
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 566: 117–134, 2017
doi: 10.3354/meps12018

Published February 27

INTRODUCTION

Understanding the temporal and spatial dynamics
of shark communities and how they are affected by
human activities is challenging (Ferretti et al. 2010,
Nadon et al. 2012, Roff et al. 2016). Both fishery-
 dependent and independent assessments reveal that
shark populations worldwide have suffered significant
declines over the past several decades due to over-
fishing and habitat degradation (Myers & Worm 2003,
Ferretti et al. 2010). Pelagic longline surveys and
landing statistics from fisheries in the northwest
 Atlantic reported 49 to 89% declines in catch rates of
18 shark species between 1985 and 2000 (Baum et al.
2003), while even higher losses of up to 99% were

found in the Gulf of Mexico between the 1950s  and
the late 1990s (Baum & Myers 2004). This decline has
likely continued since. Diver and video surveys have
examined patterns of reef-associated species across
oceanographic, habitat, and anthropogenic gradients
as well as in space-for-time analyses (Sandin et al.
2008, Espinoza et al. 2014, Williams et al. 2015). For
example, top predator biomass was found to be 5 to
15-fold higher at unfished islands in the Line Islands
as compared to populated, fished islands (DeMartini
et al. 2008). However, these records are sporadic, lim-
ited in detail or taxonomic resolution, and only date
back half a century (Odum & Odum 1955, Baum &
Myers 2004, Ward & Myers 2005, Ferretti et al. 2008,
Ward-Paige et al. 2010b). Cryptic behavior,  rarity, and
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diurnal and seasonal movement patterns prevent
sharks from being meaningfully censused in many re-
gions (Sale & Douglas 1981, MacNeil et al. 2008,
Ward-Paige et al. 2010a, McCauley, et al. 2012a).
Time series or replicated surveys have also shown
conflicting trends for the same area depending on the
survey method used and its associated biases (Burgess
et al. 2005, Ward-Paige, et al. 2010a, Nadon et al.
2012), leading to misrepresentations of the status of
shark populations and their unfished baseline condi-
tions (Heupel et al. 2009, Rizzari et al. 2014).

To address this problem, we explored whether der-
mal denticles, the small, tooth-like scales covering
the skin of nearly all elasmobranchs (Fig. 1), can be
used as a tool to reconstruct shark communities on
coral reefs. Denticles are several orders of magnitude
more abundant than teeth on a living shark and are
continually shed (Reif 1985a, Compagno et al. 2005).
Like teeth, denticles preserve well and have a long
fossil record (Janvier 1996, Sansom et al. 2012),
 po tentially providing a unique opportunity to retro -
spectively ‘survey’ modern and pre-exploitation
shark assemblages. In this paper, we (1) review den-
ticle morphology, taxonomy, and function; (2) present
a reference collection of shark dermal denticles;
(3) introduce a technique to extract and identify den-
ticles from modern and fossil reef sediments; and
(4) discuss the limitations and potential applications
of the approach.

BACKGROUND: DERMAL DENTICLE
 MORPHOLOGY, TAXONOMY, AND FUNCTION

Dermal denticles are composed of a dentine and
enameloid crown attached to a basal plate, which is
anchored to the skin by collagen fibers (Applegate

1967). Denticles display considerable variation in
crown shape, size, and thickness (Figs. 1 & 2).
Crowns can possess ridges of varying length, height,
orientation, and spacing and may or may not termi-
nate in an equal number of peaks (Tway 1979, Reif
1985a, Raschi & Musick 1986, Raschi & Tabit 1992)
(Fig. 2).

Individual sharks possess multiple types of denti-
cles arranged systematically along their bodies (Reif
1985a, Raschi & Tabit 1992, Bargar & Thorson 1995,
Salini et al. 2007), and denticle morphotypes can be
shared across taxa (Reif 1982, 1985a, Muñoz-Chápuli
1985a, Tanaka et al. 2002, Gilligan & Otway 2011).
Denticle morphology can also vary with sex (Crooks
et al. 2013) and ontogeny (Reif 1985a). Only in a few
cases can isolated denticles be identified beyond the
family level (Reif 1985a, Mello et al. 2013, Ferrón et
al. 2014). Conversely, denticle morphology appears
to be more closely linked to the ecological guild of
the shark species to which it belongs as well as to the
specific function it plays on the shark’s body (Reif
1978, 1985b, Raschi & Musick 1986, Raschi & Tabit
1992).

Five major functional groups of dermal denticles
have thus far been established: (1) drag reduction, (2)
abrasion strength, (3) defense, (4) luminescence and
(5) generalized functions (Reif 1982, 1985a, 1985b,
Raschi & Tabit 1992). In general terms, fast, pelagic
sharks are covered almost entirely by thin, highly
ridged drag reduction denticles, while demersal
sharks possess thick, smooth abrasion strength denti-
cles that provide protection from the substrate (Reif
1985a, Raschi & Tabit 1992). However, abrasion
strength denticles can also occur in small areas of the
head and leading edges of the fins on non-demersal
sharks (Reif 1985a, Bargar & Thorson 1995, Motta et
al. 2012). Other demersal and schooling species pos-
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Fig. 1. (a) A blacktip reef shark Car-
charhinus melanopterus with inset
dermal denticles. Scale bar = 200 µm.
Photo adapted from Kakidai/Wiki -
media Commons/CC-BY-SA-3.0. (b)
Illustration of the dorsal and lateral
view of a dermal denticle from the
body of a lemon shark Negaprion
brevirostris, showing the morphologi-
cal measurements taken with an ocu-
lar micrometer and important land-
marks. CR: crown; CL: crown length;
CT: crown thickness; CW: crown width; 

P: peak; RS: ridge spacing
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Fig. 2. Scanning electron microscope images of dermal denticles from the reference collection demonstrating morphological
variation across functional morphotypes and shark families. 

(a) Examples of each functional morphotype: (1) drag reduction; (2) abrasion strength; (3) defense; (4) generalized functions; 
(5) ridged abrasion strength. The luminescence morphotype is not shown due to its rarity in the reference collection, which
 focused on shallow, coastal species.

(Fig. continued on next page)
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Fig. 2 (continued)

(b) Distribution of functional morphotypes across the bodies of 3 reef-associated shark families. Numbers correspond to boxes
in panel (a). Note that the tiger shark Galeocerdo cuvier is characterized by defense type denticles, unlike the other species
sampled in Carcharhinidae. 

(c) Scanning electron microscope images of denticles from mesopelagic and pelagic families included in the reference collec-
tion. Many are visually distinct from the denticles of the reef-associated families sampled. Scale bars = 100 µm. 

Species and anatomical position of each denticle (see Fig. 3 for explanation of sample location codes following the species
names): (A) Carcharhinus leucas, B2; (B) Carcharhinus falciformis, B2; (C) Sphyrna lewini, B2; (D) Carcharhinus acronotus,
C2; (E) Carcharhinus perezi, B2; (F) Negaprion brevirostris, B3; (G) Sphyrna mokarran, P2; (H) Carcharhinus obscurus, B2; 
(I) Alopias vulpinus, B3; (J) Sphyrna zygaena, H2; (K) Ginglymostoma cirratum, B3; (L) Carcharhinus galapagensis, H1; 
(M) Sphyrna tiburo, D1; (N) Ginglymostoma cirratum, H1; (O) Carcharhinus obscurus, D1; (P) Galeocerdo cuvier, B2; 
(Q) Squalus acanthias, B2; (R) Galeocerdo cuvier, C1; (S) Squalus cubensis, B2; (T) Galeocerdo cuvier, C2; (U) Galeocerdo
cuvier, D2; (V) Heptranchias perlo, H2; (W) Negaprion brevirostris, D2; (X) Carcharhinus falciformis, D2; (Y) Carcharhinus fal-
ciformis, D3; (Z) Mustelus canis, D3; (AA) Ginglymostoma cirratum, D3; (AB) Ginglymostoma cirratum, P2; (AC) Carcharhinus
limbatus, nostril; (AD) Sphyrna couardi, eye; (AE) Sphyrna lewini, H1; (AF) Triaenodon obesus, C2; (AG) Ginglymostoma
 cirratum, B2; (AH) Centrophorus granulosus, B3; (AI) Heptranchias perlo, B2; (AJ) Mustelus canis, B2; (AK) Mustelus canis,
B3; (AL) Squalus cubensis, C2; (AM) Pristis perotteti, B2; (AN) Pseudocarcharias kamoharai, B2; (AO) Pseudocarcharias kamo-

harai, C2; (AP) Scyliorhinus retifer, B2; (AQ) Squatina dumeril, B2

c
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sess spiny defense denticles, which are hypothesized
to deter the settlement of ectoparasites and epibionts
(Applegate 1967, Reif 1985a). Bioluminescent meso-
pelagic sharks possess luminescence denticles that
permit light emission from photophores on the skin
(Reif 1985b, Raschi & Tabit 1992). Generalized func-
tions denticles are widely distributed across taxa (Reif
1985a). Intermediate forms between these groups
also exist (Reif 1985a, Raschi & Tabit 1992).

METHODS

Dermal denticle reference collection

Given the diverse spectrum of denticle morphology,
our aim was to facilitate the identification of  isolated
denticles extracted from sediments by (1) morphome-
trically categorizing denticles and (2) de termining the
extent to which the occurrences of established denti-
cle morphotypes are constrained with taxonomic and
ecological groups of sharks. To do so, we first built a
reference collection of modern shark dermal denticles
from the ichthyology collection at the Smithsonian
National Museum of Natural History and catches by
fishermen in Bocas del Toro and Colón, Caribbean
Panama. We focused on tropical coastal and reef-
 associated sharks, with a total of 37 species repre-
senting 16 families (Table 1). Given ontogenetic vari-
ation in denticle morphology, the largest individuals
in the museum’s collection were sampled when possi-
ble, although many of the specimens were juveniles
(Table 1). From each specimen, ~1 cm2 pieces of skin
were excised from standardized locations along the
body (Fig. 3). Excised tissues were immersed in a 1%
sodium hypochlorite solution until the denticles de-
tached from the skin. Between 1 and 4 denticles were

selected for morphometric analysis from each of the
191 skin samples collected, for a total of 215 denticles
(Table S1 in the Supplement at www.int-res.com/
articles/suppl/m566p117_ supp. pdf). More than 1
denticle was characterized per skin sample when
there were multiple visually distinct morphological
forms present. All denticles were imaged via light
and scanning electron microscopy.

Morphometric analysis of the dermal denticle
reference collection

Each denticle in the reference collection was
assigned to one of 6 functional morphotypes follow-
ing Reif (1985a): drag reduction, abrasion strength,
ridged abrasion strength, defense, luminescence,
and generalized functions (Fig. 2, Table S1). Abrasion
strength denticles were divided into 2  sub-categories
to ac count for differences in proposed hydrodynamic
function due to the presence of ridges (Raschi & Tabit
1992). To explore the correspondence between den-
ticle morphology and shark taxonomy and ecology,
we collected morphometric character data from each
denticle in the reference collection. Crown shape,
size, and thickness, the number and types of peaks,
and the presence, length, orientation, and spacing
between ridges were recorded (Fig. 1, Tables 2 & S1).
Character selection was based on proposed func-
tional significance (e.g. Reif & Dinkelacker 1982), pre-
vious studies (Tway 1979, Raschi & Musick 1986,
Salini et al. 2007, Ferrón et al. 2014), and observed
variation in denticle morphology. Character data was
or dinated using principal component analysis (PCA;
R Core Team 2014), and each categorical character
was included in the ordination as multiple isolated
dichotomous variables. This allowed us to examine
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N

H1

D1 D3
D2

H2

H3

P2

P1 P3

C1 C2 C3

GS

B1
E B2

B3

Fig. 3. Locations of skin samples for the dermal denticle reference collection. All anatomical positions are shown, although
samples from each were not taken for every family. The B2, C2, D2, and P2 regions were selected as standard sampling posi-
tions, and auxiliary positions were haphazardly sampled in each family to better characterize variation in denticle morphology
across the body (see Table S2 in the Supplement). All positions correspond to sampling locations from previous studies to allow 

comparison. B: body; C: caudal fin; D: dorsal fin; E: eye; GS: gill slit; H: head; N: nostril; P: pectoral fin

http://www.int-res.com/articles/suppl/m566p117_supp.pdf
http://www.int-res.com/articles/suppl/m566p117_supp.pdf
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the effect of each variable separately in the ordina-
tion as opposed to solely the aggregate character cat-
egories. Ecological attributes of each species (life
mode, reef-association, trophic position, benthic in -
vertebrate consumption, and maximum length;
Table 1) were added a priori to observe relationships
between  denticle characters and shark ecology. For
each strongly explanatory character in the PCA,
regressions or 1-way ANOVAs with Tukey’s HSD
post-hoc tests were used to evaluate pairwise differ-
ences between groups and assess correlations with
shark ecology. Character frequency of occurrence
was calculated for each shark family and functional
morphotype to describe the range of variability
within each group.

Proof of concept: extracting dermal
 denticles from modern and fossil sediments

To explore the application of dermal denti-
cle ana lysis to reconstruct shark communi-
ties, we collected sediments from modern
reefs and a mid-Holocene fossil reef in Bocas
del Toro, Panama. Sub-recent time-averaged
samples were collected from 2 fringing reefs
in Almirante Bay (9.3619° N, 82.2799° W;
9.3361° N, 82.2561° W) using SCUBA. At
both reefs, 4 replicate 10 kg bulk samples of
fine sediments were excavated from the
uppermost 10 cm in patches of mud, silt, and
sand adjacent to live coral. An in situ fossil
reef on Isla Colón (9.3603° N, 82.2730° W)
dating between 7.2 and 5.7 ka (Fredston-Her-
mann et al. 2013) was sampled comparably,
with 3 replicate 10 kg bulk samples collected
from 3 localities characterized by branching
Acro pora or Porites coral. In total, 8 modern
samples and 9 fossil samples were collected.

Samples were processed following the ap -
proach of Sibert et al. (in press) to extract
dermal denticles with as little damage as
possible. Sediments were dried, weighed,
and sieved. The 106 µm to 2 mm size fraction
was then digested with 10% glacial acetic
acid. After several acid rinses to eliminate the
calcitic and aragonitic components, the re -
maining particles were treated with 100 to
200 ml 5% hydrogen peroxide and heated for
no more than 15 min to remove organic
material. All denticles were manually picked
from the residue with a paintbrush. They
were photo graphed, counted, measured, and
identified to functional morphotype and fam-
ily using the reference collection.

RESULTS AND DISCUSSION

Dermal  denticle reference collection

Denticle characters correlate to shark ecology

PCA Axis 1 and 2 explained 34.7 and 19.1% of the
variation in denticle morphology, respectively (Fig. 4).
The characters that had the highest explanatory
power in the PCA were crown shape, the presence of
ridges and multiple peaks, the types of peaks, ridge
spacing, and whether the ridges were complete
(Table 3). The first PC axis largely described the dif-

123

Character Examples 
from Figs.1&2

Crown shape 1 Circular or elliptical C, H, Y
2 Lanceolate or teardrop-shaped V, AJ, AP
3 Diamond-shaped, square, or K, N, AG

triangular
4 Cruciform or arrow-shaped Q, R, T
5 Lobed on all sides -

Crown size √(length (CL) × width (CW)) See Fig. 1

Crown thickness √(length (CL) × width (CW))/ See Fig. 1
ratio thickness (CT)

Crown micro- 0 Absent D, I, AB
structures 1 Present H, J, L

Number of 0 Single peak X, AC, AO
peaks 1 >1 peak A, E, V

Peak type 1 Rounded peaks or single W, AD, AF
V-shaped peak

2 Distinct serrated peaks F, G, H
3 Scalloped (unpronounced, D, AD

short) peaks
4 Peak edges curve inward S, V, Z

to form single tip (teardrop)

Presence of 0 No ridges K, M, N
ridges 1 ≥1 ridge B, AE, AK

Ridge length 1 Incomplete, medially- W, Z, AG
reduced ridges

2 Complete ridges A, D, AD

Upward-pointing 0 Absent C, AF, AN
medial spine 1 Present P, Q, S

Ridge 1 Parallel ridges B, F, AC
orientation 2 Sub-parallel ridges U, AF, AI

Ridge spacing 0 No ridge spacing O, Y, AA
1 1 to 100 µm ridge spacing G, I, AE
2 >100 µm ridge spacing AG, AH, AI

Table 2. Dermal denticle characters measured for the morphometric 
analysis. See Figs. 1 & 2 for definitions and examples of traits
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FamilyFamily

Triakidae
Squatinidae

Functional morphotype (c)  

Alopiidae
Carcharhinidae
Centrophoridae
Dalatiidae
Etmopteridae
Ginglymostomatidae
Hexanchidae
Lamnidae
Pristidae
Pseudocarchariidae
Rhinobatidae
Scyliorhinidae
Sphyrnidae
Squalidae

Tip Lanc

Rdg

CRdg

NSpac

Circ

Thck

Pk
SerPk

WSpac

Size

RPk

Demersal

Reef-associated

Pelagic
Max length

Abrasion strength
Defense
Drag reduction
Ridged abrasion strength
Generalized functions
Luminescence

Troph level

Benthopelagic

Benth invert

a

db

−4

−2

0

2

4

6

−4 −2 0 2

c

Functional 
morphotype

Fig. 4. Principal component analysis (PCA) performed on 12 denticle characters in the reference collection. (a) Correlation circle
of characters (black) with ecological attributes overlaid a priori (red). Abbreviations of characters are those shown in Table 3; the
ecological attributes of each species sampled are reported in Table 1. All denticles in the reference collection (Table S1 in the
Supplement) were included in the analysis, and each is represented by a point in the ordination. The colours designating the
shark families in panels (b) and (d) do not correspond with those designating the functional morphotypes in panel (c). (b) PCA
scores labeled with respect to family. (c) PCA labeled with respect to functional morphotype, with 95% prediction ellipses
shown. (d) Results of a separate PCA performed on the same characters using only denticles located on the trunk of the body.
The PCA scores are labeled with respect to family, and convex hulls of the reef-associated families Carcharhinidae, 

Ginglymostomatidae, and Sphyrnidae are shown
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ference between highly ridged denticles with narrow
ridge spacing and multiple peaks and smooth denti-
cles with a single peak. The second PC axis described
differences in crown shape, namely pointed, teardrop-
shaped denticles as opposed to rounded denticles.

Morphological variation in PC space had high
 correspondence with the ecological attributes of the
shark species (Fig. 4A). For example, demersal
sharks  typically possess either large, thick, unridged
denticles with a single rounded peak (i.e. abrasion
strength) or ridged, lanceolate denticles (i.e. ridged
abrasion strength and generalized functions). Pe lagic
and benthopelagic sharks possess circular denticles
with several complete, narrowly-spaced ridges and
multiple peaks (i.e. drag re duction). These ridges
improve hydrodynamic efficiency by disrupting the
boundary layer between the skin and surrounding
water, reducing turbulence as water flows around
the shark’s body (Reif & Dinkelacker 1982, Raschi &
Musick 1986, Dean & Bhushan 2010, Lang et al. 2012,
Díez et al. 2015). PCA of denticle morphology also
revealed high co-correlation be tween trophic level,
maximum length, and life mode, strongly supporting
the use of morphological characters to broadly pre-
dict shark ecology (Fig. 4A).

Shark families share denticle characters

Shark families overlapped extensively in PC space
due to the high diversity of denticle forms found

across individuals and species
(Figs. 2B & 4B, Table S2). There was
minor overlap between the coastal
families Carcharhinidae, Gingly mo -
s to mati dae, Sphyrnidae, Alopiidae,
and Lam ni dae, whose denticles could
plausibly accumulate in reef sedi-
ments. The dis crimination between
these groups, how ever, was more
pronounced when only the denticles
found on the trunk of the body—
which cover the greatest  surface
area of the skin and are the most
likely to enter the fossil record—
were included in the analysis
(Fig. 4D). Carcharhinidae covered a
wide area in PC space; this is possi-
bly due to the high diversity of eco-
logical guilds occupied by  species
within this family, although it could
also be an  artifact of the large num-
ber of species sampled  relative

to other families. Sphyrnidae, Lamnidae, and Alopi-
idae  clustered to gether and overlapped slightly with
Carcharhinidae, which is likely due to the  functional
similarities between these groups (Muñoz-Chápuli
1985a, Reif 1985a, Mello et al. 2013). In contrast, the
den ticles on the body of Ginglymostomatidae were
separate in PC space due to their characteristic thick
crowns and V-shaped peaks (Fig. 4D).

Ridge spacing (Fig. 1) was found to be useful in
 distinguishing between morphologically similar den-
ticles belonging to Carcharhinidae, Ginglymosto -
matidae, Sphyrnidae, Alopiidae, and Lamnidae.
Ridge spacing has previously been correlated with
swimming speed, with narrower ridges conferring
hydrodynamic advantage at faster speeds (Reif &
Dinkelacker 1982, Raschi & Elsom 1986, Raschi &
Musick 1986), and has been used to define ecological
swimming groups (Reif 1985a). In fast swimming
species, ridge spacing has also been found to remain
constant despite the positive correlation between
denticle and body size (Reif 1985a, Raschi & Musick
1986). We found Sphyrnidae, Lamnidae, and Alopi-
idae to have narrowly-spaced ridges, in concordance
with their fast burst speeds (Raschi & Musick 1986,
Froese & Pauly 2016). Their ridge spacing was
 significantly smaller than Carcharhinidae, which in
turn had smaller spacing than Ginglymostomatidae
(ANOVA, F4,145 = 33.25, p < 0.0001; Fig. 5, Table S3).
Again, this pattern was stronger when only denticles
on the trunk of the body were considered, as some
denticles on the fins had uniformly narrow spacing
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Character Abbrevia- PC1 % PC2 % 
tion contribution contribution

Circular or elliptical crown shape Circ 6.52 8.92
Lanceolate or teardrop crown shape Lanc 0.66 29.48
Crown size Size 7.24 0.96
Crown thickness ratio Thck 1.53 0.57
>1 peak present Pk 18.08 0.62
Rounded peaks or single V-shaped RPk 12.46 10.51
peak

Distinct serrated peaks SerPk 13.20 1.41
Peak edges curve inward to form Tip 1.23 30.12
single tip
≥1 ridge present Rdg 9.05 10.49
Complete ridges CRdg 14.6  2.55
1 to 100 µm ridge spacing NSpac 12.95 0.78
>100 µm ridge spacing WSpac 2.47 3.54

Table 3. Dermal denticle characters included in the principal component analy-
sis (PCA). Characters were selected from Table 2 based on their percent contri-
bution to principal components (PC) 1 and 2. The crown thickness ratio, while
contributing little to PC1 and PC2, was found to be useful when distinguishing
between groups, and was therefore included in the analysis. Abbreviations are 

used to present the results of the analysis graphically in Fig. 4A
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across families (Fig. 5). We conclude that ridge spacing,
with some degree of confidence, can aid the  taxonomic
identification at the family level of isolated denticles pos-
sessing ridges that are indistinguishable by other charac-
ters.

In addition to ridge spacing, crown size and micro -
structures can be used to help differentiate between Car-
charhinidae, Sphyrnidae, Alopiidae, and Lamnidae
(Table 4). The crown size of Carcharhinidae was signifi-
cantly larger than Sphyr nidae, Alopiidae, and Lamnidae
(ANOVA, F3,156 = 12.65, p < 0.0001; Tukey’s HSD, p < 0.05;
Table S3). Furthermore, a higher proportion of denticles
in Sphyrnidae (96%) and Carcharhinidae (72%) had
prominent micro structures—which are thought to play a
fine-scale hydrodynamic role (Muñoz-Chápuli 1985b,
Mello et al. 2013)—on their crowns than denticles in
Alopiidae (20%) and Lamni dae (0%) (Table 4).

Characters quantitatively define  boundaries between
functional morphotypes

The PCA corroborated the existing qualitative descrip-
tions of functional morphotypes established by Reif
(1985a) and reviewed in Raschi & Tabit (1992) while
quantitatively refining the boundaries between them and
identifying areas of overlap (Fig. 4C). The 95% prediction
ellipses for drag reduction and abrasion strength denticles
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Fig. 5. Boxplots of ridge spacing for the reef-associated families in
the reference collection. Distances were measured between the
central ridge and adjacent medial ridge on the crown (Fig. 1).
Only denticles possessing ridges were included in the analysis.
Ginglymostomatidae (n = 8) possessed much wider ridge spacing
than Carcharhinidae (n = 110) and Sphyrnidae (n = 23) (p <
0.0001). Ridge spacing in Carcharhinidae was also significantly
wider than in Sphyrnidae (p = 0.005). Denticles with ridge spac-
ing <50 µm (dotted line) were only found on the fins in 

Carcharhinidae and Sphyrnidae. Scale bar = 500 µm
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were completely separate, and the 95% pre-
diction ellipse for ridged abrasion strength
denticles overlapped with both constituent
groups. Generalized functions denticles cov-
ered a broad area in the center of PC space,
given their range of characters and func-
tions. However, crown thickness can be used
to distinguish between thinner generalized
functions or drag reduction denticles and
thicker abrasion strength or ridged abrasion
strength denticles (ANOVA, F5,209 = 25.83, p
< 0.0001; Tukey’s HSD, p < 0.0001; Table S3).
Furthermore, drag re duction denticles can
be differentiated from generalized functions
denticles, as the former typically possess a
larger number of complete, parallel ridges
ending in peaks of equal height (Table 5).
The 95% prediction ellipse for defense den-
ticles overlapped almost entirely with ridged
abrasion strength denticles in PC space,
although they can be distinguished by the
upward-pointing, spine-shaped crowns (Fig.
2A, Table 5).

Proof of concept: reef sediments contain
well-preserved denticles

A total of 330 denticles (240 modern, 90
fossil) were extracted from the bulk samples
of reef sediments. On average, 50.4 denticles
(±24.5 SD) were recovered per 10 kg of the
63 µm to 2 mm size fraction. Denticles
ranged from approximately 100 µm to 1 mm
in size, and were predominantly collected in
the 250 µm to 2 mm size fraction, with only
8% of the denticle assemblage found in the
106 to 250 µm size fraction. The vast majority
of denticles (86.0%) were intact and well-
preserved (Fig. 6). We found that just 13.3%
of modern and 2.2% of fossil denticles were
too poorly preserved to allow clear classifica-
tion or measurement. The drag reduction,
abrasion strength, and ridged abrasion
strength morphotypes comprised 84.5% of
the overall denticle assemblage. These func-
tional morphotypes corresponded with the
reef-associated families Carcharhinidae,
Ginglymostomatidae, and Sphyrnidae (Fig.
2B, Tables 5 & S2), which are reported in the
Bocas del Toro Archipelago (Robertson &
Van Tassell 2015). While drag reduction
denticles are also possessed by the pelagic
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families Alopiidae and Lamnidae (Tables 1, 5 & S2),
these taxa have not been observed inshore in Carib-
bean Panama (Robertson & Van Tassell 2015), so we
consider them unlikely contributors to these reef
assemblages.

Generalized functions denticles were  present in
small numbers in both modern and fossil sediments,
composing 10.4% and 18.9% of their respective den-
ticle assemblages. In the reference collection, this
morphotype was un common in reef-associated fami-
lies (Table 5). It was found only on small sections of
the fins in Carcharhinidae and very sparsely on the
body, fins, and gill slits in Ginglymostomatidae
(Fig. 2B, Table S2).

Three defense denticles were found in the  modern
reef sediments. In the reference collection, this mor-
photype was found on the bodies of mesopelagic
sharks (Fig. 2C, Tables 5 & S2), which have not been
observed on the lagoonal reefs of the Bocas del Toro
Archipelago. However, the tiger shark Galeocerdo
cuvier also possesses distinctive defense type denti-
cles (Fig. 2B), and its presence in Almirante Bay was
corroborated by a tooth discovered at the fossil reef.
Two of the 3 denticles extracted from the modern

reefs were morphologically similar to denticles be -
longing to G. cuvier in the reference collection and
were thus likely to have been shed by this species.

Predictably, luminescence denticles were not ob -
served in the modern nor fossil reef sediments, as
they were possessed only by mesopelagic species in
the reference collection (Table 5). Less than 15% of
the denticles found in the sediments could not be
attributed to examples in our reference collection,
suggesting the infrequent presence of pelagic or
undocumented species. Alternatively, they may have
originated from obscure anatomical positions that
were not included in our reference collection, such as
the nictitating membrane, oral cavity, or pit organs
(Reif 1985a).

Potential applications

Morphometric analysis as a denticle classification
tool

The measurement and categorization of denticle
characters constitute a quantitative and consistent
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Fig. 6. Examples of dermal denticles extracted from (a) modern and (b) fossil reefs in Bocas del Toro, Panama. Functional mor-
photypes and predicted families: (1) drag reduction, Carcharhinidae; (2) ridged abrasion strength, Ginglymostomatidae; (3)
defense, Squalidae?; (4) generalized functions, Ginglymostomatidae; (5) abrasion strength, family unknown; (6) drag reduc-
tion, Carcharhinidae; (7) ridged abrasion strength, Carcharhinidae; (8) generalized functions, family unknown; (9) generalized
functions, Carcharhinidae?; (10) abrasion strength, Ginglymostomatidae. Denticles with unknown family classifications did 

not match up to examples in the reference collection. Scale bar = 100 µm



Dillon et al.: Dermal denticles for shark surveys

framework with which to group isolated denticles
 ex tracted from reef sediments. Specifically, these
measurements could serve as a powerful, objective
denticle classification tool in conjunction with a dis-
criminant analysis or machine learning program.
While taxonomic identification, particularly beyond
the family level, is generally constrained due to
shared morphological characters and large variation
across individuals and species, this method may dis-
tinguish between functional groups of denticles.
Functional morphotypes reflect ecological guilds of
sharks as opposed to the species-level data reported
in existing census methods (Table 6). While seem-
ingly limited in scope, such data can be very power-
ful in exploring community change at a mechanistic
level (McGill et al. 2006).

Setting quantitative shark baselines

While considerable anecdotal, historical, and eco-
logical evidence suggests that sharks were previ-
ously present in numbers unheard of today, it is likely
that population assessments began after the initial
degradation of marine ecosystems (Colón 1959,
Pauly 1995, Jackson et al. 2001, Pandolfi et al. 2003,
Knowlton & Jackson 2008, Ferretti et al. 2008, Lotze
& Worm 2009). Over the last 20 to 60 yr, longline sur-
veys, commercial fishery observer programs, and
fishery landings statistics (Table 6) have documented
declines of > 50% in many shark species (Baum et al.
2003, Myers et al. 2007, Ferretti et al. 2010). How-
ever, issues with misreporting (especially of by -
catch), misidentification, gear biases, and data resolu -
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Technique Common measurement 
metrics 

Time frame Taxonomic 
resolution 

Selected citations 

Diver surveys (e.g. belt transects, 
timed surveys, point counts) 

Abundance, density, biomass Hours Species Sandin et al. (2008), 
McCauley et al. 

(2012a) 

Citizen science diver observations 
(e.g. REEF) 

Sighting frequency, density, 
individual observations 

Hours Species, family Ward-Paige et al. 
(2010b) 

Baited remote underwater videos 
(BRUVs) 

maxN (max number of sharks 
in one video frame) 

Hours Species Brooks et al. (2011), 
White et al. (2013), 

Espinoza et al. 
(2014) 

Aerial surveys (e.g. drones) Abundance, density, sighting 
frequency (per unit effort) 

Hours Species 
(restricted to 
shallow, clear 

waters or surface 
swimmers) 

Rowat et al. (2009) 

Environmental DNA (eDNA) Presence/absence, 
abundance (DNA/amount 

water) 

Days – 
weeks 

Species Miya et al. (2015) 

Longline surveys Abundance (catch rate per 
unit effort [soak time, number 

and type of hooks, hook 
depth]), biomass 

Months – 
years 

Species Baum & Myers 
(2004), Myers et al. 

(2007) 

Landings statistics (e.g. Food and 
Agriculture Organization of the 
United Nations, FAO), fisheries 

observer programs 

Tonnes caught, tonnes caught 
km–2, CPUE 

Months – 
years 

Species (~15%), 
family, 'sharks 

and rays' 

Bonfil (1997), Dulvy 
& Reynolds (2002), 
Clarke et al. (2006) 

Mark and recapture studies (e.g. 
tagging) 

Survival and recapture 
probability, population size 

Years Species  Bradshaw et al. 
(2007), MacNeil et 

al. (2008) 

Genetics (e.g. microsatellites, 
mtDNA) 

Population size and dynamics Generations, 
years 

Species Vignaud et al. 
(2014) 

Logbooks and artifacts Qualitative or anecdotal 
abundance, 

presence/absence, sighting 
frequency, biomass 

Years – 
centuries; 
historical 
periods 

Species 
(occasionally), 
genus/family, 

'sharks and rays' 

Ferretti et al. (2008), 
McClenachan 

(2009), Drew et al. 
(2013) 

Dermal denticle assemblages Abundance 
(denticles/amount 

sediment/time) 

Years – 
centuries 

Family, 
ecological guild 

This study 

Table 6. A comparative summary of shark survey methods. ‘Taxonomic resolution’ describes the commonly reported taxo-
nomic levels, which often correspond to the highest possible taxonomic resolution for each survey method. CPUE: catch per 

unit effort
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tion undermine these estimates of population status
(Burgess et al. 2005, Clarke et al. 2006, Dulvy et al.
2008). Written accounts, ship logbooks, and artifacts,
although often qualitative or isolated in time and
space, provide the only indication of shark abun-
dance before this period (Holden 1977, Ferretti et al.
2008, Drew et al. 2013; Table 6). More empirical data
is therefore needed to characterize unfished shark
communities. We propose that denticle assemblages
extracted from fossil reefs can help characterize
missing region-specific pre-human shark baselines.
They can also be used to explore how dynamic these
baselines are. Moreover, shifts in the relative abun-
dance of different denticle morphotypes over time
may reveal changes in shark communities and, con-
sequently, alterations in community function through
sharks’ trophic and behaviorally mediated impacts
on prey (Bascompte & Melia 2005, Heithaus et al.
2008, McCauley et al. 2012b, Heupel et al. 2014,
Frisch et al. 2016).

Surveying modern shark communities

On coral reefs, traditional fish surveys using diver
transects or videos represent ‘snapshots’ of the stand-
ing population and, as such, can overlook rare, cryp-
tic, nocturnal, or seasonally-ephemeral species (Sale
& Douglas 1981, Edgar et al. 2004, MacNeil et al.
2008, McCauley et al. 2012a; Table 6). They also lack
the temporal resolution of some fishery-dependent
records, and fail to capture natural fluctuations in
populations over time (Connell et al. 1998, MacNeil
et al. 2008). Consequently, estimates of top predator
biomass at the same study sites often differ sub -
stantially (DeMartini et al. 2008, Sandin et al. 2008,
Williams et al. 2011, Nadon et al. 2012). In contrast,
 time-averaged assemblages of denticles in bulk sed-
iment samples are a product of the accumulation of
den ticles shed from the long-term shark community
(c.f. Vermeij & Herbert 2004, Kidwell 2008, 2013,
Kosnik & Kowalewski 2016; Table 6). This has clear
benefits in regions such as Bocas del Toro, where
sharks are rarely or never reported (e.g. Dominici-
Arosemena & Wolff 2005; see also the website of
the Reef Environmental Education Foundation,
www. reef. org) yet leave a significant record of their
presence in the form of denticles preserved in reef
sediments. Based on predictions of shark species dis-
tributions in the Bocas del Toro Archipelago (Robert-
son & Van Tassell 2015), our findings suggest that the
denticle record has a basic level of fidelity with the
living shark community, supporting the use of denti-

cles as a register of relative shark abundance and
community composition. We therefore propose that
denticle assemblages offer a new approach to meas-
uring relative shark abundance on modern reefs, and
can supplement existing surveys if the limitations of
the approach are respected.

Limitations and considerations

If denticle assemblages in sediments are to be used
to reconstruct shark communities, we must explore
the taphonomic processes involved in the accumula-
tion of denticles in sediments and the limitations of
the approach.

Mechanism of denticle accumulation on reefs

Denticles are continually shed over a shark’s life-
time by either rubbing off or through resorption of
the anchoring fibers attached to the base (Reif
1985a). After being shed, we propose that denticles
are transported by currents or turbulence as they
sink to the seabed. In calm conditions, shed denticles
would quickly be incorporated into the accumulating
sediment. Denticles could also reach the sediment
post-mortem, although a carcass would be expected
to produce dense patches of morphologically similar
denticles, a pattern which was not observed in any of
our bulk samples. Predation, ingestion, and defeca-
tion may be another route by which denticles could
arrive at the sediment. If this occurs, denticles could
potentially be transported long distances. However,
we consider this a relatively rare process given that
most sharks are meso- or apex-predators.

The density of denticles incorporated into a unit of
sediment is controlled by (1) the number of sharks in
the area, (2) the rate of denticle shedding on each
shark, and (3) the rate of sediment accumulation. To
assess the fidelity and resolution of the denticle
record, comparisons between visual shark surveys
and their corresponding denticle assemblages in bulk
samples could enlighten our understanding of how
denticles accumulate in sediments from living shark
communities. Sharks are presently so rare on the reefs
we studied, however, that a fidelity study would be
meaningless. We recommend conducting such a study
on reefs with large numbers of sharks and sufficient
survey data, such as Palmyra Atoll (Sandin et al. 2008).
Finally, denticle shedding rates are likely to vary
between taxa and species’ life habits. For example,
demersal species frequently associated with abrasive
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coral may shed more denticles by mechanical abrasion
than pelagic species.

Temporal and spatial considerations of denticle
accumulation

The temporal scale of time averaging is influenced
by the rate of sediment accumulation as well as bio-
turbation or other mixing (Kidwell & Bosence 1991,
Kidwell & Flessa 1995). Deep sea, lagoonal, reef
matrix, and anoxic sediments have low levels of bio-
turbation, making them most likely to preserve short
timescales of ecological communities, whereas more
heavily mixed sediments best represent long-term
estimates of communities (Kosnik & Kowalewski
2016). However, assuming quick burial and no post-
burial transportation of sediments, which can often
be easily detected in the fossil record, denticle
assemblages are likely to have an equally wide spa-
tial scale as living shark communities.

Sediment reworking and sorting

Water energy may transport, sort, and rework den-
ticles after they accumulate in the substrate. The spe-
cific density of dentine and enamel (~2.1 and 3.0 g
ml−1, respectively) is similar to that of calcite and
aragonite (2.7 and 2.8 g ml−1, respectively), so we
would expect denticles to be affected by these ero-
sional and depositional processes to the same degree
as other microfossils in the same size range, such as
foraminifera. Careful selection of low energy, shel-
tered sites that show no evidence of large storms and
currents reduces the likelihood that the assemblages
have been sorted or reworked. For example, we lim-
ited our preliminary study to sediments deposited in
a semi-enclosed lagoon where currents and wave
action are minimal.

Selective preservation of denticles

Environmental factors, such as wave action and
water chemistry, can affect microfossil preservation
(Kidwell & Flessa 1995), although ichthyoliths tend to
be resistant to preservation biases (Helms & Riedel
1971, Sibert & Norris 2015). We observed that drag
reduction denticles tended to fragment more easily
than other denticle morphotypes, although this did
not affect our ability to identify them. There was also
no obvious superficial difference in the state of
preservation between fossil and modern denticles. In

fact, the proportion of fragmented denticles was
higher in modern (18.3%) than fossil (3.3%) sedi-
ments, which may be because modern denticles are
likely to be exposed for a longer period of time prior
to burial due to the slow-down of coral reef accretion.
Alternatively, if present, fossilized shark teeth may
provide supplemental insight into the presence of
pelagic sharks in the case that their drag reduction
denticles are not well-preserved (Ferrón et al. 2014).

SUMMARY

The durable composition, high abundance on
sharks’ bodies, distinctive characteristics, and degree
of preservation of dermal denticles support their use
as a tool for reconstructing shark communities. We
have shown that bulk sediment samples from mod-
ern and fossil reefs can yield sufficient numbers of
well-preserved denticles to permit analysis. Denticle
morphology can be used to taxonomically classify
denticles, although the resolution is limited (typically
family-level) except in a few groups (e.g. the tiger
shark Galeocerdo cuvier and nurse shark Gingly-
mostoma cirratum). Conversely, denticle morphology
is highly correlated with function and shark life
mode. As such, the relative abundance of different
denticle functional groups can yield powerful ecolog-
ical information about the shark communities that
contribute to the denticle record. We recommend fur-
ther study of the processes of denticle shedding and
accumulation, with particular focus on the fidelity of
the denticle record to living shark communities. This
new source of data may offer valuable insight into
past and present shark communities, facilitating
important assessments of the magnitude and ecolog-
ical impacts of global shark declines and producing
more meaningful conservation targets.
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