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1.  INTRODUCTION

Understanding of the world’s biodiversity requires
biogeographic knowledge, i.e. why species occur
where they do. Identifying biogeographic regions,
i.e. areas of endemism, is thus the first step in pro-
tecting areas with high biodiversity and endemicity.

Historically, the first biogeographic schema focused
on terrestrial fauna (mainly vertebrate species) such
as those of Sclater (1858) and Wallace (1876). Wal-
lace’s Line is one of the oldest boundaries in biogeo-
graphy and divides the Asian from the Australian
fauna (Wallace 1860). In the marine realm, the evi-

dence for biogeographic boundaries was first consid-
ered unclear (e.g. Ekman 1953, Briggs 1974). How-
ever, Spalding et al. (2007) proposed 12 coastal realms
based on expert opinion, and more recently, Costello
et al. (2017) published a map of 18 and 12 coastal and
offshore realms of the world based on species distri-
bution data analysis.

The latitudinal distribution of the world’s species
was generally believed to show a unimodal pattern,
whereby species richness increases from polar to
tropical regions with a peak around the Equator
(e.g. Kaufman 1995, Gaston 2000). As latitude is
strongly correlated with temperature, temperature-
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driven hypotheses have been proposed to explain
the underlying mechanisms behind these patterns,
including the species−energy hypothesis, which as -
serts that faster metabolic and speciation rates in
warmer temperatures have contributed to higher
species numbers in the tropics (e.g. Kaspari et al.
2004), and the species−productivity hypothesis, which
states that greater primary productivity has sup-
ported more individuals in the tropics (e.g. Rosen-
zweig 1995, Chase & Leibold 2002).

Contrary to the classical unimodal paradigm,
Chaudhary et al. (2016) found the latitudinal gradi-
ent of marine species richness to be bimodal with
a dip around the Equator. Fernandez & Marques
(2017) and Menegotto & Rangel (2018) considered
that this pattern was due to sampling bias. However,
Chaudhary et al. (2017) used a rarefied species rich-
ness estimator to show that the pattern was unlikely
to have been caused by sampling bias. In fact, the
latitudinal diversity gradient pattern can vary be -
tween taxa. Razor clams (Mollusca), for example,
show a strong bimodal pattern (Saeedi et al. 2017),
whereas the pattern for planktonic radiolarians ap -
pears to be unimodal (Boltovskoy & Correa 2016,
2017).

Polychaete worms (phylum Annelida, class Poly-
chaeta) are ubiquitous in virtually all marine and
estuarine habitats, at all latitudes, and from the supra-
littoral to abyssal waters. They typically dominate
macrofaunal assemblages in sedimentary environ-
ments, representing 25−63% of all species and 39−
73% of all individuals (Hutchings 1998). The group
also has a high tolerance towards extremes of tem-
perature, salinity and oxygen availability. Some spe-
cies occur near hydrothermal vents with extremely
high temperatures and low available oxygen (Mc -
Hugh & Tunnicliffe 1994), and others occur in fresh
or near-fresh waters (Glasby & Timm 2008).

Since the middle of the 18th century, about 11 500
polychaete species (about 1400 genera, 85 families)
have been described and accepted (Pamungkas et al.
2019). Over this period, numerous marine expedi-
tions and investigations have been carried out at
regional scales. Many polychaete datasets generated
from these studies have been archived in the Global
Biodiversity Information Facility (GBIF, www.gbif.
org) and Ocean Biogeographic Information System
(OBIS, www.obis.org/). Despite the availability of
these datasets, the global biogeography of poly-
chaetes has never been assessed. In this study, we
investigated the geographic world distribution of the
animals (including regions of endemicity and latitu-
dinal diversity gradient patterns), identified gaps in

the distributional data and compared our findings
with those of other marine groups. We thus tested
whether the geographic world distribution of the
taxon is similar to that of all marine taxa together as
studied by Costello et al. (2017). Also, we asked
whether polychaetes, like many other marine organ-
isms, show the classical unimodal diversity gradient
pattern with peak species richness at the Equator, as
suggested by the taxon-limited polychaete study of
Giangrande & Licciano (2004). Additionally, we deter-
mined the primary environmental variables responsi-
ble for shaping polychaete distributional patterns and
species richness.

2.  MATERIALS AND METHODS

2.1.  Dataset collection and quality control

The datasets used in the present study were prima-
rily obtained from GBIF and OBIS (downloaded on
10 June 2018) (see 'References S1' in the Supplement
at www. int-res. com/ articles/ suppl/m657p147_ supp
.pdf). We also added Indonesian polychaete records
published by Pamungkas & Glasby (2019), as most
records in that geographic region were not in GBIF
and OBIS (records uploaded to OBIS Indonesia at
http://obis.lipi.go.id:8080/ipt/resource?r=polychaeta
_ pamungkas_2019). Each dataset from GBIF and
OBIS was first prepared by removing records without
a species name or geocoordinates. To ensure the use
of data with high coordinate accuracy, we omitted
records without coordinate uncertainty or with coor-
dinate uncertainty of more than 10 km. This 10 km
figure is a compromise between retaining existing
record accuracy (most records have less than 1 km of
coordinate uncertainty), recognizing small islands,
and keeping each record within 1° of latitude (about
111 km). Duplicated records with the same species
name, latitude and longitude, depth and collection
date, were also removed (see Tables S1 & S2 in the
Supplement). Both datasets were then merged, and
duplicates between the 2 datasets were removed
(Table S3). The World Register of Marine Species
(http:// www. marinespecies.org/) was used as a basis
for the higher classification; to reconcile synonyms
and misspellings, the nomenclature of polychaete
species names was verified using ‘Taxon match’
(datasets with invalid species names were only used
after the names were corrected). The final dataset
used for analyses in this study is available at
https:// auckland. figshare. com/ articles/ dataset/ Global
_ polychaete _ data _ csv/ 12401993.
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2.2.  Polychaete biogeographic regions and 
indicator species

All polychaete occurrence records were mapped
using ArcGIS version 10.4.1. Records that were
mapped inland were either corrected (based on
the locality information given in the dataset) or
removed (if no locality information was given). The
inter active web application ‘Infomap Bioregions’
(http:// bioregions. mapequation.org) was then used
to identify polychaete biogeographic regions objec-
tively based on latitude−longitude coordinates for
all species records (Edler et al. 2017). The analysis
was run with the following settings: for the spatial
resolution, we used grid cells of 4° to reflect spatial
differences in data density (the maximum and the
minimum cell capacities were set to 100 and 50
occurrence records, respectively), and for the clus-
tering algorithm, we set the numbers of trials and
cluster cost to 1 and 1.5, respectively, to identify
major polychaete biogeographic regions. Infomap
Bioregions uses neural network theory to map the
similarity of cells based on their species composi-
tion. In doing so, it identified the most common and
indicative polychaete species in each biogeographic
region. Because we focussed on major biogeo-
graphic regions only, we made no attempt to recog-
nize any hierarchy among the regions (e.g. realms,
provinces etc.) and removed isolated cells. In addi-
tion, we calculated the percentage of endemic poly-
chaete species in each region.

2.3.  Analyses

Following the methods of Chaudhary et al. (2017),
the latitudinal gradient was examined using 3 met-
rics, i.e. alpha, gamma and estimated species rich-
ness. As alpha and gamma species richness were
biased by uneven numbers of records between latitu-
dinal bands (Fig. S1), we performed the rarefaction
method of Hurlbert (1971) in R version 3.5.3 (R Core
Team 2013) using the ‘vegan’ package (Table S4).
The analysis calculated the expected number of spe-
cies in each 5° latitudinal band per repeatedly sam-
pled 50 occurrence records, i.e. the so-called E(S50).
The equation used was:

E(Sn) = Σ i [1 – (N – Nin)/(Nn)] (1)

where E(Sn) is defined as the expected number of
species in a sample of (n) records, selected randomly
from a sample containing (N) records, (S) species and
Ni records in the ith species. E(S50) was much less

biased by sampling effort (Fig. S1). We then ran a
generalized additive model (GAM) using R (Table S5)
to define the best non-linear model fitting the latitu-
dinal gradients in species richness (Hastie & Tibshi-
rani 1990), i.e. whether it shows a uni-, bi- or multi-
modal pattern.

We investigated a range of environmental vari-
ables shown by previous studies (C. R. Smith et al.
unpubl. data  www.soest.hawaii.edu/ oceanography/
mincks/ publications/Smith_etal_Abyssal_biogeo
graphy _ synthesis.pdf) to be correlated with taxon
occurrences, i.e. sea surface and bottom temperatures,
salinity, primary productivity, particulate organic
carbon, depth, slope, distance from land and sea-to-
land ratio. Environmental datasets were downloaded
on 6 November 2019 from the Global Marine Envi-
ronment Datasets (GMED) (Basher et al. 2018) and
were analyzed using MATLAB R2018. Using the
non-parametric Spearman rank correlation analysis,
we correlated E(S50) and E(S30) values with various
environmental variables for each 5° latitudinal band
and 5° cell, respectively.

3.  RESULTS

3.1.  Geographical distribution

Most polychaete species records, i.e. over 75%,
were coastal (Fig. 1) and within 2.5 km of land
(Fig. 2); this, in part, is likely related to greater ac -
cessibility of coastal areas for sampling. Conse-
quently, fewer species were found in latitudinal
bands with a higher sea-to-land ratio, reflecting the
lesser coastal area (Fig. S2). The number of species
tended to decline with depth (Fig. 2). The coasts of
some temperate and subtropical regions, i.e. Europe,
Australia and New Zealand, had the most species
records. In the tropics, most species records were
centred in Indonesia, whereas in polar waters more
occurred in the Antarctic than Arctic (Fig. 1). Of all
polychaete families, spionids had the most records
(>62 000 records), followed by serpulids and terebel-
lids with >28 000 records each (Table S6).

We identified 11 major polychaete biogeographic
regions (Fig. 1). Regions with the most polychaete
species records were, in order, the North Atlantic
(including eastern and western parts of Mediter-
ranean Sea), Australia and Indonesia, whereas re -
gions with the fewest species records were the
eastern Pacific Ocean, Caribbean Sea and Atlantic
Ocean (Table 1). Despite being the region with the
most polychaete species, the North Atlantic had the
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lowest indicative species score (1), whereas Indone-
sia had the highest indicative species score (291)
(Table 1). These scores mean that the indicative
species of the North Atlantic have the same fre-
quency of occurrence there as in other regions,
whereas those of Indonesia are 291 times more fre-
quent in this biogeographic region than in other
regions (the species of Indonesia are, as a whole,
far more distinctive than those of the North At -
lantic). Of the 11 biogeographic regions, 7 regions
had more than 50% endemicity of polychaete spe-
cies (Table 1). The eastern part of the Pacific
Ocean and the Central Mediterranean Sea had the
highest (100%) and the lowest (5%) percentage of
endemic polychaete species, respectively (Table 1)
(here, we define ‘endemic species’ as species
unique to a biogeographic region as defined in this
study).

3.2.  Latitudinal distribution

The analysis of >550 000 cleaned polychaete occur-
rence records (3415 species, 77 families) (Tables S3 &
S6) showed significantly more records in the north-
ern (>500 000 records) than the southern hemisphere
(>26 000 records) (Fig. 3A). Similarly, the average
number of polychaete species, including the data
variance, was generally higher in the northern than
the southern hemisphere (Fig. 3A). However, the total
number of species was higher in the southern (~2100
species, 67 families) than the northern (~1800 spe-
cies, 75 families) hemisphere (Fig. 3B). A similar pat-
tern of slightly higher species numbers in the south-
ern hemisphere was also observed for each of the 2
subclasses (i.e. Errantia and Sedentaria), although
Sedentaria appeared to be relatively less speciose
than Errantia between 5° N and 10° S (Fig. 3C).

150

Fig. 1. (A) Polychaete occurrence records and (B) biogeographic regions. Species records were based on Global Biodiversity
Information Facility (GBIF) and Ocean Biogeographic Information System (OBIS) datasets, plus our recently published checklist
of Indonesian polychaete species (Pamungkas & Glasby 2019). Biogeographic regions were generated by uploading the records
to the interactive web application ‘Infomap Bioregions’ (http://bioregions.mapequation.org) (see Table 1 for additional details)
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Fig. 2. Spearman correlation analyses between the expected number of species in a sample of 30 records (i.e. the E[S30] value) and
various environmental variables in each 5°grid-cell resolution. R is the Spearman’s correlation coefficient. Results were considered
significant at p < 0.05. Visually, solid red and dashed black linear regression lines also indicate significant and non-significant 

analysis results, respectively. Grey shading represents standard error
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The latitudinal gradient of alpha species richness
(average per latitudinal band) was bimodal and
much higher in the northern than southern hemi-
sphere (Figs. 3A & 4A). Gamma (total) species rich-
ness for all errant and sedentary species was more
symmetrically bimodal, with a peak at around 55° N
and slightly higher one at 35° S, and a dip north of
the Equator between 15 and 30° N (Figs. 3B,C & 4B).
We found that both alpha and gamma species rich-
ness were highly correlated (p < 0.0001) with the
number of occurrence records (Fig. S1), suggesting
that the pattern was driven by uneven sampling
effort. Although E(S50) was also correlated with the

number of records (Fig. S1), it was far
less so (p ≤ 0.01). Nevertheless, our rar-
efaction analysis, which adjusted for
the uneven sampling effort across
 latitudinal bands, found that the latitu-
dinal species richness gradient of
 polychaetes, i.e. the E(S50), remained
bimodal with the peaks at around
60° N and 30° S, and a dip at around
15° N (Fig. 3D). Supporting this, our
GAM also showed the pattern to be
bimodal (Fig. 4C). This further indi-
cates that the bimodality is unlikely to
be due to sampling bias, and that the
southern hemisphere has higher spe-
cies richness than the northern hemi-
sphere.

There were significant correlations
between the E(S30) and all environ-
mental variables in each 5° cell, except
particulate organic carbon and slope
(Fig. 2). All correlation coefficients
were positive and weak, except the
coefficients for depth and distance from
land (Fig. 2). For latitudinal bands,
there was a moderate positive correla-
tion between the E(S50) and the sea
surface temperature and salinity, and a
negative correlation with the sea-to-
land ratio (Fig. S2).

4.  DISCUSSION

4.1.  Geographical distribution

We found that Europe and its sur-
roundings had the most records, and
therefore have published (in a broad
sense) the most polychaete data,  fol-

lowed by Australia and New Zealand. More records
were also found in Ant arctic than Arctic waters, and
in the tropics, Indonesia had more records than
other equatorial regions (Fig. 1). That most poly-
chaete records were coastal is in line with the gen-
eral pattern for marine species found in comparable
online-data-based biogeographic studies (Costello et
al. 2017, Costello & Chaudhary 2017).

The 11 polychaete biogeographic regions identi-
fied in this study largely coincide with the marine
biogeographic regions proposed by Spalding et al.
(2007) and determined from data analysis by Costello
et al. (2017). They also closely coincide with the 24
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biogeographic regions outlined by Glasby (2005),
which were based on sponge and polychaete distri-
butions, although some adjacent regions of Glasby

(2005) were combined in the present study (e.g. tem-
perate and tropical Australia). However, due to insuf-
ficient data, particularly for Africa, South America

and the deep sea in general, the pres-
ent study did not recover previously
defined biogeographic regions such as
the Arctic Seas, Black Sea (studies by
Arvani ti dis et al. 2002, 2009; Surugiu
et al. 2010; and Costello et al. 2017
found the Black Sea to be distinct from
the Mediterranean Sea), Chile, Inner
Baltic Sea, North American Boreal,
Northwest Pacific, offshore Indian
Ocean, middle east Pacific, South At -
lantic and West Pacific Oceans, South
Africa, Tasman Sea, Tropical East At -
lantic as well as the Western Indo-
Pacific (Table 1). Further, some biogeo-
graphic regions recognized in this
study were subdivided into smaller
units in other studies. For example,
Biogeographic Region 6, i.e. Antarc-
tica and the southern coast of Ar -
gentina (which here includes the en -
tire Southern Ocean), comprised
several distinct regions including the
East Antarctic, West Antarctic−South
Georgia and Magellan, in the poly-
chaete biogeography study of Glasby
& Alvarez (1999) and Glasby (2005).
Nevertheless, our recognition of Region
6 agrees with several all-taxa studies
considering the Antarctic and South-
ern Ocean to be one biogeographic
region (e.g. Ekman 1953, Spalding et
al. 2007, Costello et al. 2017). Reasons
for the recognition of a combined Ant -
arctic plus Southern Ocean area seem
to reflect the larger amount of data
available (Glasby & Alvarez 1999 and
Glasby 2005 only analyzed 6 families
and 10 clades of polychaetes, respec-
tively); it may also reflect spatial biases
where particular geographic areas
may have been sampled differently
(e.g. sediments or epifauna). Obtaining
poly chaete data from poorly-known
areas and incorporating all available
data using a standard biogeographic
methodology are thus a priority for fur-
ther research.

Biogeographic Region 1, i.e. the North
Atlantic excluding the coast of Spain
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and France facing Biscay Bay, was found to be the
region with the most polychaete species reflecting its
large area and survey effort. Yet, the score of the
indicative species of this region was the lowest
among all biogeographic regions (Table 1), as poly-
chaete species from the North Atlantic also occurred
in many other geographic regions. By contrast, Indo -
nesia (Region 3) had the highest score and was the
third most species-rich biogeographic region in the
world despite a relatively low number of records
(Table 1). The high polychaete species richness and
endemicity in this area is not surprising as the region
is part of the ‘Coral Triangle’, so named because it is
a globally rich region for corals (Veron et al. 2009),
fish and other taxa (e.g. Asaad et al. 2018).

Despite being located near Region 1, the Bay of
Biscay coast of Spain and France (Region 5) and the
central part of the Mediterranean Sea (Region 7)
were identified as distinct biogeographic regions
(Fig. 1). However, we caution recognition of the in -
dicative species of these regions as endemic because
the data were taken from only 42 locations. To our
knowledge, almost all of the indicative species of
both regions have not been reported elsewhere since
their first descriptions. Moreover, occasionally spe-
cies in both regions have been reported a consider-
able distance away — for example, one of the indica-
tive species of Region 5, i.e. Microrbinia linea, was
also reported in the China Sea (Liu 2008). This out-
lier, and others, may represent misidentifications;
taxonomic revisions are the basis to improving the
accuracy of species names in global datasets. Thus,
Regions 5 and 7 may be part of Region 1, following
the warm-temperate Lusitania Region proposed
by Briggs & Bowen (2012), which includes largely
coastal areas of southern Britain and Ireland, extend-
ing south to southern Morocco, and eastwards
through the Mediterranean Sea. Similarly, Spalding
et al. (2007) considered coastal Europe (including the
Bay of Biscay) and the Mediterranean Sea as one
marine biogeographic region (i.e. Temperate North-
ern Atlantic) comprising 6 smaller regions. Also, the
species distribution data analyses by Costello et al.
(2017) defined the North East Atlantic and Mediter-
ranean as one biogeographic region.

Furthermore, we found that most of the polychaete
biogeographic regions were coastal, but some were
offshore, such as those situated in the offshore north-
ern Atlantic, Antarctic and eastern Pacific Oceans
(Regions 11, 6 and 9, respectively) (Fig. 1). These bio-
geographic regions were dominated by deep-sea
polychaete species associated with hydrothermal vent
habitat. In fact, all indicative species of Region 11

were described from the deep-sea environment of
the area, and 4 of the 5 species were obtained from
hydrothermal vents (Zibrowius 1972, Desbruyères &
Hourdez 2000, Sigvaldadóttir & Desbruyères 2003,
Paxton & Morineaux 2009). Similarly, all indicative
species of Region 9 were originally described from
a similar hydrothermal vent habitat (Pettibone
1984a,b, 1985a,b, 1986, Blake 1985, 1991, Desbru -
yères & Laubier 1986, ten Hove & Zibrowius 1986,
Hourdez et al. 2006), and were not recorded else-
where. Whether these regions are really biogeo-
graphic regions or reflect sampling of unique deep-
sea habitats merits further research comparing data
from vents and non-vent habitats in these biogeo-
graphic regions.

4.2.  Latitudinal distribution

The total number of polychaete species was
slightly higher in the southern hemisphere despite
the availability of about 20 times more samples in the
northern than southern hemispheres (Fig. 3A−C).
This finding contradicts the pattern of most marine
taxa, where species richness generally peaks in the
northern hemisphere (Chaudhary et al. 2016, 2017,
Chaudhary 2019), but is similar to the pattern of a
few taxa such as fish, sharks and rays, stony corals
(Chaudhary 2019) and amphipods (Arfianti & Cos -
tello 2020) when sampling bias is accounted for
(Table S7). In our case, we suspected that elevated
polychaete species richness in the southern hemi-
sphere may be driven by high endemicity, as species
richness and endemicity have been found to be posi-
tively correlated (e.g. Costello et al. 2017). Moreover,
when the brackish Black and Baltic Seas are
excluded, an all-taxon study that mapped global bio-
geographic ‘Realms’ equivalent to polychaete biogeo -
graphic regions in our study suggested that en -
demicity may be higher in the southern than northern
hemisphere (47 vs. 40%) (Costello et al. 2017). Indeed,
comparison of the number of endemic species (per
biogeographic region) in the present study shows
that ca. 1300 endemic species occur in the southern
hemisphere compared to ca. 870 en demics in the
northern hemisphere (62 vs. 48%).

A less likely explanation for the greater number of
polychaete species in the southern than northern
hemisphere is the adoption of northern hemisphere
species names by polychaete workers of the southern
hemisphere (see a review by Hutchings & Kupriy -
anova 2018). This may have, in small part, artificially
inflated the number of species in the southern hemi-
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sphere, and at the same time hidden the distinctive,
largely endemic fauna in the southern hemisphere,
which was first revealed in revisionary morpholog-
ical taxonomic studies (Hutchings & Glasby 1991),
and more recently by molecular studies. Also, our
analysis of species occurring in both hemispheres
indicated that less than 1% (5 of about 500) of species
occurring in both hemispheres are the result of sus-
pected misidentification (Table S8), so taxonomic bias
would appear to have little influence on the patterns
observed in this study. However, the number of poly-
chaete species documented in the present study (i.e.
about 3400) is much smaller than the total named
species (i.e. nearly 11 500). Therefore, the use of a
larger sample of polychaete species, underpinned by
improved taxonomy, will undoubtedly provide addi-
tional insights into the large-scale biogeography of
polychaetes.

The bimodal latitudinal gradient in alpha, gamma
and E(S50) species richness for polychaetes (Figs. 3
& 4) supports the findings of Chaudhary et al. (2016,
2017) of bimodality of overall marine species. Our
results are thus in line with the latitudinal species
richness gradient of various marine groups such
as amphipods (Arfianti & Costello 2020), bivalves
(Crame 2000, 2001, 2002), brachiopods (Shen & Shi
2004), planktonic organisms (Brayard et al. 2005),
razor clams (Saeedi et al. 2017), sea anemones (Fautin
et al. 2013), seaweeds (Bolton 1994, Kerswell 2006)
and zooplankton (Rutherford et al. 1999), as well as
with the latitudinal species richness gradient of some
terrestrial groups like amphibians, reptiles, birds and
mammals (McCoy & Connor 1980, Currie 1991, Sax
2001). However, most of the authors of these studies
did not explicitly state the pattern to be bimodal,
either because the pattern was not noticed, or the
drop in species richness near the Equator was con-
sidered to be due to a lack of data. The pattern was
first noticed and reinterpreted to be bimodal by
Chaudhary et al. (2016).

The results of the present study thus strongly con-
tradict the findings of other studies focussed on poly-
chaetes suggesting that the latitudinal gradient spe-
cies richness either does not exist (Gobin & Warwick
2006) or is unimodal (Giangrande & Licciano 2004).
The former study had only 14−77 polychaete species
from 15 sampling sites at 4 geographic locations (so
the different pattern found in that study may simply
reflect a lack of sufficient data), and the latter study
was limited to 428 species of the Sedentaria family
Sabellidae (so the differences with the bimodal pat-
tern finding in our study are more surprising given
that we found the Sedentaria to be relatively less

speciose than Errantia in the vicinity of the tropics,
specifically between 5° N and 10° S). The greater
taxon sampling in our study, i.e. about 3400 species
in 85 families sampled across 10 000 sampling sites
around the globe, resulted in a bimodal pattern in
polychaete species richness. We show that alpha and
gamma species richness-based latitudinal gradients
are biased by uneven sampling effort across the globe
(Fig. S1). However, our rarefaction index E(S50) and
GAM, which corrected for sampling effort, de mon -
strated that the pattern remains bimodal (Fig. 4C).
This indicates that the bimodal pattern in polychaete
species richness is not an artefact, but rather a natu-
ral phenomenon.

Chaudhary et al. (2016) proposed that sea surface
temperature was the primary factor causing the dip
in marine species richness in the tropics. That is, the
equatorial region may already be too hot from cli-
mate warming; some marine species may have been
lost and/or moved to higher latitudes as has been
observed for marine fish (e.g. Perry et al. 2005, Nye
et al. 2009, Last et al. 2011), echinoderms and de -
capods (O’Hara & Poore 2000) as well as some algae
(Phillips 2001). At local scales, polychaete species
composition is influenced by a range of abiotic fac-
tors such as food availability (e.g. Snelgrove & But-
man 1995, Haedrich et al. 2008), sediment type (Etter
& Grassle 1992), habitat complexity (Serrano & Preci-
ado 2007), salinity (Stephenson et al. 1979) and envi-
ronmental disturbances (Gray 1997). However, these
factors influence distributions of marine species at
local habitat scales rather than biogeographic scales.
Sea temperature, by contrast, influences both local
and global distributions of marine species due to its
pervading effects on individual growth, reproduc-
tion and physiology, as well as the limits of species
geographic distributions. Of all the potential envi-
ronmental variables that may affect the latitudinal
dis tribution of the animals (Fig. 2), sea surface tem-
perature is the only one that is relatively symmetrical
with latitude, and is possibly the primary factor shap-
ing the bimodal pattern in polychaete species rich-
ness, whether due to ecological, environmental and/or
evolutionary factors.

Further, polychaete species number tends to
decrease with depth (Fig. 2), supporting the findings
of Carvalho et al. (2013) and Gunton et al. (2015) for
polychaetes, and of Costello & Chaudhary (2017) for
marine species in general. Poor food supply in the
deep-sea environment (we define ‘deep-sea environ-
ment’ as the pelagic and benthic zones below 200 m),
which results in low environmental disturbance,
growth and competitive displacement rates, may be
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an explanation (Cosson-Sarradin et al. 1998). Habitat
homogeneity and lower temperatures have also been
linked to lower species richness in the deep sea com-
pared to continental shelves (Costello & Chaudhary
2017). We also note that deep-sea species are in gen-
eral poorly documented (C. R. Smith et al. unpubl.
data www.soest.hawaii.edu/oceanography/ mincks/
publications/Smith_etal_Abyssal_biogeography_
synthesis.pdf). In many parts of the world’s oceans,
as our data indicated, no deep-sea species have even
been reported. Information gaps in global polychaete
diversity can therefore be filled by further targeting
collections in this data-poor habitat, as well as other
habitats with high marine species richness such as
coral reef ecosystems. More researchers and re -
search institutions also need to make their datasets
publicly available, ideally including data of pub-
lished literature, so that other scientists can make use
of them to better study the distribution of marine spe-
cies (e.g. Costello 2009, Costello et al. 2013). More
detailed morphological and molecular studies are
also likely to reveal a large increase in polychaete
diversity not only in poorly-studied areas, but also in
well-studied areas. For example, Lavesque et al.
(2017) identified a large intertidal polychaete as a
new Marphysa species from the M. sanguinea com-
plex collected from a well-studied area, i.e. Bay of
Biscay, Northeast Atlantic. Indeed, when the data
gaps from poorly-sampled geographic areas are
filled, and datasets are made fully available as we
found by compiling data for Indonesia, and more
detailed taxonomic studies are conducted, it may
provide new insights into the latitudinal gradients
and biogeographic regions recognized here.
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