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INTRODUCTION

Ecosystem modelling is a tool used to understand and
predict changes to community dynamics. These models
are crucial to support sustainable fisheries at a time
when pressure on oceanic resources is higher than ever
(FAO Fisheries Department 2004). The inshore reefs of
eastern Tasmania support a variety of invertebrate and
scalefish fisheries, such as the high-value abalone and
rock lobster fisheries, as well as lower value live fish
fisheries for banded morwong Cheilodactylus specta-
bilis and wrasse Notolabrus spp. In many of these
smaller fisheries, particularly those using gillnets, the
capture of non-target species commonly occurs. For ex-

ample, the banded morwong gillnet fishery captures a
diverse range of both target and non-target species.
Catch sampling of this fishery from 1993 to 2005
recorded almost 80 different species and species
groups (e.g. crabs) (J. M. Lyle unpubl. data). Ecosystem
models are necessary to investigate the effects of
capture on these species and the ecosystem.

Ecosystem models may be quantitative or qualitative
and can aid conventional stock assessment by provid-
ing information on the state of the system. Developing
cost-effective ecosystem modelling techniques is vital
to investigate the effects of changes on small-scale,
low-value fisheries, such as the banded morwong
fishery. Qualitative ecosystem models may be based on
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trophic or non-trophic information. They also require a
smaller amount of data and are less costly to produce
than quantitative models. These models can allow for a
greater understanding of ecosystem dynamics (Puccia
& Levins 1985) which may be useful in the investigation
of data-poor fisheries. In ecological studies, trophic
linkages often form the backbone of ecosystem models.
These linkages are commonly inferred from dietary
analysis (Christensen & Pauly 1992, Okey et al. 2004).
The calculation of traditional metrics, such as dietary
overlap and niche breadth using data collected from
the focal system, can highlight important ecological
factors including trophic guilds and ontogenetic varia-
tion (Munoz & Ojeda 1998). This information can then
be incorporated into ecosystem models. Different
trophic web structure can result in different model
predictions and may therefore have a large impact on
research and management decisions (Pinnegar et al.
2005). This was demonstrated by Yodzis (2001) when
studying the effect of seal culling on fisheries. One
model suggested the fishery would benefit from a cull
and another, which included different trophic linkages,
did not support this conclusion. In order to produce
model predictions that will be useful in resource man-
agement, the trophic web most closely aligned to the
natural system should be used. Without this informa-
tion, management strategies may be based on pre-
dicted responses that do not occur in the natural system
or may not predict responses that do occur.

The inclusion of the entire food web into models may
provide a more realistic view of the system than aggre-
gated models. However, large complex models often
contain too much uncertainty (Raick et al. 2006) for
their use to be beneficial. Species aggregation is often
necessary to provide useful predictions (Auger et al.
2000, Fulton et al. 2003, Raick et al. 2006). Many alter-
native methods of aggregating ecosystem variables
may be used; for instance, in many studies using Eco-
path (e.g. Christensen et al. 2003, Okey et al. 2004,
Bulman et al. 2006) functional groups were aggregated
according to the impact of commercial fisheries and
life history characteristics such as size. In addition,
variable aggregation may be based on turnover rates
and stock size (Gardner et al. 1982) and, commonly,
on the modeller’s perception of the system (Luczkovich
et al. 2002). In other studies, more mathematical
approaches such as Bray-Curtis similarities (Bray &
Curtis 1957, Pinnegar et al. 2005), Euclidean distance
(Sokal & Sneath 1963) and regular equivalence (Lucz-
kovich et al. 2003) have been used to aggregate large
numbers of species into groups. In contrast to complex
models, species aggregation for simplification may
result in the model becoming oversimplified (Raick et
al. 2006). In addition, following the aggregation of spe-
cies in any model, parameter uncertainty may still

remain due to the dynamic nature of the real world.
A compromise between high uncertainty and over-
simplification may therefore be necessary and can be
achieved by reducing the rate of error between
detailed and simplified model predictions.

Much discussion has occurred on the type and value
of aggregation techniques (e.g. Raffaelli & Hall 1992,
Raick et al. 2006). This discussion has focussed on
methods of aggregation such as ‘perfect aggregation’ in
which the dynamics of the aggregated variable are con-
sistent with the dynamics of the disaggregated vari-
ables (Iwasa et al. 1987). This method was later found to
be too restrictive for many forms of ecosystem analyses
and the focus shifted instead to the ‘best approximate
aggregation’ where the minimum inconsistency of
dynamics between aggregated and disaggregated vari-
ables was preferred (Iwasa et al. 1989). Minimum in-
consistency was desired as the aggregation of variables
may result in prediction error due to the loss of informa-
tion from disaggregated to aggregated groups (Auger
et al. 2000). For example, information regarding the
specific prey items of each species in an aggregated
variable may be lost. Error may also occur due to the
aggregation of predators and their prey (Gardner et al.
1982, Fulton et al. 2003) and of variables with differing
turnover times (O’Neill & Rust 1979, Gardner et al.
1982). The importance of uncertainty due to aggrega-
tion error has been acknowledged (Gardner et al. 1982,
Cale et al. 1983) yet is rarely discussed in modelling
studies with aggregated variables. This is not a trivial
problem, particularly if the models are then used to in-
form management decisions. In addition, alternative
methods of aggregation may result in different levels of
error. If we assume the disaggregated model is a rea-
sonable representation of the ecosystem, the use of the
aggregation method that creates the least error can
increase the predictability of the model results.

Qualitative ecosystem models, using signed digraphs
(Levins 1974, Levins 1975), may be used to generate
hypotheses and guide further ecosystem studies.
These models can also provide a means to analyse
aggregation error and are a quick and efficient way to
study ecosystem structure. Aggregation error must be
investigated following the simplification of models
through variable aggregation to ensure the model pre-
dictability is retained. As the use of ecological models
in management requires the assumption that the
model is a reasonable representation of the system, the
production of simplified models with high certainty of
prediction of disaggregated model results is important.
This is also necessary to ensure the hypotheses gener-
ated can be of use to management.

Qualitative modelling was used to produce a detailed
initial model on the basis of the ecosystem-specific di-
etary information obtained during this study. Dietary
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information was collected for banded morwong, blue
throat wrasse Notolabrus tetricus, purple wrasse N. fu-
cicola, bastard trumpeter Latridopsis forsteri, long-
snouted boarfish Pentaceropsis recurvirostris and mar-
blefish Aplodactylus arctidens. This information was
required because there were very few published ac-
counts of the diets of these reef fish. Furthermore, avail-
able studies do not include information on commonly
caught size classes (Choat & Clements 1992) or have
low sample sizes for the species of interest (Fenton
1996, Bulman et al. 2001). The variables in this model
were aggregated using Euclidean distance, Bray-Curtis
similarity and regular equivalence, and included in 3
separate simplified models. Comparisons between
qualitative models with and without variable aggrega-
tion can be used to assess the level of aggregation error
produced by different methods. This study investigated
the diets of 6 common reef fish and explored how this
information may be utilised to construct ecosystem
models using different methods of model simplification.
While the models and variables aggregated in this
study were based on trophic linkages, the methods of
aggregation and investigation into aggregation error
may be used for other types of data, such as turnover
and production rates. This study also illustrates the
power of qualitative analysis as a method of ecosystem
investigation for small-scale fisheries.

MATERIALS AND METHODS

Fish collection and processing. Each of the 6 study
species is commonly captured in the Tasmanian live
fish fishery for banded morwong which uses large
mesh nets of 115 and 140 mm stretched mesh. During
onboard commercial catch sampling, banded mor-
wong were found to constitute approximately 35% of
the total numbers of fish caught (J. M. Lyle unpubl.
data). Blue throat and purple wrasse, bastard trum-
peter and long-snouted boarfish are byproduct species
and constitute a further 19% of the catch. Marblefish is
a bycatch species that comprises around 21% of the
catch. Byproduct species are retained non-target
species and in this fishery the commercial catch is
restricted by species-specific size limits. In contrast,
bycatch are species without commercial value and are
not retained by fishermen.

All fish were collected using gillnets with stretched
mesh sizes ranging between 64 and 140 mm to ensure
that adequate sample sizes of each species were cap-
tured. Fish were collected from various sites within the
same region as the commercial banded morwong fishery
on the east coast of Tasmania (Fig. 1). Banded morwong
were collected between 2004 and 2006, while all other
species were collected in 2005–2006. A general under-

standing of the overall diet is sufficient for many eco-
system models and therefore diet was not assessed by
individual location or season. Each fish was measured
(fork length), weighed and sexed prior to gut removal.

The contents of the entire gut (stomach and intes-
tines) were collected for all species to ensure that no
bias occurred between species with and without
defined stomachs (e.g. marblefish). Each sample was
stored in 70% ethanol, dried with a paper towel and
weighed to the nearest 0.01 g prior to examination.
The majority of fish examined (>90% per species) had
food in the gut and only these fish were included in the
dietary analyses. Gut contents were passed through a
1 mm sieve and identified, where possible, to species
level under a dissecting microscope. Individual prey
groups were weighed separately to the nearest 0.01 g
for each stomach.

The number of samples necessary to obtain an accu-
rate estimate of species richness within the diet was
investigated using sample-based rarefaction in Esti-
mateS (Version 7.5.0). Species accumulation curves
were calculated by re-sampling observed data. This
established that the sample sizes utilised for each spe-
cies were higher than the minimum required to closely
approach the asymptote of the curve describing the
number of prey items versus the number of samples
(Colwell et al. 2004).

Diet indices. The percent number (%N), percent
weight (%W) and percent frequency of occurrence
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(%FOO) were calculated in addition to the percent
index of relative importance (%IRI) (Hyslop 1980). The
%IRI was calculated as it may reduce potential biases
caused by the use of a single metric. Prey items were
grouped into higher taxa groupings (e.g. Order) to cal-
culate the diet metrics. This was necessary to compare
the diet composition between fish species. This also
reduced bias between individuals with easily identifi-
able prey items and those in which prey were rarely
identified (Cortes 1997).

Diet similarity and overlap. In order to determine
the level of dietary similarity between species, multi-
dimensional scaling (MDS) was undertaken using the
prey type and number of prey items consumed. The
data were square root transformed to reduce the effect
of the dominance prey type and Bray-Curtis dissimilar-
ities were used for MDS in Primer 5 (Version 5.2.9).

The simplified Morisita’s Index (sensu Horn 1966)
using %W was calculated to determine the level of
overlap between species. Significant dietary overlap
was assumed when Morisita’s Index was greater than
0.6 (Wallace & Ramsey 1983). Percent weight was used
to determine which prey species should be included in
the model as qualitative modelling and many types of
ecosystem modelling are mass-based. Higher taxo-
nomic groupings (Order and Family) were used for all
overlap analyses.

Ecosystem models based on dietary information.
Qualitative analysis was used to investigate ecosystem
structure and aggregation error produced through dif-
ferent aggregation methods. Using qualitative analysis,
the community can be represented by signed digraphs
(Puccia & Levins 1985), which are constructed using the
signs (+, –, 0) of the interactions (αij) between variables
in the model. Negative effects are represented as links
ending in closed circles while positive effects are
shown as arrows. Links connecting the variable to itself
represent density-dependence or resources external to
the model that are constantly replenished in the system,
such as phytoplankton. A signed di-
graph was used to construct a detailed
initial model on the basis of dietary in-
formation obtained during the present
study and from a review of the literature
(Table 1). To ensure that the models did
not become unwieldy with too many
variables, only prey that constituted
greater than 15%W per fish species
were included in each model. This level
of detail was selected because it in-
cludes the prey groups that constitute
the majority of the diet for each species.

The simplification of the initial model
was undertaken using the qualitative
diet matrix to create 3 different models

using Euclidean distance (ED), Bray-Curtis (BC) simi-
larity and regular equivalence (RE) through the REGE
algorithm (Luczkovich et al. 2003, www.analytictech.
com/downloaduc6.htm). Similarity matrices were pro-
duced using these measures and these matrices were
used to determine which variables to aggregate.
Euclidean distance is the shortest distance between
variables in ecological space (Sokal & Sneath 1963).
This distance measure does not take abundance into
account and treats every number equally. Euclidean
distance therefore measures presence and absence
unlike Bray-Curtis similarity, which also measures
magnitude through relative abundances in the data
(Bray & Curtis 1957). Neither Euclidean distance nor
Bray-Curtis similarity can use the negative values pro-
duced as a result of the mortality of species through
predation. In contrast, regular equivalence takes both
predators and prey into account in the calculation of
similarity (Luczkovich et al. 2003) but is not sensitive to
relative abundances in the data. The REGE algorithm
uses species-by-species matrices to calculate species-
by-species matrices of R coefficients which measure
the regular equivalence between variables (Luczko-
vich et al. 2003). These coefficients have ordinal prop-
erties that may then be visualised using multivariate
statistics.

A qualitative diet matrix was used in the calculation
of Bray-Curtis similarities, Euclidean distance and reg-
ular equivalence, where the prey of a variable was
denoted by a positive sign (+1) and predators of the
variable were denoted by a negative sign (–1). This
matrix was used instead of actual dietary metrics such
as %W because we were interested in the qualitative
presence/absence of linkages between species. Den-
drograms were produced to display the similarity and
distance measures for all 3 methods to visualise vari-
able aggregations. The number of clusters selected for
use in a model can be based on a desired level of
equivalence or similarity among members of a cluster.
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Species Location Sample size (n) Source

Seals Tasmania 977 Hume et al. (2004)
Gastropods Tasmania NA Edgar (2000)
Decapods New Zealand 724 Woods (1993)
Amphipods Tasmania NA Edgar (2000)
Ophiuroids Tasmania NA Edgar (2000)
Bivalves Tasmania NA Edgar (2000)
Isopods Tasmania NA Edgar (2000)
Polychaetes South Australia NA Holloway & Keough (2002)

and Victoria
Sponges Tasmania NA Edgar (2000)
Bryozoans Western Australia NA Lisbjerg & Petersen (2000)

Table 1. References used for dietary information included in the initial model.
A Tasmanian study was used in preference to other available information. 

(NA): unreported sample sizes 
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The desired level of equivalence may vary given the
questions being asked of the models, and when com-
paring between models, as in this study, the level of
aggregation should be similar. If this does not occur,
comparisons will be meaningless. In this study, models
of 10 or 11 variables were selected for use as this level
of aggregation remained biologically meaningful. In
contrast, models of this system containing only 4 or 5
variables would be inappropriate as they would
require the aggregation of predators and prey, as well
as placing detritus with invertebrates.

Interactions between variables (+, –, 0) in a signed
digraph are detailed in the community matrix (A).
Qualitative methods of ecosystem modelling predict
the response of each variable to perturbation, where
perturbations are increases in the abundance of a vari-
able. These predictions are either positive, negative,
zero or ambiguous and are calculated through the use
of the adjoint of the negative inverse community
matrix [adj (–A–1)] (Dambacher et al. 2002). This matrix
details the predicted response of variables to perturba-
tion using the sign (0, +, –) of response to qualitatively
indicate increases and decreases to variables. In the
adj (–A–1), the predicted response is read across the
rows while the variable that increased (caused the per-
turbation) is read down the columns (sensu Dam-
bacher et al. 2002).

Following the simplification of a model through the
aggregation of variables, the number of predictions
that are consistent between the simplified (aggre-
gated) and initial (not aggregated) model may be com-
pared and used to assess aggregation error. We illus-
trate this with an example of a small food web (Fig. 2a).
In this example, only 2 methods, Euclidean distance
and regular equivalence, were used to aggregate the
models. Aggregation using Bray-Curtis similarities
follows the same methods and was therefore not
included in the example. In this model, one species
(3) is both a predator and a prey while another 2 spe-
cies (2 and 4) at the same trophic level have no preda-
tors in the system. Species interactions are described in
the community matrix (A) As seen in Eq. (1). The
matrix of predictions [adj (–A–1)] is in Eq. (2) where, for
example, an increase to species 2 will have a negative
effect on the abundance of species 1. The asterisks in
Eq. (2) denote variables which produce incorrect pre-
dictions when aggregated using regular equivalence
in Eq. (4).

(1)

(2)

Using Euclidean distance to aggregate model vari-
ables, all middle trophic level species (2, 3 and 4)
would be aggregated together (Fig. 2b) and result in
the matrix of predictions seen in Eq. (3). As a result, the
difference between species 3 and species 2 and 4 is not
evident using this method. Dashed lines surround the
aggregated species.

(3)

In contrast, regular equivalence (Luczkovich et al.
2003) has been used in social network theory and takes
both predator and prey links into account. Using this
method, species 3 remained separate from species 2
and 4 (Fig. 2c). This resulted in the following matrix of
predictions:

(4)

To calculate the number of predictions in the simplified
models that are consistent with the detailed model, the
signs (+, –, 0) of the variables to be aggregated from
the detailed model need to be added. The sign of the
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Fig. 2. (a) Example of a detailed food web model, (b) model
aggregated using Euclidean distance which resulted in the
aggregation of variables 2, 3 and 4, and (c) model aggre-
gated using regular equivalence which resulted in the
aggregation of variables 2 and 4 alone. Lines ending in filled

circles denote negative effects; arrows: positive effects
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sum is then the correct prediction for the aggregated
group. For instance, in Eq. (1), increases to species 2
and 4 (columns) create negative responses in species 1
(row) (indicated by *). As a result, the sum of these
signs is also negative. In the matrix of predictions for
the simplified model (Eq. 4), species 2 and 4 (column)
produced a positive effect on species 1 (row) (indicated
by *). The prediction in the simplified model is there-
fore inconsistent with the detailed model and will
therefore contribute to the aggregation error.

In this study, the percent of predictions consistent
with the detailed model were compared between the
RE, BC and ED models. The percentage of signs that
were not consistent between the simplified and
detailed model were reported as aggregation error.

RESULTS

The diets of 227 individuals from the 6 study species
were examined with a total of 74 prey items identi-
fied. These prey items were placed into higher taxo-
nomic groups (Order, n = 17) for inclusion in models.
Minimum sample sizes for species richness were cal-
culated using sample-based rarefaction and ranged
between 10 (banded morwong) and 30 (long-snouted
boarfish) individuals per species. Actual sample sizes
were: banded morwong (n = 62); bastard trumpeter
(n = 44), blue throat wrasse (n = 30); purple wrasse
(n = 24); long-snouted boarfish (n = 41); and marble-
fish (n = 26).

Dietary analyses

Prey items that comprised greater than 15%W have
been reported as these prey species were included in
the models. Details on alternative metrics and specific
prey items of the study species are shown in Table 2.

Dietary overlap

MDS clearly separated the diets of marblefish and
long-snouted boarfish from those of the remaining
fish species, grouped here as benthic invertebrate
feeders (Fig. 3). The similarity between benthic inver-
tebrate feeders was obvious, with clearly overlapping
ellipses. Banded morwong and bastard trumpeter dis-
played a significant overlap due to the reliance on
decapods and amphipods. This was supported with a
Morisita’s Index of 0.69. The dietary overlap between
blue throat wrasse and purple wrasse was also signif-
icant (0.68) due to a reliance on bivalves, particularly
Mytilus edulis.

Ecosystem models based on dietary information

The detailed initial model (Fig. 4) was produced on
the basis of dietary information obtained during this
study and information on 10 different prey groups from
the published literature (Table 1, n > 1710). For each
simplified model, variables were aggregated following
the production of dendrograms (Fig. 5) with the excep-
tion of detritus. Detritus was not aggregated with any
variable in the simplified models as it is functionally
very different to all other model variables.

In support of the results found using Morisita’s Index,
aggregation of the initial model by regular equivalence
split benthic invertebrate feeding fish into 2 groups:
one comprised of bastard trumpeter and banded
morwong, and the other containing purple and blue
throat wrasses (Fig. 6a). In contrast, aggregation using
Bray-Curtis similarity and Euclidean distance resulted
in the grouping of purple wrasse, blue throat wrasse,
banded morwong and bastard trumpeter into a single
benthic invertebrate-feeding group (Fig. 6b,c). The
separation of benthic invertebrate feeding fish into
2 groups retained a greater level of detail on trophic
linkages. For instance, the RE model showed bivalves
were a prey of wrasse but not of bastard trumpeter or
banded morwong. A number of conflicting predictions
occurred between models as a result of different link-
ages between variables in each model. For instance,
wrasse have a negative effect on bastard trumpeter and
banded morwong in the RE model while positive effects
are produced in the BC and ED models (Table 3).

A comparison of predictions between the simplified
and detailed initial models revealed the RE model had
the largest number of predictions consistent with the
initial model (86%) followed by the BC (73%) and ED
models (65%). Examination of aggregation error
allows for the discrimination of the ‘best’ prediction
based on the initial model when conflicting predictions
occur between the simplified models.

DISCUSSION

Ecosystem models are becoming more widely used
in conjunction with conventional stock assessment to
investigate fishery and ecosystem sustainability. The
majority of ecosystem models are based on food webs
(Fulton et al. 2003) and trophic information is therefore
essential to facilitate their use in management.
Detailed trophic information may result in complex
models and incomprehensible results. Model simplifi-
cation may be useful in such situations to investigate
ecosystem structure and clarify results. When simplify-
ing models through variable aggregation, aggregation
error should be minimised in order to produce accurate
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Metcalf et al.: Ecosystem models and aggregation error

predictions based on the complex model. The more
widespread application of qualitative modelling and
the aggregation methods used in this study may prove
to be beneficial for general investigations into fishery
and ecosystem sustainability.

Dietary analyses are often undertaken in order to
provide information and reduce the uncertainty of eco-
system linkages and properties (Deb 1997). The diets
of the study species had been investigated in very few
studies in the past (e.g. Fenton 1996, Bulman et al.

2001) and additional data collection was therefore
undertaken to ensure appropriate information on each
species were available from eastern Tasmania. The
sample sizes used in this study were not large, how-
ever, they were bolstered by the literature and prey
were grouped into higher taxonomic orders for analy-
sis. Furthermore, it is acknowledged that identification
of all trophic links is impossible (Deb 1997) and an ade-
quate sample size was obtained to accurately identify
the richness of prey items in the fish diets. The number
and affect of weak links in the trophic web may be esti-
mated using metrics, such as the Pareto c Index (Pin-
negar et al. 2005), during quantitative analyses.

Simplification using regular equivalence produced
the least aggregation error between the initial and
simplified models. The dynamics of the RE model fol-
lowing perturbation may therefore be assumed to be a
good representation of the initial model dynamics. The

RE model supported the findings of the
dietary analysis and Morisita’s Index by
aggregating purple wrasse and blue
throat wrasse, and bastard trumpeter
and banded morwong. In contrast, both
the BC and ED models aggregated all 4
benthic invertebrate feeding fish into
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Fig. 3. MDS plot of prey item
similarity for fish samples
collected on the east coast of
Tasmania. Each ellipse en-
closes almost all the speci-
mens of one species and
highlights the separation
between species. MBL:
marblefish Aplodactylus
arctidens; LSB: long-
snouted boarfish Pentacer-
opsis recurvirostris; BTR:
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wrasse Notolabrus tetricus;
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spectabilis. Sample sizes

are provided in the text
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Fig. 4. Initial model with fish abbreviations as
in Fig. 3. Bivalv: bivalves; Reds: red algae;
Oth al: other algae; Browns: brown algae;
Gastro: gastropods; Decapo: decapods; Am-
phip: amphipods; Ophiur: ophiuroids; Polych:
polychaetes; Isopod: isopods; Oth in: other 

invertebrates; Detrit: detritus
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one variable. This resulted in a number of different
predictions between simplified models and high-
lighted the importance of model structure on predic-
tions. The RE model suggested that increases (de-
creases) to wrasse will have a negative (positive) effect
on bastard trumpeter and banded morwong. This may
indicate competition between fish groups and may also

have implications for the commercial wrasse and
banded morwong fisheries. For instance, substantial
increases in the catch rate of wrasse may reduce the
negative effect of wrasse and allow banded morwong
to increase in abundance. Aggregating these 2 fish
variables together in the BC and ED models did not
allow for the determination of these negative effects.
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2: LSB
100.000 99.273 99.031 98.116 97.629 97.274 94.995 94.170 92.540 92.131 87.813 75.470 56.763 38.843
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Fig. 5. Dendrogram displaying the regular equivalence
(similarity) between variables in the initial model. ( ):
variables aggregated as a result of these analyses for the
REGE model; ( ): cut-off point for aggregating variables. 

Variable names as defined in Fig. 4
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Fig. 6. (a) RE, (b) BC and (c) ED models as simplified from the initial model in Fig. 4. ( ): aggregated variables from Fig. 4 follow-
ing aggregation. BTR/BM: bastard trumpeter and banded morwong; Wrasse: purple wrasse and blue throat wrasse; BI fee: banded
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amphipods; Biv/ga: bivalves and gastropods; Bro/ot: brown algae and other algae; Dec/am: decapods and amphipods; ML/sea: 

marblefish, long-snouted boarfish and seals
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Bray-Curtis similarities do not take the predators of
the species into account during calculations. This was
illustrated by the BC model where gastropods were
aggregated with their bivalve prey. It has been sug-
gested that predators and their prey should not be ag-
gregated in many studies (O’Neill & Rust 1979, Gard-
ner et al. 1982, Fulton et al. 2003) as this increases the
error of the model. As a result, aggregating gastropods
and bivalves affected model predictions. The BC
model predicted a positive effect of gastropods on bi-
valves because they form part of the same variable and
are therefore assumed to increase in abundance simul-
taneously. In contrast, the RE and ED models retained
bivalves and gastropods as separate variables and this
resulted in negative effects on bivalves as a result of
gastropod predation. Similarly, the simplification of the
initial model using Euclidean distance resulted in the
aggregation of seals with members of a lower trophic
level: marblefish and long-snouted boarfish. Although
seals were not included as direct predators on these
fish species, aggregating members of different trophic
levels creates error as shown with gastropods and bi-
valves. This aggregation may also create error as a
consequence of variables with different production
and turnover rates being placed in a single variable
(O’Neill & Rust 1979, Gardner et al. 1982).

Bray-Curtis and Euclidean distance measures do not
take all ‘neighbours’ (i.e. predators and prey) into
account when calculating similarities and this results
in aggregation error. Long-snouted boarfish and ophi-
uroids formed a separate subsystem in the initial model

as they were only connected to the rest of the system
through a one-way link with detritus. Variables in sep-
arate subsystems only affect each other and can not be
affected by alterations in the abundance of variables in
the rest of the system. This detail was retained in both
the RE and BC models, however, the aggregation of
seals with marblefish and long-snouted boarfish in the
ED model connected ophiuroids to the rest of the sys-
tem. This contributed to the high level of error in the
ED model and occurred because Euclidean distance
did not account for different prey types and linkages in
the system.

As models become more important in resource
management around the world, the problem of uncer-
tainty in model prediction is increasing. In order to
produce constructive and sustainable management
regimes, ecosystem models need to be based on infor-
mation specific to the study at hand. The results of the
dietary analyses in this study allowed the production
of alternative qualitative models from which aggrega-
tion error and model structure were investigated. It is
important that techniques for model aggregation
should be based on the similarity of all neighbours
(e.g. predators and prey) as well as factors such as life
history characteristics. In the past, regular equiva-
lence has generally only been used in studying social
networks (Luczkovich et al. 2002). Future studies
should use the methods outlined in this study in order
to simplify models, minimise aggregation error and
increase model predictability prior to further eco-
system analyses.
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RE model BC model ED model
Variable Variable Response Variable Variable Response Variable Variable Response
increased affected increased affected increased affected

Wrasse BTR/BM – Benthic invert. Benthic invert. + Benthic invert. Benthic invert. +
feeders (BI fee) feeders feeders (BI fee) feeders

Wrasse Bivalves – Benthic invert. Benthic invert. ? Benthic invert. Bivalves +
feeders feeders feeders

BTR/BM Wrasse – Benthic invert. Benthic invert. + Benthic invert. Benthic invert. +
feeders feeders feeders feeders

Invertebrates Bivalves – Bivalves/ Bivalves + Gastropods Bivalves –
(gastropods) gastropods

(Biv/ga)

Seals MBL – Seals MBL – Marblefish/ Marblefish (MBL) +
seals (ML/sea)

Ophiuroids All variables 0 Ophiuroids All variables 0 Ophiuroids All variables Mixed effects 
exept Ophiur exept Ophiur exept Ophiur (+ or –) except
and LSB and LSB and Long- Detrit (0)

snouted boarfish
(LSB)

Table 3. Selected conflicting predictions of response to perturbation (increase to a variable) for models aggregated using regular
equivalence (RE), Bray-Curtis similarities (BC) and Euclidean distance (ED). Where variable names were not the same between
models the equivalent name has been given. See Figs. 4 & 6 for explanations of abbbreviations. Effects are: negative (–); positive (+);

no effect (0); and ambiguous (?) when the effect may be positive or negative
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