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INTRODUCTION

Animals have a variety of anti-predatory strategies
(Sih et al. 1985, Chivers & Smith 1998, Ruxton et al.
2004, Caro 2005) that can be divided into 2 main
 categories: (1) avoiding encounters with predators
and (2) avoiding being eaten once there has been
an encounter (Lima & Dill 1990). For example, the
aposematic coloration of the poison frog Dendrobates
pumilio decreases the probability of encounters with
predators (Saporito et al. 2006) and autotomizing
arms by the sea star Heliaster helianthus when under
attack by the sea star Meyenaster gelatinosus de -
creases the probability of death (Gaymer & Himmel-
man 2008). Predators not only affect prey directly by
eating them, but also indirectly by changing their

behaviour. Bottom structures, such as crevices, can
reduce the probability of encounter with predators
and thus increase survival. For several species of sea
urchins, the juveniles hide in crevices to reduce the
probability of predatory attack (Scheibling & Hamm
1991, Rodriguez & Ojeda 1993, Hereu et al. 2005).
For the sea urchin Evechinus chloroticus, predatory
mortality is most intense during the period when
juveniles begin to leave crevices for open habitats
(Shears & Babcock 2002).

Sea urchins are important grazers in benthic
 communities. Locations supporting high densities of
urchins are often transformed into barrens with a
reduced diversity and biomass of macroalgae (Him-
melman et al. 1983, McClanahan & Shafir 1990,
Alcoverro & Mariani 2002, Shears & Babcock 2002).
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Predators can affect the density, behaviour and pop-
ulation structure of urchins (Tegner & Levin 1983,
Sala et al. 1998, Tuya et al. 2004, Guidetti 2006). A
variety of predators feed on urchins, including sea
otters (Estes et al. 1998), fishes (Sala 1997), lobsters
(Andrew & MacDiarmid 1991), crabs (Scheibling &
Hamm 1991) and sea stars (Himmelman & Dutil
1991). Relationships between sea stars and urchins
are the best-studied of these interactions (Jensen
1966, Rosenthal & Chess 1972, Dayton et al. 1977,
Moitoza & Phillips 1979, Legault & Himmelman 1993,
Rodriguez & Ojeda 1998, Hagen et al. 2002).

The black sea urchin Tetrapygus niger is the most
abundant urchin in central and northern Chile and it
can attain a density of up to 40 ind. m2 (Vasquez &
Buschmann 1997). Its grazing has converted many
subtidal areas into barrens. It usually limits the depth
distribution of the subtidal kelp Lessonia trabeculata
to shallow water and has caused local extinctions of
the subtidal kelp Macrocystis integrifolia (Vega et al.
2005). A number of predators consume T. niger, in -
cluding the fishes Semicossyphus maculatus (Fuentes
1981), Graus nigra (Fuentes 1982), Pinguipes chilen-
sis (Rodriguez & Ojeda 1998), Cheilodactylus varie-
gatus, and Oplegnathus insignis (Medina et al. 2004)
and the sea star Luidia magellanica (Gaymer & Him-
melman 2008). However, the predators likely to have
the greatest impact on the abundance of T. niger are
the sea stars Heliaster helianthus and Meyenaster
gelatinosus (Barrios et al. 2008, Gaymer & Himmel-
man 2008). These sea stars are keystone predators
in shallow rocky communities in northern Chile
(Gaymer & Himmelman 2008, Barahona & Navarrete
2010). H. helianthus is a generalist feeder consuming
prey according to their availability (Gaymer & Him-
melman 2008, Barahona & Navarrete 2010), whereas
M. gelatinosus is a selective feeder that prefers con-
suming the urchin T. niger (Gaymer & Himmelman
2008). Both H. helianthus and M. gelatinosus are
endemic to the west coast of South America and
reach average densities of 3 ind. m2 and <0.5 ind. m2,
respectively, in northern Chile (Dayton et al. 1977,
Tokeshi et al. 1989, Gaymer & Himmelman 2008,
Navarrete & Manzur 2008). H. helianthus has a ro -
bust and flattened body with as many as 40 arms and
can attain up to 32 cm in diameter (Tokeshi et al.
1989). In contrast, M. gelatinosus has a soft body
with 6 thick arms and can attain 56 cm in diameter
(Dayton et al. 1977, Gaymer & Himmelman 2008).

Three studies have examined the behavioural re -
sponses of Tetrapygus niger to its sea star predators.
T. niger can detect Meyenaster gelatinosus at a dis-
tance and responds rapidly by fleeing (Dayton et al.

1977). Under laboratory conditions, the urchin in -
creased its rate of displacement in the presence of M.
gelatinosus or the predatory fish Pinguipes chilensis
and a higher proportion of individuals responded in
trials with M. gelatinosus (92%) than with P. chilensis
(67%) (Rodriguez & Ojeda 1998). Finally, Urriago et
al. (2011) showed that the urchin could differentiate
between predatory (Heliaster helianthus and M.
gelatinosus) and non-predatory (Stichaster striatus)
sea stars, could distinguish between different threat
levels associated with predatory sea stars and could
detect predatory sea stars at a distance. They indi-
cated that M. gelatinosus presented a stronger
predatory threat to urchins than H. helianthus.

Tetrapygus niger frequently occur on elevated sur-
faces (e.g. boulder tops) within the barrens communi-
ties that predominate in shallow rocky subtidal areas
along the coast of central and northern Chile. As food
resources are less abundant on elevated surfaces
than on the bottom, we reasoned that this  micro-
distribution of T. niger might represent a  strategy to
limit attacks by the sea stars Heliaster helianthus and
Meyenaster gelatinosus. The present study examines
this hypothesis. We first documented the preference
of the urchin for elevated surfaces, then examined
the urchin’s responses to sea stars in a variety of situ-
ations (predatory attacks), and finally conducted a
tethering experiment to compare the survival on high
and low surfaces (i.e. boulder tops vs. sea bottom).

MATERIALS AND METHODS

Our study was conducted during June, July and
August in 2008 and 2009 in the subtidal zone at
Obispito Bay (26° 48’ 22” S, 70° 47’ 5” W), Cisnes Bay
(27° 14’ 50” S, 70° 57’ 34” W) and El Francés Bay
(30° 5’ 42” S, 71° 22’ 47” W) in northern Chile. All
manipulations were made using SCUBA diving at
depths of 2 to 9 m in wave-exposed environments
(i.e. with continuous back and forth water move-
ment). In all 3 bays, the bottom was moderately
sloped (down to ~10 m depth at ~30 m from shore)
and supported a barrens community. The sea urchin
Tetrapygus niger was abundant (~20 ind. m2) and the
sea stars Heliaster helianthus and Meyenaster gelati-
nosus were present in much lower numbers (<1.5
and <1 ind. m2, respectively) (Gaymer & Himmelman
2008). During our trials, water temperatures ranged
between 12 and 14°C. In the various experiments, the
sea stars were taken at random from among individ-
uals that were stationary and not feeding. Different
urchins and sea stars were used in each trial.
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Distribution of sea urchins and sea stars

We conducted field surveys at Obispito, Cisnes and
El Francés Bays to characterize the abundance and
distribution of Tetrapygus niger and the 2 predatory
sea stars Heliaster helianthus and Meyenaster gelati-
nosus. For each urchin and each sea star encountered
we recorded its position in 2 categories, high and low
surfaces. We also quantified the percentage cover of
high and low surfaces. High surfaces included from
the tops of boulders and bedrock outcrops to half way
down the vertical faces of the structures, and low sur-
faces were flat areas of pebbles, shell debris and small
cobbles as well as surfaces extending half way up the
sides of boulders and outcrops. The boulders were 1.0
to 1.5 m in height and the outcrops 4 to 5 m. In 2008,
we systematically surveyed an entire cove at Cisnes
Bay (using five 50 m transects running from the shore
seaward, and spaced at 6 m intervals) whereas in
2009 we sampled 79 randomly placed 1 m2 quadrats
at Obispito Bay and 72 quadrats at El Francés Bay.

We placed predatory sea stars on boulder tops to
determine whether they would remain there or move
to lower positions. In each trial we placed a sea star
on a boulder top not covered by sea urchins and held
it there until it attached (<1 min). Then, after 5 min
we recorded its position. We ran 20 trials for both
Meyenaster gelatinosus and Heliaster helianthus at
El Francés Bay in 2009.

Responses of sea urchins to sea stars on different
types of bottom

We further performed a number of short-term field
experiments at Cisnes Bay in 2009 to provide insights
into the responses of the sea urchin to the 2 predatory
sea stars, Heliaster helianthus (9 to 14 cm in radius)
and Meyenaster gelatinosus (13 to 21 cm), on 3 types
of bottom. We first quantified the time it took isolated
urchins (5 to 6 cm in diameter and at least 20 cm from
other urchins) to sever contact from a simulated
attack by a sea star. A simulated attack consisted of
holding a sea star so that an arm, or several arms in
the case of H. helianthus, covered half of the target
urchin. The sea star was maintained in the initial
position relative to the substratum even as the urchin
moved away. In each trial on each type of bottom we
first placed an urchin on the substratum and allowed
it 4 to 5 min to attach (this was done because urchins
were rarely found on irregular horizontal surfaces).
The urchins always remained very close to where
they were placed. Then we initiated the simulated

attack. We executed 20 simulated attacks with both
H. helianthus and M. gelatinosus (1) on irregular hor-
izontal bottoms, (2) on relatively smooth horizontal
platforms (bedrock with few surface irregularities),
and (3) on relatively smooth vertical walls (side of a
bedrock outcrop or large boulder).

Sustained (simulated) attacks on vertical walls

We further ran experiments at Cisnes Bay in 2008
to examine the responses of undisturbed sea urchins
to a sustained simulated attack (hereafter referred to
as ‘sustained attack’) by predatory sea stars on verti-
cal walls. In each trial we first selected a target
urchin at the lower edge of an aggregation at the top
of a wall. The walls were 4 to 5 m in height and the
distance between the target urchin and the aggrega-
tion at the top varied from 50 to 80 cm. We then initi-
ated the sustained attack from below the urchin and
advanced the sea star so that its arm (or several arms
with Heliaster helianthus) always covered half the
urchin. Each trial lasted until the urchin detached or
reached the aggregation at the top of the wall. We
exe cuted 20 trials with both H. helianthus and
Meyen  aster gelatinosus.

Sustained attacks on aggregations

We also examined the behaviour of aggregations of
urchins (5 to 23 individuals) on boulder tops to sus-
tained attacks by predatory sea stars. In each trial we
held a sea star so that it covered about half of an
urchin at the edge of the aggregation. If this urchin
moved, we continued to hold the sea star over it, and if
it detached, we continued by attacking the next
urchin in the same way. In all trials the aggregation
started moving away from the sea star shortly after we
initiated the first sustained attack. We continued with
this procedure until all the urchins had (1) detached,
(2) moved half-way down and then to the side (around
the boulder), or (3) moved to the bottom. When no
urchins were on top of the boulder, we removed the
sea star. Then after 3 min we recorded the numbers of
urchins that (1) continued to flee, (2) climbed up a
boulder (the same boulder or a nearby boulder), or (3)
remained stationary on the bottom. Preliminary trials
showed that 3 min was long enough for an urchin to
return to a boulder top. We executed 15 trials with
both Meyenaster gelatinosus and Heliaster helianthus
at Cisnes Bay in 2009. Each trial was on a different
boulder and with a different sea star.
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Survival on high and low surfaces

In 2008 at Cisnes Bay we performed trials with
tethered sea urchins on boulder tops, and on the bot-
tom around boulders, to estimate the probability of
survival in these 2 contrasting positions. The state of
the each tethered sea urchin was assessed after 24 h,
and when possible the predators causing mortalities
were identified, from direct observations or from
prey remains. In both high and low positions, we ran
11 trials with small urchins (15 to 20 mm in diameter)
and 11 with large urchins (50 to 60 mm). The urchins
were attached to the center of 20 × 20 cm ceramic
tiles with monofilament threads (the threads went
over the urchin and through 6 holes that were drilled
through the tiles). In the trials in high positions the
tiles were attached to the boulders with Permalite
sea-goin epoxy putty, whereas in the trials at low
positions, rocks were placed at the edge of the tiles to
hold them on the bottom.

Statistical analyses

To evaluate whether distribution of the sea urchin
Tetrapygus niger and the 2 sea stars Heliaster
helianthus and Meyenaster gelatinosus on high and
low surfaces corresponded to the availability of these
surfaces, we used 2 procedures. We applied a χ2 test
using the adjusted residuals to identify specific dif-
ferences between observed and expected values for
each type of habitat (high and low surfaces), to eval-
uate the data from the systematic survey at Cisnes
Bay, and the SURVEYMEANS procedure to evaluate
the data from the random quadrat sampling at Obi -
spito and El Francés Bays.

We used a 2-way ANOVA to compare the mean
time that urchins took to sever contact with sea stars
in the trials on the 3 types of bottom. In this model
there were 2 fixed factors, predator species (Heliaster
helianthus and Meyenaster gelatinosus) and type of
bottom (irregular horizontal bottoms, smooth hori-
zontal bottoms and vertical walls). The data were
log-transformed to meet the assumptions of normal-
ity and homogeneity of variance, which were tested
using Shapiro-Wilk’s and Levene tests, respectively
(Snedecor & Cochran 1989). Pairwise comparisons
were performed using protected Fisher least square
difference tests (LSD).

For the experiments evaluating the behavioural
responses of urchins aggregated on boulder tops, we
compared the trials with sustained attacks by the
2 sea stars (Heliaster helianthus and Meyenaster

gelatinosus) for the proportion of urchins (1) detach-
ing, (2) moving down and then to the side and
(3) moving to the bottom. We also compared the trials
with the 2 sea stars for the proportion of urchins
(1) continuing to flee, (2) climbing up a boulder and
(3) remaining stationary on the bottom, 3 min after
the sea stars were removed. A multinomial regres-
sion model was used for both analyses (using the
LOGISTIC procedure with the glogit link).

Finally, a generalized linear model (using the
GENMOD procedure with the binomial distribution
and the logit link) was used to compare the propor-
tion of small and large tethered urchins that survived
on high and low surfaces. In this model there were 2
fixed factors, the position (high and low) and the size
of the urchins (small and large). All statistical tests
were performed using the software SAS v9.2 (SAS
Institute 2008).

RESULTS

Distribution of sea urchins and sea stars

There was a similar availability of high and low
surfaces at Cisnes Bay (about 50% for each), whereas
high surfaces predominated at Obispito Bay (81%)
and El Francés Bay (72%). At all 3 bays, most sea
urchins Tetrapygus niger were found on high sur-
faces (98% at Cisnes, 99% at Obispito and 67% at
El Francés). In contrast, the predatory sea stars
Heliaster helianthus and Meyenaster gelatinosus
were more common on low surfaces, except for H.
helianthus at Obispito Bay where only 33% were
found on low surfaces (p = 0.20). The scarcity of low
surfaces at Obispito Bay (only 20%) probably con-
tributed to the high frequency of H. helianthus on
high surfaces at this location. In most cases the pro-
portions of urchins and the 2 predatory sea stars on
high and low surfaces did not correspond to the
availability of these surfaces (p < 0.0001; Fig. 1). The
exceptions were urchins at El Francés Bay and H.
helianthus at Obispito Bay, where proportions corre-
sponded to availability.

In the experiments in which we placed predatory
sea stars on boulder tops (without urchins) and
observed their positions 5 min later, 50% of the
Heliaster helianthus remained on the boulder tops
and 50% moved to the bottom. In contrast, in the par-
allel trials with Meyenaster gelatinosus only 5%
stayed on the boulder tops and 95% moved to the
bottom. Studies involving long-term (>5 min) re -
sponses by sea stars are needed to estimate the

88



Urriago et al.: Sea urchins on elevated surfaces

effects of them being manipulated. Probably M. gela -
tinosus was more active or responsive to physical
manipulation than H. helianthus. Field experi-
ments with H. helian thus showed slight differences
in  displacement between manipulated and  non-
manipulated individuals in the first 5 h following the
manipulation but after 9 h the displacement was
 similar (Barahona & Navarrete 2010).

Responses of sea urchins to sea stars on different
types of bottom

On all 3 types of bottoms, the urchins first re -
sponded to simulated attacks by raising their spines,
and then moved away in the opposite direction to the
point of contact with the predator (these responses
are described in greater detail in Urriago et al. 2011).
The time for the urchins to sever contact with the sea
stars did not vary with the sea star predator (Heli -

aster helianthus or Meyenaster gelatinosus) but var-
ied with the type of bottom (p < 0.0001; Fig. 2). Con-
tact was severed most rapidly in the trials on smooth
horizontal platform (24 s), least rapidly on irregular
 horizontal bottoms (46 s), and at an intermediate
level on relatively smooth vertical walls (36 s).

Sustained (simulated) attacks on vertical walls

In the trials examining the proportion of urchins de-
taching when subjected to sustained attacks by
predatory sea stars on relatively smooth vertical walls,
the target urchin first moved up the wall to distance
 itself from the sea star. In trials with Heliaster he-
lianthus, 30% of the urchins detached from the verti-
cal wall before reaching the urchin aggregation at the
top. This compared to 75% of the urchins in the trials
with Meyenaster gelatinosus. The targeted urchins
that did not detach moved to the edge of the aggrega-
tion and almost immediately tried to climb over it.
They failed and then moved around the aggregation.
Almost all of the urchins in the aggregation at the top
moved away a few seconds after the targeted urchin
came into contact with the aggregation.

Sustained attacks on aggregations

The urchin aggregations on boulder tops showed
strong escape responses when subjected to sustained
attacks by Heliaster helianthus and Meyenaster
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gelatinosus at the edge of the aggregation, and the
proportions of urchins in the different behavioural
categories (out of the total number of urchins on the
boulder tops) did not vary with the sea star species
(Fig. 3, p = 0.16). In the trials with both sea star spe-
cies, all targeted urchins fled in the opposite direc-
tion and soon after detached. These represented
82% of the urchins on the boulder tops in the trials
with H. helianthus and 72% in the trials with M.
gelatinosus. Nearby urchins that did not have contact
with the sea stars did not detach but moved away and
eventually either (1) moved down and then to the
opposite side of the boulder or (2) moved all the way
down to the bottom. The proportions of urchins in the
latter 2 categories did not vary between trials with
the 2 sea stars (p = 0.21, Fig. 3).

Following the removal of the predatory sea stars,
most of the urchins (~80%, including individuals that
had moved to the sides of the boulders during the
attacks) climbed back up the sides of the experimen-
tal boulder or an adjacent boulder. Only about 18%
continued to flee and about 2% remained stationary
(Fig. 3). These proportions did not vary between
 trials with the 2 sea stars (p = 0.62).

Survival on high and low surfaces

The 24 h trials with tethered sea urchins indicated
that survival was 36% higher on boulder tops than on
the bottom for both small and large urchins (p = 0.01;
Fig. 4). Although the proportion of individuals lost
tended to be higher for small than large urchins, the
difference was not significant (p = 0.11). When we
returned at the end of the 24 h trials, we observed 4
types of predators attacking the urchins: (1) the sea

stars Heliaster helianthus and Meyenaster gelati-
nosus, (2) the blennid fish Scartichthys viridis, (3) the
gastropods Tegula atra and Crassilabrum crassi-
labrum, and (4) hermit crabs Pagurus spp. (Fig. 5).
The blennid fish was not observed killing tethered
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urchins but was seen biting off podia and probably
also pedicellaria. All attacks by sea stars were by sin-
gle individuals that everted their stomach over the
urchin, whereas the gastropods and the hermit crabs
always attacked in groups, and sometimes both
snails and hermit crabs attacked at the same time
(they aggregated around the edge of the urchin). We
were unable to identify the predators causing many
of the attacks on small urchins (labeled unknown in
Fig. 4) because the attacks were rapid and there
were no prey remains (no tethered urchins escaped
in control trials in enclosures). After the 24 h trials, a
number of the urchins were observed with missing
spines (the scars appeared as white spots) that we
suspect were the result of fish attacks.

DISCUSSION

Our quantitative survey in 3 bays showed that the
sea urchin Tetrapygus niger mostly occurs on ele-
vated surfaces. Almost all the urchins at Cisnes Bay
(98%) and Obispito Bay (99%) and a large propor-

tion of urchins at El Francés Bay (67%) were found
on elevated surfaces. During previous dives in north-
ern Chile to observe barrens communities, where the
substratum was boulders and bedrock outcrops, we
also noted the association of urchins with elevated
surfaces (authors’ pers. obs.).

Our study provided several lines of evidence indi-
cating that urchins on elevated surfaces are less
exposed to risk of attacks by predators. First, ele-
vated surfaces correspond to habitats where the
important urchin predators, the sea stars Heliaster
helianthus and Meyenaster gelatinosus, occur in
reduced numbers. For example, our survey at the 3
bays showed that these 2 sea stars were predomi-
nantly (>75%) found on lower surfaces, although
there was an exception for H. helianthus at Obispito
Bay, where low surfaces were rare. The preference of
sea stars, particularly M. gelatinosus, for bottom sur-
faces may be related to the risk of being detached by
wave action. The probability of falling is likely to
increase when sea stars are attacking urchins, as
they are less securely attached and arms raised over
urchins are more exposed to waves. The sensitivity of
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H. helianthus to wave action was shown by Barahona
& Navarrete (2010) as they observed that its move-
ment in the intertidal zone was reduced when there
was increased wave action. We found that both M.
gelatinosus and H. helianthus were more common
on low surfaces than on elevated surfaces, but H.
helianthus tended to use elevated surfaces more than
M. gelatinosus (Fig. 1). In the trials in which we
placed the 2 sea stars on boulder tops, only 50% of
the H. helianthus moved off the boulder tops within
5 min, compared to 95% for M. gelatinosus. H.
helianthus may be better adapted to wave-swept
areas than M. gelatinosus because of its many arms
and more flattened body (Gaymer & Himmelman
2008). The high frequency of Tetrapygus niger on
elevated surfaces suggests that it is well adapted to
wave activity. The urchin usually keeps its spines
lowered giving it a flattened profile that should limit
the impact of waves.

A second factor that may lead Tetrapygus niger to
prefer to aggregate on elevated surfaces is that there
are usually fewer irregularities in the substratum
than on bottom surfaces (J. D. Urriago pers. obs.).
Irregularities caused by pebbles, shell debris and
small cobbles as well as crevices can block the urchin
from fleeing from sea stars. For example, in our trials
with simulated attacks on individuals, the urchins
needed almost twice as much time to sever contact
with a sea star on an irregular horizontal bottom than
on a smooth horizontal bottom. Sea stars readily
move over bottom irregularities because of their
large size and extended arms, whereas urchins must
follow the contours of small depressions and ridges.
On 3 occasions during dives we observed an urchin
fleeing from Meyenaster gelatinosus that became
trapped in a crevice. In each instance the sea star
climbed onto the urchin, wrapping its arms around it
to begin feeding. Our diving observations of inter -
actions between urchins and sea stars suggest that it
is unlikely that Heliaster helianthus and M. gelati-
nosus can catch T. niger on smooth surfaces where
the urchin’s movement is unimpeded. Similarly Day-
ton et al. (1977) observed that the urchin Loxechinus
albus must be blocked by bottom irregularities for
attacks of M. gelatinosus to be successful. In our trials
involving sustained attacks of urchin aggregations
on boulder tops, most urchins that had detached or
moved down to the bottom climbed up the sides of
the boulders once the sea stars were removed. The
return to the boulder tops in the absence of the sea
star suggests that this behaviour would reduce the
risk of attack by sea stars. Phillips (1975, 1976) found
that the gastropods Acmaea spp. climbed vertical

surfaces when they detected the odour (without
 contact) of predatory sea stars (Pisaster ochraceus,
Pisaster giganteus, Pycnopodia helianthoides, and
Leptasterias aequalis). This contrasts with T. niger
which moves to elevated surfaces even when there is
no predatory stimulus.

A third advantage of elevated surfaces is that
they provide the urchin with the alternative of
detaching from the substratum (‘jumping ship’) to
avoid being eaten. This was seen when we made
sustained attacks (1) on individual urchins on ver-
tical walls and (2) on urchin aggregations on boul-
der tops. Detachment caused the urchins to fall
and be transported by wave surge, thus rapidly
distancing them from the sea stars. Although
this behaviour of ‘jumping ship’ prevents urchins
from being eaten, it entails costs. Spines are likely
broken, so that energy must be expended for spine
repair (Ebert 1968, Edwards & Ebert 1991).
Further, urchins usually land on the  bottom ‘oral-
side-up’ and must extend podia to right themselves.
During our experiments we often ob served the
blennid fish Scartichthys viridis biting the podia of
urchins that were righting themselves after falling
from walls. S. viridis feeds manly on algae (Ojeda
& Munoz 1999, Muñoz & Ojeda 2000), but Dumont
et al. (2011) recently showed that S. viridis is an
aggressive omnivore that also preys on the tuni-
cates Pyura chilensis and Ciona intestinalis. If an
urchin were unlucky enough to fall near another
sea star, it would have to right itself before it
would be able to flee. The urchin likely only
resorts to de taching when the risk of predation is
extreme. This was indicated because the urchins
simply fled in response to being subjected to a
simulated attack, whereas they almost always
detached when subjected to a sustained simulated
attack (trials on vertical walls and boulder tops).
Other prey species have also been reported to
detach from the bottom to avoid predatory attacks.
For example, laboratory studies by Alexander &
Covich (1991) show that the gastropod Physella
virgata detaches from the bottom and floats up -
ward when touched by predatory crayfish. When
Heliaster helianthus encounters Meyenaster gelati-
nosus, which is also its predator, it suddenly raises
its arms (‘crown position’). This involves detach-
ment from the bottom, making it more likely to be
transported by wave action (Gaymer & Himmelman
2008). Snyder & Snyder (1970) exposed urchins
Diadema antillarum to odours of injured conspe -
cifics under a strong unidirectional flow and ob -
served that individuals lost hold on the substratum
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and were carried by the current, providing another
example of an animal detaching in response to a
perceived risk. Finally, diving observations by
Dayton et al. (1977) showed that various prey spe-
cies detach and fall to the bottom when they
detect the odour of M. gelatinosus. Thus, detach-
ment and use of water flow may be a common
strategy used to limit predatory attacks.

Our trials with tethered urchins provided strong
evidence that survival is greater on high than low
surfaces but there was no statistical difference in sur-
vival between small (15 to 20 mm) and large urchins
(50 to 60 mm). About half of the predators that could
be identified during these trials were sea stars. In
contrast, Rodriguez & Ojeda (1998) noted that during
laboratory trials Meyenaster gelatinosus pass over
small urchins (20 to 30 mm) without causing damage,
preferring to attack large urchins (35 to 60 mm).
Observations of prey-size selection of feeding sea
stars encountered during an extensive benthic sur-
vey (Gaymer 2006) showed that the most common
size group of urchins (individuals measuring 40 to
60 mm in diameter) was eaten 62% of the time by
M. gelatinosus and 65% of the time for Heliaster
helianthus. In their survey the sizes of urchins con-
sumed by M. gelatinosus closely reflected availabil-
ity, whereas H. helianthus tended to select smaller
urchins. Although tethering undoubtedly reduces
the ability of urchins to escape from predators, this
technique nevertheless provides a tool for identifying
predators and comparing levels of predation in dif-
ferent habitats (Shears & Babcock 2002, Guidetti &
Dulcic 2007). We observed a variety of animals
 feeding on T. niger that have not previously been
reported to prey on urchins. These included the
blennid fish Scartichthys viridis, the gastropods
Tegula atra and Crassilabrum crassilabrum, and her-
mit crabs Pagurus spp.

Meyenaster gelatinosus likely represents a greater
predatory threat to Tetrapygus niger than Heliaster
helianthus; urchins subjected to sustained attacks
(extreme predation risk) on vertical walls detached
45% more often when the sea star predator was
M. gelatinosus than when it was H. helianthus.
 Further, M. gelatinosus preferentially feeds on the
urchin (Gaymer & Himmelman 2008). In contrast H.
heli anthus is a generalist feeder that most frequently
consumes mussels, barnacles and small gastropods
(Barahona & Navarrete 2010). Responses of T. niger
to the 2 sea star species provide further evidence that
M. gelatinosus represents a stronger threat than H.
helianthus; the urchin severs contact faster with M.
gelatinosus than with H. helianthus when subjected

to simulated attacks, and the urchin detects M. gela -
tinosus at greater distances than H. helianthus (Urriago
et al. 2011).

Many studies report that the distribution of urchins
is related to the distribution of their foods, for exam-
ple urchins often form grazing fronts at the edge of
kelp beds or aggregate on algal debris that has been
carried by currents to urchin barrens (Vadas et al.
1986, Himmelman & Nedelec 1990, Scheibling &
Hamm 1991, Hagen & Mann 1994, Vadas & Elner
2003). Field observations by Rodriguez & Fariña
(2001) similarly indicate that Tetrapygus niger
aggregates on drift kelp Macrocystis pyrifera, and
Rodriguez & Ojeda (1998) found that T. niger aggre-
gated on drift algae Lessonia sp. added to experi-
mental tanks. It is thus unlikely that the  micro-
distribution of T. niger on elevated surfaces is related
to food resources, because food is rare on elevated
surfaces. Boulder tops are devoid of fleshy algae
and any macroalgal debris present usually sinks to
depressions in the bottom.

Tetrapygus niger aggregates on elevated surfaces
and moves to higher surfaces even when not being
pursued by a sea star. The present study indicates
that this choice of microhabitat represents an adapta-
tion for avoiding being eaten by 2 common predatory
sea stars. Occupying elevated surfaces might in -
crease exposure to pelagic predators such as fish.
Predation in tethering experiments on other species
of urchins (small to medium sizes) is higher at loca-
tions where the density of predatory fish is high than
in areas where it is low (Sala & Zabala 1996, Shears
& Babcock 2002, Guidetti 2006). In Chile, the abun-
dance of fish predators of T. niger is presently low
because of overfishing (Godoy et al. 2010). Thus, the
decrease in fish predators may have led to increased
numbers of urchins on elevated surfaces and an
increase in the importance of the sea stars Heliaster
helianthus and Meyenaster gelatinosus as predators
of urchins. Bonaviri et al. (2009) similarly suggest
that a decrease in numbers of predatory fish (Diplo-
dus sargus and D. vulgaris) may have increased the
importance of the sea star Marthasterias glacialis
in controlling the abundance of the urchins in the
Mediterranean Sea. Additional studies are needed to
further understand the effects of predators on the
 distribution and abundance of T. niger. It would be
particularly useful to use continuous videoing of teth-
ered urchins to document the types of predators that
attack urchins during different periods of the day.
Such studies would at the same time indicate
whether there are predators that have not hitherto
been observed.
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