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1.  INTRODUCTION

Species abundance modeling is frequently used in
ecology for understanding biogeographic patterns
and predicting impacts of climate change. These
models are not to be confused with those commonly
termed species distribution models and ecological
niche models (Elith & Leathwick 2009, Sillero 2011,
Peterson & Soberón 2012). While some of these meth-
ods use abundance data, they often use presence-
only/-absence data, with the prediction of species
distributions, and often maps, as an end goal. Re -
search using species abundance models for marine
organisms has been focused on theoretical ecology,
conservation planning, and climate change. Taxo-
nomic representation has been varied but biased

toward vertebrates, with nearly 50% of studies
focused on fish, birds, and mammals (Robinson et al.
2017).

Generalized linear models (GLMs) (Nelder & Wed-
derburn 1972, McCullagh & Nelder 1983) and gener-
alized additive models (GAMs) (Hastie & Tibshirani
1986, 1990) are regression techniques frequently
used for modeling species abundance data. GLMs
and GAMs are similar in that they both allow for
non-Gaussian response distributions and use a mono -
tonic function, often logarithmic, to link the response
and predictors. The difference is that GAMs utilize
smoothing functions on the predictors to determine
their individual relationships with the response
(Guisan et al. 2002, Zuur et al. 2009). When there is
overdispersion due to zero-inflation, GLMs can be ex-
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tended to 2-part, or hurdle, models (Cragg 1971). This
approach first fits the abundance data as presence/ab-
sence with a binary response and then truncates the
data and fits non-zero abundance with a Poisson or
negative binomial response (Zuur et al. 2009).

A newer method being applied to abundance mod-
eling uses boosted regression trees (BRTs). This
approach combines classification and regression
trees (Breiman et al. 1984) with boosting algorithms
(Freund & Schapire 1996). Some advantages of BRTs
include their ability to accommodate nonparametric
datasets and fit complex interactions (De’ath 2007,
Elith et al. 2008). For marine species abundance
modeling, GLMs and GAMs were used 18% of the
time while BRTs were used in only 4.2% of papers
reviewed by Robinson et al. (2017). Hegel et al.
(2010) provided a general overview of various other
modeling strategies. Several comparisons of model-
ing strategies have been made, and while some have
targeted marine organisms (Connolly et al. 2009,
Shelton et al. 2014), they are often focused on terres-
trial organisms (e.g. Potts & Elith 2006, Baldridge et
al. 2016) and vertebrates (Oppel et al. 2012). Such a
comparative study of modeling strategies has not
been completed for capitellid polychaetes.

Capitellids occur ubiquitously throughout the
world’s oceans. They have been reported from river
mouths, estuaries, sea grass beds, deep sea sedi-
ments, and even wood and bones from whale falls in
the deep sea (Judge & Barry 2016, Silva et al. 2016).
This is especially the case for the best-known genus
of the family, Capitella. Cryptic species of C. capitata
(Fabricius 1780) were initially reported off the coast
of Massachusetts (USA) primarily on the basis of life
history characteristics and allozyme data (Grassle &
Grassle 1976). Since then, 50+ putative species have
been described worldwide on the basis of life history
alone (Méndez et al. 2000). Recent efforts have
aimed to understand this species complex using the
mitochondrial cytochrome c oxidase subunit I (COI)
gene from the coasts of Brazil, Japan, Korea, Italy,
and the Gulf of Mexico (Hilliard et al. 2016, Tomioka
et al. 2016, Livi et al. 2017, Man-Ki et al. 2017, Silva
et al. 2017). Some DNA barcoding with COI has been
done on other genera (Carr et al. 2011, Lobo et al.
2016), and a phylogeny of the family indicates mono-
phyly only for Capitella and a need to revise other
genera (Tomioka et al. 2018).

We recognize that our analyses may be confoun ded
by presence of cryptic species. Little is known about
how many species comprise the C. capitata complex
in Tampa Bay (Florida, USA), but recent work indi-
cates at least 3 distinct genetic lineages (J. Hilliard et

al. unpubl.). Preliminary work on Heteromastus fili-
formis (Claparède 1864) in the Gulf of Mexico indi-
cates the presence of distinct genetic lineages world-
wide and likely the presence of another species
complex in Capitellidae (J. Hilliard pers. obs.). While
there has been no work on genetic lineages of Medio -
mastus ambiseta (Hartman 1947) and M. californiensis
(Hartman 1944), it can be hypothesized that they are
also species complexes due to their large geographic
range (Blake 2008) and the emerging patterns in
Capitella. Unfortunately, this is a factor that we can -
not control or account for at this time.

These capitellids have shown utility as bioindica-
tors (reviewed by Dean 2008), and understanding
ecological drivers of their abundance is a necessary
step to effectively use them as indicators. All of these
species, as well as C. aciculata (Hartman 1959) and
C. jonesi (Hartman 1959), occur throughout Tampa
Bay. Tampa Bay lies on the west-central Florida coast
(27° 27’−28° 3’ N; 82° 20’−82° 44’ W), in a biogeogra -
phic transition zone between the Northern Gulf of
Mexico and Floridian ecoregions, creating a very
diverse system (Spalding et al. 2007, Yates & Green-
ing 2011 and references therein). Tampa Bay has an
average depth of 4 m and a surface area of nearly
1036 km2 (Morrison & Yates 2011). The shorelines
are characterized by tidal flats and mangroves (Glick
& Clough 2006).

The Environmental Protection Commission of Hills -
borough County (EPCHC) has been continuously sur-
veying the benthos of Tampa Bay since 1993. This
dataset provides a unique opportunity for spatial mo -
deling of benthic organisms in an estuarine system.
We sought to conduct a meta-analysis using EPCHC
data on the C. capitata complex, C. aci culata, C. jo -
nesi, H. filiformis, M. ambiseta, and M. californien-
sis (Fig. S1 in the Supplement at www. int-res.com/
articles/suppl/m653p105_supp. pdf). One goal of this
study was to explore the data to understand spatial
patterns inherent to each species. A second goal was
to model environmental drivers of species abundance
and ask whether there is one modeling strategy that
works well for all species. This was accomplished by
comparing 6 different approaches: 4 GAMs (Poisson,
negative binomial, Tweedie, and zero-inflated Poisson
distributions), hurdle models, and BRTs. The third
goal was to use random forest models (Breiman 2001),
another classification and regression method, to eval-
uate environmental drivers. These results can be used
to inform future studies of benthic invertebrate spatial
ecology in general as well as population genetics,
speciation, phylogeography, and toxicology of capitel-
lids in the Gulf of Mexico.
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2.  MATERIALS AND METHODS

2.1.  Data collection

The EPCHC has been collecting benthic samples
throughout the bay since 1993 following a program
designed by the Tampa Bay Estuary Program to
monitor large changes throughout the bay using
robust randomized sampling (Squires et al. 1993).
Tampa Bay is divided into 7 segments: Hillsborough
Bay (HB), Boca Ciega Bay (BCB), Terra Ceia Bay
(TCB), Manatee River (MR), Lower Tampa Bay (LTB),
Middle Tampa Bay (MTB), and Old Tampa Bay
(OTB) (Fig. 1). Hexagon grids are overlaid to further
divide regions. Smaller hexagons are used in smaller
regions (HB, BCB, TCB, and MR) to increase the
number of samples. A number of hexagons are ran-
domly selected for sampling each year (July−
October) and a random point is generated within
each hexagon. The same general strategy has been
followed even though some aspects of the design
(number of samples, reporting period, etc.) have
changed over time.

Prior to 2007 there was a very large sampling effort
with up to 134 samples collected in 1995 (Table S1).
However, the effort was not consistent, with as few as
78 samples collected in 2006 (Table S1). Substan-

tially fewer samples have been collected per year
since 2007, but the sampling effort has become more
consistent by bay segment and overall, with about 44
samples collected per year (Table S1). This is also
evidenced by the sample decimal ratio, which in -
creases and becomes more consistent from 2007
onward (Table S1).

From 2007 onward, MR+TCB and LTB+MTB were
treated as single reporting units by EPCHC for the
random sample selection (Table S1). We did not com-
bine these bay regions for modeling and kept them
as separate bay segment categories for consistency
and to avoid added complexity. Despite this sam-
pling change, the number of samples for each bay
segment remained relatively constant (Table S1).

Infaunal samples were collected with a single ben-
thic grab using a Young-modified Van Veen grab
(0.04 m2), sifted through a 500 micron mesh sieve, and
bulk preserved. A 10% formalin solution was used for
preservation prior to 2012 and NOTOXhisto™ (Scien-
tific Device Laboratory) has been used since. After
72+ h, samples were washed and transferred to 70%
isopropanol for storage and identification. Surface and
bottom water quality (pH, temperature, dissolved oxy-
gen, and salinity) and depth were recorded at the time
of collection. A sample was also collected for calcula-
tion of the silt/clay fraction. More sampling design de-

tails, including a map of the hexagon
grids, are available in the EPCHC Ben-
thic Report (Karlen et al. 2015).

2.2.  Database acquisition 
and filtering

The EPCHC maintains a Microsoft
Access database on an FTP site (ftp://
ftp.epchc.org/EPC_ ERM_ FTP/ Benthic_
Monitoring/). ‘EPC DataSubmittals. zip’
is the relevant file and contains all data
from 1993 through to the present. Data
used in this study span 1993 to 2015
and were downloaded in De cember
2017. Species identifications were per-
formed by different agencies using
the most current identification litera-
ture available at the time. The EPCHC
is continually verifying identifications
and posting data up dates. Therefore,
minor changes to our dataset have oc-
curred since we completed the analy-
ses and will continue to occur as speci-
mens are re-examined.
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Fig. 1. Tampa Bay, Florida (USA). The 7 bay segments are indicated by the
pie charts showing dominance of the 6 species (Capitella, Heteromastus, and
Mediomastus spp.) over all 23 years. Note that the only instance of no species
occurrence is C. aciculata in Lower Tampa Bay. Map created using QGIS
Desktop and Inkscape. The Tampa Bay shapefile was sourced from the 

Florida Geographic Data Library
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The 2 relevant tables within the database are
‘Biology,’ with records of species abundance data,
and ‘DataSpreadsheet,’ with all details related to
field work and the measured environmental vari-
ables. These tables were joined and filtered for
bottom measurements, year, hexagon ID, station
number ID, latitude, longitude, and absolute abun-
dance (number per 0.04 m2) of the Capitella capi-
tata complex (hereafter C. capitata), C. aciculata,
C. jonesi, He te ro mastus filiformis, Mediomastus
ambiseta, M. californiensis, and all other Capitelli-
dae entries. The final data frame for modeling con-
sisted of 1788 observations of the abundance data
for the 6 listed species, latitude, longitude, bay
segment, year, temperature (°C), salinity (psu), pH,
dissolved oxygen (mg l−1), silt clay fraction, and
depth (m).

2.3.  Spatial statistics

Unless otherwise stated, all analyses were per-
formed with R, version 3.4.4 (R Core Team 2019), and
all graphics were generated with base-R graphics and
the package ‘ggplot2’ (Wickham 2016). Inkscape was
used to further modify figures for final presentation.

Spatial patterns were explored for data description
and to inform statistical model construction. Species
constancy (presence in samples) and dominance
(proportion of total abundance) were calculated
(Carmo et al. 2013). Constancy (C, %) is calculated
as: C = (p × 100)/N, where p is the number of samples
in which the species was present, and N is the total
number of samples. Categories include C ≥ 50%,
constant; C = 25−50%, accessory; and C ≤ 25%, rare.
Dominance (D, %) is calculated as: D = (i/t) × 100,
where i is the abundance of the species of interest,
and t is total abundance. Categories include D ≥
10%, eudominant; D = 5−10%, dominant; D = 2−5%,
subdominant; D = 1−2%, recessive; and D ≤ 1%, rare.
Pie charts of species dominance were plotted and
overlaid onto a map of Tampa Bay to illustrate rela-
tive species dominance in the 7 regions (Fig. 1). To
assess abundance as a function of space, Lorenz
curves (Lorenz 1905, Burt et al. 2009), a graphical
way to assess equality, were manually fit and over-
laid with violin plots for each species as a function of
bay segment. Abundance was averaged by bay seg-
ment for Lorenz curves to account for unequal sam-
ple sizes. A table was generated to assess variation in
sampling spatially and temporally. Local indicator of
spatial association (LISA), or the local Moran’s I
(Anselin 1995), was calculated and plotted using the

software GeoDa (Anselin et al. 2006). The K-nearest
neighbors method was used to define neighborhoods
with 5 neighbors (6 total including the sample being
considered). A random seed of 37 and 999 permuta-
tions was used to assess LISA significance, set at a
pseudo p-value of 0.05. GeoDa was also used to gen-
erate bubble plots of species abundance. All of these
data were exported as ESRI shapefiles and processed
in QGIS Desktop for visualization.

Species abundance structures were assessed for
overdispersion by comparing their mean and sample
variances (Potts & Elith 2006). When variance equals
mean, a Poisson model is appropriate. Overdisper-
sion is present when the variance is larger than the
mean and indicates that another distribution may be
more appropriate. This was also assessed by a likeli-
hood-ratio test between Poisson and negative bino-
mial models using the r-package ‘lmtest,’ version 0.9-
36 (Zeileis & Hothorn 2002). Zero-inflation of species
abundance was assessed by visualization with violin
plots using the r-package ‘vioplot,’ version 0.3.4
(Adler 2005).

2.4.  Species abundance modeling

GAMs were fit for each species using all terms as
covariates with the R package ‘mgcv,’ version 1.8-23
(Wood 2011, 2017, Wood et al. 2016). To not assume a
linear relationship between each predictor and the
response, a smoothing function was applied to all
continuous covariates to generate a data-driven
structure. Instead of using year as a categorical term,
the covariate total samples yr−1 was calculated and
used to determine if species abundance is a function
of sampling effort. The models took the form of: Spe-
cies ~ s(Temperature) + s(Salinity) + s(pH) + s(Dis-
solved oxygen) + s(Depth) + s(Silt clay fraction) +
s(Total samples yr−1) + Bay segment. All GAMs were
fit using the ‘REML’ smoothing method and a loga-
rithmic link function. The only exception is that the
zero-inflated Poisson distribution models had to be fit
with an identity link function.

The hurdle model was fit using the R package
‘pscl,’ version 1.5.2 (Zeileis et al. 2008, Jackman
2017), with all covariates in the binomial and nega-
tive binomial parts of the model. Link functions used
were logarithmic for the negative binomial model
and logit for the binomial model. BRTs were fit by
first using the ‘gbm.step’ function (available in the
supplementary materials of Elith et al. 2008, used for
this study, and the R package ‘dismo’) to determine
an optimal number of trees. A seed of 37 was set to
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permit reproducibility, a Poisson distribution was
used for the response, tree complexity (or interaction
depth) was set to 1 to not allow any interactions, bag
fraction was 0.5, and learning rate (or shrinkage) was
started at 0.01 and adjusted until an optimal tree
count of at least 1000 was reached (Elith et al. 2008).
An exception was that C. aciculata was fit with a bag
fraction of 1.0 due to algorithm convergence problems.

All models had static structure; all terms were used
in every model with no term selection procedure or
term interactions. This is because the goal was to
assess model specification ‘out-of-the-box’ and not
refine any particular model to optimize its fit. Predic-
tor significance was assessed at alpha of 0.05 for all
models except for BRTs, for which the relative influ-
ence of each term is estimated (Friedman 2001,
Friedman & Meulman 2003). Significance of bay seg-
ment in hurdle models was assessed with a likeli-
hood ratio test (R package ‘lmtest’), resulting in a
 single significance value for the entire model.

Model evaluation and selection of a ‘best’ model
was completed by testing internal predictive per-
formance, comparing the model’s predicted values
against the observed values. Statistics used were the
Pearson correlation coefficient, Spearman rank cor-
relation, root mean square error (RMSE), average
(mean absolute) error (AVE), slope, and intercept
(Potts & Elith 2006). We also followed the methods of
Potts & Elith (2006) to correct the calibration statistics
by estimating bias using the 0.632+ bootstrap method
(Efron & Tibshirani 1997, Steyerberg et al. 2001) with
200 iterations. R-code was sourced from the online
supplementary material of Zuur et al. (2009).

A dataset with as many zeros as C. aciculata
(16 records of presence, data not shown), especially
an entire bay segment with all zeros (LTB), presented
unique problems. Algorithm convergence failures
and matrix singularities were routinely encountered
and required more exploration of model parameteri-
zation to resolve this issue. A consequence is that we
could not use the 0.632+ bootstrap corrections and
had to remove bay segment. Instead of removing bay
segment from the analyses, removing LTB samples
would also have worked. We instead chose to keep
LTB samples for their information in other cofactors.
Another consequence is that stochasticity could not
be included in the BRT, and bag fraction had to be
fixed at 1.0. These problems are not unrelated, as
bootstrapping for estimate correction and introduc-
ing stochasticity into the BRT both require subsam-
pling the data frame. Limited presence records for
C. aciculata results in a higher (1.05 × 10−7) probabil-
ity of a data frame with all zeros being built. In com-

parison, C. capitata has a 2.92 × 10−141 probability of
this happening.

2.5.  Environmental factors

Analyses for this section were performed with R
version 3.6.0 (R Core Team 2019). Random forest
models were built to assess environmental drivers of
species abundance independent of the model specifi-
cation comparisons. We allowed interactions in the
random forest, as our goal was not to compare this to
the other model specifications but to use it to under-
stand environmental driver importance, and inclu-
sion of interactions can aid this. As total samples yr−1

is not an environmental term, it was not included in
this analysis. We specifically used conditional ran-
dom forests because they reduce variable-selection
bias due to differences in variable types and struc-
tures (Strobl et al. 2009). Models were fit with the R
package ‘party,’ version 1.3-3 (Hothorn et al. 2006,
Strobl et al. 2007, 2008). Hyperparameters were set
at an mtry (number of input variables randomly sam-
pled at each node) of 3 and the number of trees tuned
until variable importance ranks stabilized when ran-
dom seeds of 37 and 72 were compared (Strobl et al.
2008). Results are provided in a Zenodo repository
(http://doi.org/10.5281/zenodo.4212321). A plot of
variable importance was created.

In the interest of space, we chose to only assess the
relationship between each species and its most
important variable. Partial dependence plots (PDPs)
(Friedman 2001) were generated using the R pack-
age ‘pdp,’ version 0.7.0 (Greenwell 2017). PDPs aver-
age the effects of a factor on model predictions while
holding all other factors constant. See Molnar (2019)
for further reading on PDPs.

PDPs were constructed on forests with hyperpara-
meters tuned to an mtry of 3 and 3000 trees, the opti-
mal tree number for some species, in the interest of
reducing computation time. Using 3000 trees was
enough to stabilize the rank of at least the top 2 or 3
predictors for all species. This was checked for
C. aciculata with a PDP for a forest with 7000 trees
(optimal setting) and there was no discernable differ-
ence. Results are provided in the Zenodo repository
(see above). Additionally, since these data were col-
lected for a large observational study and not to test
any particular hypothesis, LOESS smoothers were
plotted on continuous factor PDPs to emphasize the
trends in relationships. An R-Script and the data
frame are provided in the Zenodo repository (see
above) for reproduction of all analyses and figures.
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3.  RESULTS

3.1.  Spatial statistics

Constancy and dominance of the 6
species were variable throughout all
bay segments. Capitella  capitata was
most dominant overall (D = 33.34%)
(Table 1). C. aciculata was the least
do minant overall at 2.81% (Table 1)
and was not found at all in LTB. Its
peak dominance was in OTB, where
it comprised 10.02% of abundance
(Fig. 1, Table 1). C. jonesi also oc -
curred in a small portion of the sam-
ples (C = 5.31%) but was found
throughout the bay with dominance
ranging from 0.75–4.65% (Fig. 1,
Table 1). C. ca pi tata and Mediomastus
spp. were the most constant through-
out the bay and had dominance values
that ranged from 4.54–73.15% of spe-
cies abundance (Fig. 1, Table 1). Het-
eromastus filiformis had dominance
throughout the bay at 3.89–11.93%
but was most dominant in BCB (D =
38.20%) (Fig. 1, Table 1).

Species abundance distributions in -
dicated that there is zero-inflation for
all species (Fig. 2). There was also evi-
dence of statistical over dispersion, in -
dicating that distributions other than
Poisson were appropriate (Table 2).
Comparing GAM-Poisson and GAM-
negative binomial models with a like-
lihood ratio test indicates that a nega-
tive binomial distribution described all
species better (Table 3). These results
led to use of a negative binomial distri-
bution for the hurdle model.

The Lorenz curves illustrated zero inflation and
spatial autocorrelation (Fig. 3). The violin plots for
every species had a similar shape to those in Fig. 2,
indicating zero inflation. Spatial autocorrelation was
indicated by steep and changing slopes in the Lorenz
curves. For example, the violin plot for H. filiformis
(Fig. 3d) at BCB showed a very large abundance,
and the steep slope between LTB and BCB indi-
cated that BCB had a large portion, or un equal
share, of all H. filiformis abundance in Tampa Bay. A
contrasting example is M. californiensis (Fig. 3f),
whose violin plots appeared more equal and Lorenz
curve was closer to the line of equal distribution.
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TOTAL HB
N C D N C D

C. capitata 2760 16.55 33.34 1082 20.54 38.99
C. aciculata 233 0.89 2.81 44 0.74 1.59
C. jonesi 250 5.31 3.02 129 6.44 4.65
H. filiformis 949 8.45 11.46 108 7.43 3.89
M. ambiseta 2706 13.20 32.69 1286 12.62 46.34
M. californiensis 1381 11.80 16.68 126 3.22 4.54

OTB MTB
N C D N C D

C. capitata 618 18.01 42.13 392 9.50 39.60
C. aciculata 147 1.47 10.02 1 0.30 0.10
C. jonesi 23 5.88 1.57 35 5.34 3.54
H. filiformis 175 11.03 11.93 41 5.93 4.14
M. ambiseta 176 12.87 12.00 154 6.23 15.56
M. californiensis 328 9.56 22.36 367 13.35 37.07

LTB MR
N C D N C D

C. capitata 66 10.05 13.23 65 9.47 8.16
C. aciculata 0 0.00 0.00 1 0.59 0.13
C. jonesi 6 2.28 1.20 6 1.18 0.75
H. filiformis 41 3.20 8.22 27 7.10 3.39
M. ambiseta 159 10.05 31.86 583 23.67 73.15
M. californiensis 227 23.74 45.49 115 11.24 14.43

TCB BCB
N C D N C D

C. capitata 111 18.48 27.21 426 26.10 31.72
C. aciculata 3 1.09 0.74 37 2.03 2.76
C. jonesi 7 5.43 1.72 44 7.80 3.28
H. filiformis 44 9.78 10.78 513 14.58 38.20
M. ambiseta 157 20.65 38.48 191 16.27 14.22
M. californiensis 86 18.48 21.08 132 13.22 9.83

Table 1. Abundance (N), constancy (C, presence in samples, %), and domi-
nance (D, proportion of total abundance, %) overall and by bay segment for
Capitella, Heteromastus, and Mediomastus spp. See Fig. 1 for bay segment 
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Fig. 2. Capitellid species abundance in Tampa Bay, Florida.
The white points represent the median of each range, zero
for all species. C. cap = Capitella capitata; C. acic = C. aci-
culata; C. jon = C. jonesi; H. fili = Heteromastus filiformis;
M. amb = Medio mastus ambiseta; M. cal = M. californiensis
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However, all species showed some degree of spatial
autocorre lation.

Looking at bubble plots of abundance and LISA
plots (Fig. S2), there was evidence of spatial autocor-
relation. For example, LISA plots showed that areas
of species presence often resulted in significantly
autocorrelated neighborhoods (Fig. S2). There was
also a pattern of species presence near shore, with
few occurrences in the open-water areas of the bay
(Fig. S2).

3.2.  Species abundance modeling

The 0.632+ bootstrap to correct model optimism
was applied to every species except C. aciculata. A
problem with matrix singularity was encountered
during the 0.632+ bootstrap processes for C. acicu-
lata, and apparent (non-adjusted) statistics of the
model fits are presented for this species. Model cali-
bration can be assessed with the slope and intercept
(observed count ~ predicted count) (Fig. 4, Table S2)
(Potts & Elith 2006). It is clear that there was a lot of
variation within and between species. All models
had a bias (intercept) within ±1.0 except BRT, C. aci-
culata; GAM-zero-inflated Poisson, C. capitata; and
hurdle, M. ambiseta. The consistency/spread (slope)
was more variable (Fig. 4, Table S2). The models

considered best calibrated for each species were:
hurdle, C. capitata (m = 0.95, b = 0.04); GAM-Pois-
son, C. aciculata (m = 1.01, b = 0.00); GAM-Tweedie,
C. jonesi (m = 0.97, b = 0.01); hurdle, Heteromastus
filiformis (m = 1.01, b = −0.01); GAM-negative bino-
mial, M. ambiseta (m = 0.98, b = 0.26); and GAM-
Tweedie, M. californiensis (m = 0.94, b = 0.07) (Fig. 4,
Table S2).This calibration was reflected in both cor-
relation values, with the best calibrated models gen-
erally having the highest, or near highest, values
(Fig. S3, Table S2). It was also corroborated by the
RMSE and AVE values, with selected models gener-
ally having the lowest or relatively low values
(Fig. S3, Table S2).

3.3.  Environmental factors

Significance was assessed at alpha = 0.05 for all
models (Fig. 5) except for BRTs, for which the relative
influence of each term was estimated (Friedman
2001, Friedman & Meulman 2003) (Fig. S4). GAM-
Poisson and GAM-zero-inflated Poisson models found
all terms significant for every species except for
salinity in one Heteromastus filiformis model (Fig. 5).
Bay segment was significant for every species/ model
combination. Depth was significant for most species/
model combinations and was significant for every best-
calibrated model. Total samples had the next overall
significance with every species/best-calibrated model
combination returning it as significant except for
C. jonesi (Fig. 5). This was generally corroborated by
the BRTs for which depth or bay segment were
within the top 2 influential terms for most species.
The exceptions were C. aciculata, which had pH as
the only term that influenced abundance, and M.
cali forniensis, which had depth third but still of
strong influence (Fig. S4).

Random forest models indicated that bay segment
and/or depth had high importance overall, evidenced
by at least one of those terms ranking in the top 2 pre-
dictors for every species except C. aciculata (Fig. 6).
Bay segment was most important for C. jo nesi, while
depth was most important for C. capitata, H. filiformis,
and M. ambiseta (Fig. 6). Dissolved oxygen was most
important for M. californiensis and pH for C. aciculata
(Fig. 6). PDPs for C. capitata, H. filiformis, and M. am-
biseta indicated a negative relationship between spe-
cies abundance and depth; higher species abundances
were found at shallower depths of 5 m or less (Fig. S5).
The partial dependence of C. jonesi with bay segment
(Fig. S5) reflected patterns of spatial autocorrelation
ob served in Lo renz curves (Fig. 3). For example, the

111

Variance Mean

C. capitata 65.10 1.54
C. aciculata 7.37 0.13
C. jonesi 2.15 0.14
H. filiformis 13.00 0.53
M. ambiseta 126.38 1.51
M. californiensis 21.46 0.77

Table 2. Variance [(number per 0.04 m2)2] and means
(number per 0.04 m2) of species distributions for Capi tella, 

Heteromastus, and Mediomastus spp.

χ2 df p

C. capitata 5785.4 29.228 <0.0001
C. aciculata 172.84 27.359 <0.0001
C. jonesi 448.81 26.337 <0.0001
H. filiformis 1246.4 28.485 <0.0001
M. ambiseta 5390.5 19.511 <0.0001
M. californiensis 3414.9 31.856 <0.0001

Table 3. Likelihood ratio test results from comparing the ge -
ne ralized additive model (GAM)-Poisson and GAM-negative
binomial models for Capitella, Heteromastus, and Mediomas-
tus spp. Significance at p < 0.05 indicates a better fit of the 

GAM-negative binomial model
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Lorenz curve for C. jo ne si indicated a large portion of
species abundance in HB, and the PDP showed a
 relatively large effect of HB. M. californiensis had a
somewhat sigmoidal relationship with dissolved oxy -

gen, with a large effect on abundance between ~4.4
and 7.5 mg l−1 (Fig. S5). C. aciculata also had a sigmoi -
dal-like relationship with pH, with an in creased effect
on abundance between pH ~7.5 and 8.5 (Fig. S5).
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4.  DISCUSSION

Our results demonstrate the pres-
ence of spatial autocorrelation struc-
tured by bay segment for capi tellids
and variation in model specification
across species. Using Lorenz curves in
conjunction with violin plots demon-
strated an effective way to assess this
and overall species abundance struc-
ture across different regions of a large
area. Interpretation of Lorenz curves
is that the further the curve is from the
line of perfect equality, the more un -
equally distributed the species is. One
difference from standard Lorenz cur -
ves is that ours do not meet the line of
equality at the origin. This is because
we used an x-axis with categories that
are all assumed to have some abun-
dance in the case of perfect equality.
The slope of the curve allows for quick
assessment of autocorrelation; given a
steep slope between 2 re gions, it can
be inferred that the region with
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Fig. 5. Term significance for all models except boosted regression trees. If a term was significant (alpha = 0.05) for a given spe-
cies/model combination, that block was colored. All colors correspond to those used for the models in Fig. 4. Note that the
count and zero (presence/absence) parts of the hurdle model are separated for all terms except bay segment. Significance of
bay segment was assessed for the hurdle model as a whole using a likelihood-ratio test. Bay segment was not investigated for
Capitella aciculata. The model chosen as best calibrated for each species is highlighted with a bold block. GAM: generalized

additive model
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greater averaged abundance has proportionally
more of the total species abundance in the entire bay.
Some apparent examples are OTB for Capitella acic-
ulata, BCB for Heteromastus filiformis, and TCB for
Medio mastus ambiseta (Fig. 3). Additionally, for C.
jonesi, the slope of the curve to each bay segment
reflects the magnitude of effect that bay segment has
in the PDP (results not shown).

Bubble plots of species abundance and LISA plots
confirmed the autocorrelation indicated by Lorenz
curves (Fig. S2). It is important to keep in mind that
the small details do not matter much when interpret-
ing the LISA plots, as this dataset was collected with
large-scale patterns in mind. Therefore, what is
important is whether or not bay segments appear
 significantly autocorrelated overall; the fact that one
neighborhood is significant and a neighboring group
is not has little interpretation because the sampling
strategy is not appropriate for such comparisons. For
example, H. filiformis abundance in BCB (Fig. S2)
has an apparent clustering that is clear in the bubble
plot. LISA plots show several neighborhoods with
high−high (high values surrounded by other high
values) and low−high (outliers of high value sur-
rounded by low values) LISA scores (Fig. S2). This
indicates several records of high abundance cluster-
ing together in the region.

The zero-inflatedness of every species is not sur-
prising. Benthic infaunal invertebrates, especially
estuarine polychaetes, are known for having patchy
spatial distributions, often associated with grain size
or organic matter/food (Warren 1977, James & Gib-
son 1980, Ansari et al. 1986, Kalejta & Hockey 1991,
Widbom & Frithsen 1995, Sánchez-Moyano & Gar-
cía-Asencio 2009). Larval settlement patterns are
sometimes attributed to the presence of conspecific
adults (Osman & Whitlatch 1995, Snelgrove et al.
2001), chemical cues in sediment (Qian 1999), and/or
subjection to near-bottom flow dynamics, with active
selection during passive flow (Butman 1986, 1989,
Butman & Grassle 1992, Snelgrove et al. 1993). The
presence of some bacteria and their metabolites has
even been attributed to inducing larval settlement
(Harder et al. 2002, Lau et al. 2003, Chung et al.
2010). Some of these factors may have contributed to
the low abundance of the capitellids in this study
compared to some previous work in the Gulf of Mex-
ico (Montagna et al. 2008, Palmer et al. 2011, Van
Diggelen & Montagna 2016).

Capitella are among the better studied marine in-
vertebrates (Grassle & Grassle 1976, Blake et al. 2009,
Seaver 2016). One of the cryptic species discovered
by Grassle & Grassle (1976) has since been formally

described as C. teleta (Blake et al. 2009) and has been
the subject of several studies on larval settlement
(Dubilier 1988, Grassle et al. 1992, Hill & Nelson 1992,
Thiyagarajan et al. 2005, Biggers et al. 2012, Burns et
al. 2014). There are limited studies on the other genera
considered (Hannan 1984, Snelgrove 1994).

Although not considered the best-calibrated model
for every species, GAM-Tweedie and/or hurdle mod-
els have intercepts closest to, or near, the origin for
all species. One of the two was considered best-
 calibrated for C. capitata, C. jonesi, H. filiformis, and
M. californiensis (Table S2). C. aciculata and M.
am biseta have GAM-Tweedie slopes within ±0.3
(Table S2). This is an indication that although these
2 models may not be deemed the best fit in all cases,
they are reasonably calibrated and could be consid-
ered a good starting point.

The overall high performance of GAM-Tweedie
and hurdle models may be attributable to their ability
to handle the excess zeros in unique ways. Hurdle
models have been specifically used for rare species
count data (Cunningham & Lindenmayer 2005). This
approach splits the dataset into a binary version
(presence/absence) and a zero-truncated abundance
version, assuming that processes driving presence/
absence are separate from those driving abundance
(Cragg 1971, Zuur et al. 2009). All other methods
keep the dataset whole and assume the processes
driving zero-inflation are also driving abundance. A
Tweedie distribution allows more flexibility for the
shape of the species abundance distribution, as this is
determined by a power term in the variance function
(e.g. a power term of 1 is the Poisson distribution)
(Jørgensen 1987). The R package ‘mgcv’ has the
option to estimate the power term during model fit-
ting, resulting in an automated distribution choice
that may fit the data better than the standard Poisson
or negative binomial distributions.

BRT models have shown equal (Martínez-Rincón et
al. 2012) and better (Leathwick et al. 2006, França &
Cabral 2015) per formance compared to GAMs. Our
results indicate better performance of GAMs. This is
likely due to the ‘stump model’ restriction (not allow-
ing any interactions), as a key benefit of a BRT is
that it can handle very complex interactions that are
not possible with the other methods (De’ath 2007,
Elith et al. 2008). It is likely that a well-built BRT
could perform just as well as, if not better than, the
GAM-Tweedie and hurdle models. See Elith et al.
(2008) for a guide to assembling BRT models and fur-
ther references on the topic.

General location within a bay and sampling effort
are expected to affect how many worms are col-
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lected, so the overall significance of bay segment and
total samples is not surprising. What was unexpected
was the significance of depth, as Tampa Bay is only
4 m deep on average (Morrison & Yates 2011). This is
not a result of collinearity, as standard measures (aug-
mented pairs plots and variance inflation factor values)
did not reveal any collinearity among environmental
factors (results not shown). Relationships of species
abundance and diversity with depth are complex
(Houston & Haedrich 1984, Paterson & Lambshead
1995, Sibaja-Cordero et al. 2012). Studies focused on
depth gradients in shallow estuarine systems would
be useful to better understand this relationship.

We have shown that, despite filling a similar eco-
logical niche (burrowing deposit feeders), there is
not one model that is optimal for every species. Much
consideration should be given to the biology of a spe-
cies, especially the shape of its distribution in the
area of interest, and the structure of the data frame
(e.g. sampling design and scale). For example, C. aci-
culata was especially zero-inflated, which required
more exploration of model parameterization. This
highlights the complex biology of capitellids, as the
extreme zero-inflation may be due to this species
truly being rare. It may also be that C. aciculata is not
a unique species (Hilliard et al. 2016), and the re -
cords should be combined with the C. capitata com-
plex until there is further resolution of species
boundaries. Consideration of the data structure and
the sampling scale and design indicated that spatial
autocorrelation needed to be accounted for on a bay-
scale and comparisons at smaller scales were not
appropriate. Taking an approach similar to the one
presented here allows for systematic comparison of
several modeling strategies at once. The model(s)
considered best can then be refined. In the case of a
benthic infaunal marine invertebrate with zero-
inflated presence/absence records, hurdle and GAM-
Tweedie models may be a good place to start if
resources are limited.
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