.

Non-photosynthetic dinoflagellates

Examination of living phytoplankton samples under the fluorescence microscope showed that many of the dinoflagellates (33 out of 79 species examined) were non-photosynthetic (Table 7). These included some species of Ceratium, Dinophysis (part Phalacroma) and Oxytoxum and all species of Amphisolenia, Blepharocysta, Citharistes, Diplopsalis s. 1., Histioneis, Ornithocercus, Parahistioneis, Podolampas, Protoperidinium and Triposolenia. Photosynthetic species of Ceratium and Dinophysis were often very weakly pigmented, and sometimes dinoflagellate fluorescence varied even within a single species. For example, Ceratocorys horrida showed intensely pigmented redfluorescent cells in shelf waters and non-pigmented green fluorescent cells at offshore stations. A few partly fluorescent cells were also seen.

DISCUSSION

Phytoplankton biomass. The phytoplankton chlorophyll concentrations of the continental shelf waters of northern Australia (Table 2) are significantly higher than those of other parts of the Eastern Indian Ocean. Chlorophyll values in the productive Java upwelling area are up to 0.85 μ g l⁻¹ with a water

column total of 30 to 40 mg m⁻², but offshore waters of the Indian Ocean generally contain chlorophyll levels < 0.15 μ g l⁻¹ and water column totals of only 15 to 20 mg m⁻² (recalculated values from Humphrey, 1966 and Humphrey and Kerr, 1969). Several mechanisms have been proposed for nutrient enrichment of North Australian continental shelf waters. These include inflow from the Banda Sea upwelling area and nutrient regeneration from bottom sediments in the Gulf of Carpentaria (Forbes, in press) and tidally induced internal waves interacting with the bottom slope on the North-West Shelf (Baines, 1981).

Phytoplankton pigment composition. The chromatographic pigment analyses (Fig. 3; Table 4) indicate that diatoms, golden-brown flagellates and green flagellates are the major planktonic primary producers in northern Australian tropical shelf waters. low concentrations of the dinoflagellate The carotenoid peridinin suggest that photosynthesis by dinoflagellates is insignificant. This is confirmed by the absence of fluorescent chloroplasts in most of these cells (Table 7) and the observations of only weakly pigmented photosynthetic species. It would be of considerable interest to establish to what extent some dinoflagellate species can switch from an autotrophic to a heterotrophic mode of nutrition and if this is accompanied by reversible chloroplast resorption and regeneration. Degenerate plastids or protoplastids have been reported in the non-photosynthetic Cryptothecodinium cohnii (Kubai and Ris, 1969).

Importance of the nanoplankton. Nanoplankton is a major component of tropical phytoplankton, accounting for 70 to 97 % of the total chlorophyll, except in local diatom and Trichodesmium blooms in shallow (20 to 70 m) inshore waters where only 30 to 60 % of the chlorophyll biomass is nanoplankton (Table 3). The importance of these small organisms in the tropical Indian Ocean has been suggested previously from fractionated carbon, photosynthesis and chlorophyll measurements (Saijo, 1964; Mullin, 1965; Saijo and Takesue, 1965). In the present work, the quantitative importance of small pennate diatoms, golden-brown flagellates, minute green flagellates and small dinoflagellates was confirmed by light and electron microscopy. Small cyanobacteria in the picoplankton size range (0.2 to 2 µm) have also been recognized and will be described elsewhere. Many nanoplankton species found in the tropical waters (25 to 30 °C) of the North-West Shelf and the Gulf of Carpentaria are also common in subtropical and temperate Australian waters (15 to 20 °C). Species such as Micromonas pusilla and Minidiscus trioculatus, identified in Australian tropical and subtropical waters, have also been recorded from Arctic West Greenland (0 to 13 °C; Thomsen, 1982). Tolerance of a wide range of temperatures (Throndsen, 1976), or the ability to form strains adapted to different temperature regimes, may contribute to the success of nanoplankton species in the world's oceans.

Diversity of large diatoms and dinoflagellates. In contrast to the nanoplankton, the large tropical diatoms and dinoflagellates are distinctly different from species in subtropical and temperate waters. The main differences are the possession of large spines, horns, setae and wing-like structures in tropical forms, common symbiotic associations and greater species diversity. More than half of the 200 taxa identified (Table 5) can be regarded as tropical species. On the shallow North-West Shelf and in the Gulf of Carpentaria diatoms show the greatest diversity, while in offshore waters of the Indian Ocean and Coral Sea dinoflagellate species are more numerous (Taylor, 1976; Jeffrey and Hallegraeff, unpubl.). Their bizarre shapes may aid flotation, increase nutrient uptake through enhanced rotational movement and greater cell surface area for absorption, and protect against grazing from small zooplankton. Symbiotic associations may benefit both host and symbiont through mutual exchange of organic and inorganic nutrients, but thus far only the Rhizosolenia-Richelia pair has been examined by appropriate microautoradiographic techniques (Taylor, 1982 and references therein). Why tropical phytoplankton exhibit and maintain a high diversity, similar to that of other plants and animals in tropical aquatic and terrestrial habitats, has yet to be answered satisfactorily.

Acknowledgements. The authors are grateful to Dr. M. Vesk, Mr. D. Dwarte and Ms. D. Hughes for advice and technical assistance with the electron microscopy; Mr. J. John and Dr. G. R. Hasle for help with the diatom taxonomy; Ms. M. C. Carbonell, Drs. K. A. Steidinger and F. J. R. Taylor for advice on dinoflagellate taxonomy; and Dr. R. E. Norris and Mr. B. Sundström for assistance with identification of the symbiotic associations. Discussions with Dr. R. E. Norris confirmed our observations that photosynthetic and non-photosynthetic dinoflagellates could be distinguished by fluorescence microscopy. We also thank Mr. R. Griffiths and Mr. N. Dyson for the hydrological analyses.

LITERATURE CITED

- Allen, W. E., Cupp, E. E. (1935). Plankton diatoms of the Java Sea. Annsl Jard. bot. Buitenzorg 44: 101–174
- Bain, R. (1982). An overview of the Australian fishing industry. Aust. Fish. 41: 10–15
- Baines, P. G. (1981). Satellite observations of internal waves on the Australian North-West Shelf. Aust. J. mar. Freshwat. Res. 32: 457–463
- Desrosières, R. (1965). Observations sur le phytoplancton superficiel de l'ocean indien oriental. Cah. ORSTOM, Oceanogr. 3: 31–37

Forbes, A. M. G. (in press). The contribution of local processes

to seasonal hydrology of the Gulf of Carpentaria. Oceanographie Tropicale

- Hallegraeff, G. M. (1981). Seasonal study of phytoplankton pigments and species at a coastal station off Sydney: importance of diatoms and the nanoplankton. Mar. Biol. 61: 107–118
- Hallegraeff, G. M. (1983). Scale-bearing and loricate nanoplankton from the East Australian Current. Botanica mar. 26: 493–515
- Hallegraeff, G. M. (1984). Coccolithophorids (calcareous nanoplankton) from Australian waters. Botanica mar. 27: 229–249
- Hallegraeff, G. M., Ringelberg, J. (1978). Characterisation of species diversity of phytoplankton assemblages by dominance – diversity curves. Verh. int. Verein. theor. angew. Limnol. 20: 939–949
- Heron, A. C. (1982). A vertical free fall plankton net with no mouth obstructions. Limnol. Oceangr 27: 380–383
- Humphrey, G. F. (1966). The concentration of chlorophylls a and c in the South-East Indian Ocean. Aust. J. mar. Freshwat. Res. 17: 135–145
- Humphrey, G. F., Kerr, J. D. (1969). Seasonal variations in the Indian Ocean along 110° E. III. Chlorophylls *a* and *c*. Aust. J. mar. Freshwat. Res. 20: 55–64
- Jeffrey, S. W. (1981). An improved thin-layer chromatographic technique for marine phytoplankton pigments. Limnol. Oceanogr 26: 191–197
- Jeffrey, S. W., Hallegraeff, G. M. (1980a). Studies of phytoplankton species and photosynthetic pigments in a warmcore eddy of the East Australian Current. I. Summer populations. Mar. Ecol. Prog. Ser. 3: 285–294
- Jeffrey, S. W., Hallegraeff, G. M. (1980b). Studies of phytoplankton species and photosynthetic pigments in a warmcore eddy of the East Australian Current. II. A note on pigment methodology. Mar. Ecol. Prog. Ser. 3: 295–301
- Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c_1 and c_2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194
- Kubai, D. F., Ris, H. (1969). Division in the dinoflagellate Gyrodinium cohnii Schiller. A new type of nuclear reproduction. J. Cell Biol. 40: 508–528
- Major, G. A., Dal Pont., G. Klye, J., Newell, B. S. (1972). Laboratory techniques in marine chemistry: a manual. CSIRO Aust. Div. Fish. Oceanogr. Rep. 51: 1–55
- Markina, N. P. (1972). Special features of plankton distribution around northern coasts of Australia during different seasons of 1968–1969 (Russ.). Izv. Tikhvokean nauchnoissled. Inst. ryb. Khoz. Okeanogr. 81: 57–68
- Motoda, S., Kawamura, T., Taniguchi, A. (1978). Differences in productivities between the Great Australian Bight and the Gulf of Carpentaria, Australia, in summer. Mar. Biol. 46: 93–99
- Mullin, M. M. (1965). Size fractionation of particulate organic carbon in the surface waters of the Western Indian Ocean. Limnol. Oceanogr 10: 459–462
- Newell, B. S. (1973). Hydrology of the Gulf of Carpentaria, 1979–1971. CSIRO Aust. Div. Fish. Oceanogr. Tech. Pap. 35: 1–29
- Norris, R. E. (1967). Algal consortisms in marine plankton. In: Krishnamurthy, V. (ed.) Proc. Seminar on Sea, Salt and Plants, 1965. Central Salt and Marine Chemicals Research Institute, Bhavnagar, India, p. 178–189
- Rothlisberg, P. C., Jackson, C. J. (1982). Temporal and spatial variation of plankton abundance in the Gulf of Carpentaria, Australia 1975–1977. J. Plankton Res. 4: 19–40
- Saijo, Y. (1964). Size distribution of photosynthesizing phyto-

74

plankton in the Indian Ocean. J. oceanogr. Soc. Japan 19: 187–189

- Saijo, Y., Takesue, K. (1965). Further studies of the size distribution of photosynthesizing phytoplankton in the Indian Ocean. J. oceanogr. Soc. Japan 20: 10–17
- Sainsbury, K. J. (1979). CSIRO defining fish stocks on NW Shelf. Aust. Fish. 38: 4–12
- Simonsen, R. (1974). The diatom plankton of the Indian Ocean expedition of R. V. 'Meteor' 1964–1965. 'Meteor' Forsch.-Ergebn. (D) 19: 1–107.
- Smayda, T. J. (1978). From phytoplankters to biomass. In: UNESCO Monographs on oceanographic methodology, No. 6, Phytoplankton manual, p. 273–279
- Subrahmanyan, R. (1946). A systematic account of the marine plankton diatoms of the Madras coast. Proc. Indian Acad. Sci. 24 B: 85–197
- Taylor, F. J. R. (1976). Dinoflagellates from the International Indian Ocean Expedition. A report on material collected

by the R. VF. 'Anton Bruun' 1963–1964. Biblthca bot. 132: 1–234.

- Taylor, F. J. R. (1982). Symbioses in marine microplankton. Ann. Inst. Oceanogr. 58: 61–90
- Thomsen, H. A. (1982). Planktonic choanoflagellates from Disko Bugt, West Greenland, with a survey of the marine nanoplankton of the area. Meddr Grønland (Bioscience) 8: 1–35
- Throndsen, J. (1976). Occurrence and productivity of small marine flagellates. Norw. J. Bot. 23: 269–293
- Tranter, D. J., Kerr, J. D. (1977). Further studies of plankton ecosystems in the Eastern Indian Ocean. III. Numerical abundance and biomass. Aust. J. mar. Freshwat. Res. 28: 557–583
- Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Verein. theor. angew. Limnol. 9–38

This paper was submitted to the editor; it was accepted for printing on July 14, 1984