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1.  INTRODUCTION

Deep-sea benthic and demersal communities (ex -
cept chemosynthetic communities) rely on organic
input from the overlying water column. Changes in
biological communities in the upper water column
are thus mirrored in the energy and nutrient fluxes to
the seafloor and subsequently the dynamics in the
abundance, growth and diversity of deep-sea com-
munities (Billet et al. 1983, Tyler 1988, Gage & Tyler
1991, Wassmann et al. 1991, Smith & Baco 2003,
Drazen et al. 2012). However, the exact response and

adaptation of deep-sea benthic organisms to spo-
radic and intermittent food pulses is poorly under-
stood (Danovaro et al. 2017). Considering that the
supply of organic matter decreases with depth both
in quality and in quantity (Lee et al. 2004 and refer-
ences therein), analysing the response of deep-sea
communities to these fluxes is crucial for our under-
standing of deep-sea ecosystems. Organic matter
may be deposited on the seafloor as marine snow,
which consists of conglomerates of detrital material
including dead algal cells, crustacean moults and
carcasses of mesozooplankton (e.g. Robinson et al.
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2010). Another vector of organic material to the sea -
floor is the deposition of dead plant material and car-
casses, which is also known as a food fall (Stockton &
DeLaca 1982).

Food falls in the deep sea create temporary areas of
high organic enrichment set against a typically oligo-
trophic background (Stockton & DeLaca 1982, Higgs
et al. 2014) and are measured to be a major compo-
nent in the downward carbon flux in deep-sea habi-
tats (Agassiz 1888, Bailey et al. 2007, Sweetman &
Chapman 2015, Lalande et al. 2020). Megafauna
food falls such as whale carcasses can locally con-
tribute to a flux of particulate organic carbon (POC)
that equals up to 2000 yr of average background
POC flux to the deep seafloor (Smith 2006). Observa-
tions of medium-sized carcasses (1−100 cm) of fish,
squid and gelatinous zooplankton, and their associ-
ated scavenging communities, are rare (Soltwedel et
al. 2003, Sweetman & Chapman 2015, Hoving et al.
2017), which is likely caused by the rapid consump-
tion of the smaller carcasses and the absence of con-
spicuous bones (e.g. Soltwedel et al. 2003, Sweetman
et al. 2014, Sweetman & Chapman 2015). However,
the presence of scavenged fish and squid carcasses
in the stomachs of abundant benthic and bentho -
pelagic fauna indicates an important role of these
food falls in subsidising deep-sea food webs (Priede
et al. 1991, Martin & Christiansen 1997, Drazen et al.
2001, 2012). Experiments with medium-sized food
falls of fish and jellyfish show differences in scaveng-
ing rates and communities that also vary with depth
(Premke et al. 2006, Sweetman et al. 2014, Dunlop et
al. 2018). To compare scavenging communities be -
tween regions and food fall types, experiments with
more than 2 food fall species in 1 region are needed
to understand food fall-specific scavenging responses.

Gelatinous macro- and megazooplankton show
high diversity and abundance in the epi- and meso-
pelagic zones (Robison 2004) and are important play-
ers in the oceanic food web (Madin & Harbison 2001,
Hays et al. 2018). Deposition events of carcasses of
jellyfish and other gelatinous macrozooplankton may
contribute substantially to the local carbon pump and
fueling deep-sea benthic food webs (Billett et al.
2006, Lebrato & Jones 2009, Sweetman & Chapman
2011, 2015, Henschke et al. 2013, Smith et al. 2014,
Sweetman et al. 2014, 2016). In Norwegian fjords,
the carbon flux associated with jellyfish food falls
may be regionally approximately equal to the phy-
todetrital flux (Sweetman & Chapman 2015). Meso-
pelagic medium-sized nekton, such as fishes and
squid, may also occur in large populations and con-
stitute a considerable portion of the ocean’s biomass

(Irigoien et al. 2014, Doubleday et al. 2016), with
global estimates for neritic and oceanic squid at 150
to 300 million metric tonne (t) (Nesis 1985) and meso-
pelagic fish estimated at far over 1000 million t
(Irigoien et al. 2014). Squids have a single reproduc-
tive cycle, which may be followed by mass die-off
events and carcass deposition (Boyle & Rodhouse
2005, Hoving et al. 2017). Quantification of carcasses
of spent female squids suggested a significant contri-
bution to the local carbon flux in the deep sea in the
Gulf of California (Hoving et al. 2017). Recent studies
have indicated that as a result of a changing climate
and growing anthropogenic pressures, cephalopods
as well as gelatinous organisms are increasing in bio-
mass and expanding their range in different marine
habitats (Lynam et al. 2006, Doubleday et al. 2016).
This suggests that these pelagic invertebrates have
some degree of ecological plasticity that may allow
them to benefit from a changing ocean environment
(Madin & Harbison 2001, Lynam et al. 2006, Purcell
2012, Doubleday et al. 2016). The discussion remains
whether reported rising numbers of gelatinous zoo-
plankton (Richardson et al. 2009, Geoffroy et al.
2018, Knutsen et al. 2018) are recurring population
fluctuations or if abundances of, for example, jelly-
fish have been truly rising steadily (Condon et al.
2012, 2013, Sanz-Martín et al. 2016). The potential
reasons for the proliferation of these invertebrates
are (1) the removal of competition with fishes as a
result of commercial fishing (Lynam et al. 2006, Pur-
cell 2012, Doubleday et al. 2016), (2) an increased life
cycle pace in response to ocean warming (Pecl &
Jackson 2008, Hoving et al. 2013) and (3) flexibility in
maturation under low food supply (Madin & Harbi-
son 2001, Hoving et al. 2013). Considering the poten-
tial of these invertebrates to outcompete fishes
(Lynam et al. 2006, Purcell 2012, Doubleday et al.
2016), it will be important to understand the role of
the carcasses of pelagic invertebrates as a food
source for deep-sea benthic and demersal fauna to
predict their impact in future ocean scenarios with
altered pelagic community compositions.

The Norwegian Sea has been classified as one of
the most productive areas of the world’s oceans
(Blindheim 1985). As a meeting point for water
masses from the Atlantic as well as the Arctic Ocean,
the Norwegian Sea has fauna that includes boreal
and Arctic species, but it is relatively poor in overall
species richness (Blindheim 1985). Several parts of
the Norwegian Sea are spawning areas of the squid
Gonatus fabricii (Arkhipkin & Bjørke 1999), which is
the most abundant squid in the NE Atlantic. Top
predators migrate annually to specific locations in
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the NE Atlantic to hunt for this squid, and it is esti-
mated that as much as 1.5 million t of G. fabricii are
consumed annually by sperm whales alone (Bjørke
2001). It is hypothesised that the whales hunt for
aggregations of squids, including egg-carrying
females (Arkhipkin & Bjørke 1999). Squid carcass
deposition may thus be an important vector for car-
bon transport to the seafloor in the Norwegian Sea,
as it is in the Gulf of California (Hoving et al. 2017).
The helmet jellyfish Periphylla periphylla is a con-
spicuous member of Norwegian waters (Fosså 1992,
Youngbluth & Båmstedt 2001). The species is known
in the Norwegian Sea and well established in the
sea’s coastal fjords, with documented evidence of
population expansion to northern fjords (Fosså 1992,
Geoffroy et al. 2018). P. periphylla is an important
vector for carbon transfer to the seafloor (Sweetman
& Chapman 2015).

In this study, we compared the scavenging rates
and communities of experimental squid, fish and jel-
lyfish food falls. Previous experiments have identi-
fied similar scavenging rates and biodiversity for
 jellyfish and fish food falls (Sweetman et al. 2014).
However, other natural jellyfish food falls have
shown comparably low scavenger abundances and
the absence of typical scavengers such as fish and
isopods (Lebrato et al. 2012 and references therein).
The scavenging community associated with squid
carcasses has only been studied once in an experi-
mental setup (Collins et al. 1999), but a range of scav-
engers were found as sociated with natural squid falls
(Hoving et al. 2017). Scavengers may have a prefer-
ence for squid (Premke et al. 2006, Eastman & Thiel
2015), but comparative experiments are lacking.
While obligate scavengers are likely rare (Stockton &
DeLaca 1982, Smith 1985, Britton & Morton 1994),
scavengers may have preference for certain body
parts (e.g. Jones et al. 1998, Sweetman et al. 2014) or
prey morphology (round fish versus flat fish) (Premke
et al. 2006). Scavenging communities and rates may
be related to the chemical composition and nutri-
tional value of food falls. For example, mackerel has
a higher carbon, lipid and fatty acid content than
squid and jellyfish (Clarke et al. 1994, Youngbluth &
Båmstedt 2001, Jennings & Cogan 2016, Romo-
towska et al. 2016, Parzanini et al. 2018). Lipids and
fatty acids of the food fall are responsible for the
odour plume and hence may impact first arrival times
and scavenging response and communities. Finally,
scavenging communities differ regionally; hence,
experiments should be performed in areas where the
flux of medium-sized food falls is expected to be rel-
atively high (i.e. Norwegian Sea).

To follow up on the experiments of Sweetman et al.
(2014) in the coastal deep sea off Norway (1250 m),
we tested the hypothesis that the composition, abun-
dance and successional stages as well as consump-
tion rates of the scavenging community differed be -
tween medium-sized food fall species in an oceanic
deep-sea region. To test this hypothesis, we deployed
landers with 3 different food fall species (fish:
Scomber scombrus, squid: Illex coindetii, jellyfish: P.
periphylla) to elucidate the role of medium-sized
food falls in the deep seas of the Norwegian Sea.

2.  MATERIALS AND METHODS

2.1.  Study site, food fall lander experiments and
ocean floor observation system seafloor surveys

To mimic natural food falls, we performed 8 de -
ployments with 2 deep-sea free-fall landers at depths
of 1360 to 1440 m in the southern Norwegian Sea
during a cruise on the RV ‘Heincke’ (cruise HE518) in
September 2018 (Fig. 1, Table 1). The lander type
was based on a KUM lander as in Dunlop et al. (2017,
2018). The size of the bait plate, its design and the
amount of bait were similar to the bait plates used
by Sweetman et al. (2014) and Dunlop et al. (2017,
2018). The bait plate was positioned 150 cm below an
Ocean Imaging Systems camera system enclosing a
Nikon D7100 camera (24 megapixel, set to ISO 200,
1/25 s exposure time and f-stop 8), programmed to
take 1 image every 2.5 min. A flashlight was triggered
simultaneously with the camera for the duration of
the photo. Constant lights were not equipped to min-
imalise the impact of the lander features on the scav-
enging results. In addition, the lander was equipped
with a CTD (SBE 37), an acoustic Doppler current
profiler (Teledyne RDI Workhorse Sentinel) and a
point velocity current meter (Nortek, Aqua dopp 6000).

The 3 bait types were offered in standardised
amounts of 300 g wet weight (defrosted) and in -
cluded squid (Illex coindetii as a substitute for Gona-
tus fabricii), jellyfish (Periphylla periphylla) and fish
(Scomber scombrus). We did not have access to G.
fabricii for our experiments. To mimic a squid food
fall of G. fabricii, we used I. coindetii instead, a squid
species we expect to have similar nutritional charac-
teristics as G. fabricii. Fish and squid were bought at
a fish market in Bergen (Norway), while the jellyfish
were collected on a cruise to Lurefjorden (Norway) in
August 2018. The fish were caught locally, while the
squid was imported from Portuguese waters. For a
more natural and even distribution of the odour
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plume, the bait was cut into similar-sized pieces (~10
× 10 cm). To protect the bait from being lost during
descent, it was wrapped in nets (mesh size: 150 mm),
and zip ties were used to attach it to the bait plate.
We also analysed the images during descent and
ascent to assure that no loss of bait would obscure the
results.

Two landers were deployed simultaneously each
day. To ensure a random sampling design, maximum
longitude and latitude boundaries of the work area
were first defined. To determine the position of the
first lander deployment, the length and width (in
nautical miles) of the resulting square were multi-
plied with 1 random number each (generated with
the random number generator function in Microsoft
Excel). By defining the upper left corner of the work
area square as the origin, the 2 numbers were then
used to define the deployment location within the
square. To determine the position of the second
deployment, another random number was generated
and multiplied by 360° to define the direction of the
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Fig. 1. Study site for lander deployments during cruise HE518.
(a) General study site and (b) specific sites for lander deploy-
ments and bathymetry. Abbreviations refer to the lander 

deployment, with specific baits as specified in Table 1



Scheer et al.: Food fall-specific scavenging response

second deployment position relative to the first. The
second deployment position was then positioned at
least 2 km along this random bearing from the first
deployment site, which minimised overlap of odour
plumes from the baits on each lander (current veloc-
ity provided in Table 1). This sampling design re -
sulted in the deployment locations in Fig. 1, with 2 of
the 8 deployments (J5 and J6) 6 to 13 km (min. dis-
tance S3 to J5 = 6.21 km, max. distance F7 to J6 =
13.32 km) away from the other 6. The deployment
duration ranged from 9 to 25 h and was also depen-
dant on weather conditions. The total scavenging
rate was quantified by using the initial wet weight of
the bait minus the wet weight of the carcass after lan-
der recovery and dividing this weight by the time it
took for the bait to be consumed.

To inspect the seafloor before lander deployments
and to document seafloor communities in the experi-
mental areas, we performed seafloor observations
with the ocean floor observation system (OFOS) at 5
of the 8 deployment locations (S1, S3, J5, J6 and F7).
Here, we refer to S1, S3 and F7 as Site 1 and J5 and
J6 as Site 2. OFOS is a steel frame equipped with a
downward-looking high-definition camera (SubC
Imaging), lasers pointing at the seafloor for size refer-
ence (25 cm apart) and a deep-sea telemetry (Sea
and Sun Technology DTS-6). The OFOS is deployed
over the side of the ship and connects via a CTD con-
ducting cable. Towing speed is approximately 0.5 m
s−1 over ground. The telemetry allows for a live, re -
duced-quality preview and monitoring of the video
that is collected by the camera and stored in the cam-
era’s internal memory. A weight is attached on a rope
and visible in the camera view. When the weight hits
the sediment, the length of the conducting cable is
adjusted via communication with the winchperson.
Survey time ranged from 50 to 150 min. The starting
positions of the OFOS tracks are provided in
Table S1 in the Supplement at www.int-res.com/
articles/suppl/m685p031_supp.pdf.

2.2.  Image analysis

Post processing of the photographs from the lander
time-lapse camera was done using ImageJ software
with the cell counter plugin (v.1.8.0, National Insti-
tutes of Health). We identified and quantified the
scavengers that attended the bait by counting the
number of individuals of each taxon in each image.
Deployments 2 and 4 (Table 1) had to be excluded
from the image analysis because extreme overexpo-
sure could not be corrected through post processing,

which made it impossible to count the amphipods.
Bait-attending individuals were defined as fauna
that had their head (or their disk in the case of brittle
stars) on the bait plate. Larger scavengers, i.e. fish,
that were not on the bait plate were noted separately
but not included in the count. We recorded the time
of the first arrival of scavengers for each deployment
as well as the bait removal time and the maximum
observed number (MaxN) of scavengers (Dunlop et
al. 2018). 

Framegrab images from the OFOS videos were
extracted in a VLC media player (v.3.0.11 Vetinari)
using the snapshot tool. Framegrabs were taken
every 1.5 min and additionally as close to the seafloor
as possible to have the highest possible resolution.
Because of variable image quality, the images were
classified into good, medium and poor quality. In
each collected image, organisms were identified to
the highest possible taxonomic unit and counted with
the multi-point tool in ImageJ (ImageJ v.1.53g). Image
quality did not allow quantification of amphipods.
The annotated area in each image was calculated by
setting the scale in ImageJ and then calculating the
area with the measure tool. The total area surveyed
was calculated by the sum of the analysed images.
This resulted in a total surveyed area ranging from 8
to 53 m2 per study region (Table S1). For images with
bad quality, the area was not calculated, since OFOS
was not parallel to the seafloor and the distances be -
tween the 3 lasers were very different. For images
with good and medium quality, the distances be tween
the 3 lasers did not differ significantly (Table S1).

2.3.  Scavenger taxonomy

Fish, brittle stars and other clearly visible and dis-
tinguishable taxa such as shrimps and Pantopoda
were identified from the images. Amphipods, the
major taxonomic group that was present at the bait in
all deployments, were identified using amphipod
morphological features and genetic analysis of the
specimens collected from the carcass remains (e.g.
fish skeletons). All 354 collected amphipods were
fixed in 4% buffered formaldehyde and later trans-
ferred to 70% ethanol for long-term storage. The
amphipods were sorted and identified to the lowest
possible taxonomic level by using a stereo micro-
scope (Nikon SMZ18 with attached Nikon DS-Fi3
camera). Pereopod 6 (of 59 individuals) was dissected
and fixed separately in 96 to 100% ethanol to isolate
for future DNA barcoding (e.g. Havermans et al.
2013). Taxonomic names were checked against the
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World Register of Marine Species (www.marine-
species.org). The difficulty in identifying Eurythenes
from only external characteristics visible on images,
e.g. pigmentation (Thoen et al. 2011), was the reason
to group all amphipods for the statistical analyses.
DNA barcoding was applied to verify our amphipod
identifications. DNA was extracted from the col-
lected tissue using the Chelex-based InstaGene
Matrix (BioRad), following the manufacturer’s proto-
col. PCR amplifications of the mitochondrial cyto -
chrome oxidase subunit 1 gene fragment were carried
out using specific degenerate crustacean primers
UCOIF and UCOIR (Costa et al. 2009) and AccuStart
II PCR SuperMix (QuantaBio). After purification of
the PCR products, they were sent to an external serv-
ice provider for sequencing. Sequences were assem-
bled with CodonCode Aligner v.9.0.1 (CodonCode),
queried using BLAST (Altschul et al. 1990) and
checked against results in GenBank (NCBI Resource
Coordinators 2018).

2.4.  Statistical analyses

All statistical analyses were carried out using the
free statistical computing software R (R v.4.0.3, R Core
Team 2020) in the RStudio environment (v.1.4.1103,
RStudio Team 2021) and visualised using the ggplot2
(Wickham 2016) and the RColorBrewer (Neuwirth
2014) packages. Statistical differences in the compo-
sition of scavenger assemblages between food fall
species were analysed with an ANOSIM based on
scavenger MaxN in a Bray-Curtis resemblance matrix
using the package ‘vegan’ (Oksanen et al. 2019). The
Bray-Curtis similarity coefficient was calculated
using the 4th root transformed MaxN of each taxon to
lower the influence of dominant species on the analy-
sis. The R-value reflects the degree to which species
composition differed between food fall species. While
a high R-value indicates dissimilarity between food
fall species, an R-value close to 0 suggests similarity
between them. Negative R-values reflect greater dis-
similarities within than between groups (Clarke &
Gorley 2001). SIMPER (package ‘vegan’, Oksanen et
al. 2019) was used to identify the average contribu-
tion of taxa to the overall Bray-Curtis dissimilarity
between scavenger assemblages (Clarke 1993). A
threshold of 70% was used to identify the most impor-
tant species contributing to differences between sites
(Clarke 1993). Generalised linear models (GLMs)
were used to analyse for differences in the maximum
abundance of scavengers between baits (fixed cate-
gorical variable) based on MaxN count data as well as

differences in the time at which the maximum abun-
dance peaked (tMaxN). The models were produced
using the basic package (R Core Team 2020). Addi-
tionally, depth and current speed were added as
covariates to the models (fixed continuous variables).
Since we have count data, we based the GLMs on the
Poisson distribution to exclude the prediction of neg-
ative values. Quasi-Poisson was used in cases of
under- or overdispersion (a lower or higher variance
than the mean). Models were tested with Shapiro-
Wilkox for normal distribution and Fligner-Killeen
for homogeneity of variances. Both assumptions were
met for all our models. However, reliable testing of
these requirements is difficult with small datasets,
which needs to be taken into account when inter-
preting results. Models were selected based on their
explanatory power and simplicity. If the explanatory
power differed between models, the deviance of
residuals of the models is compared. Model results
were summarised with the Anova function (package
'car', Fox & Weisberg, 2019). Pairwise comparisons
between different baits were assessed using the glht
function (general linear hypotheses and multiple
comparisons for parametric models, including GLMs)
of the package ‘multcomp’ (Hothorn et al. 2008), with
a specification on Tukey’s all-pair comparisons. For
all 8 deployments, consumption rates — calculated
from the consumed wet weight and the bait removal
time — were also compared between baits using
GLMs due to heteroscedasticity within the dataset.
An alpha level of 0.05 was chosen as the basis for
assuming statistical significance. To test for differ-
ences in benthic background community composi-
tion from the OFOS results, background communi-
ties were grouped in the 2 sites: fish and squid
 de ployments (S1, S3, F7) for Site 1 and jellyfish de -
ployments (J5, J6) for Site 2. With the taxa density
found at the 2 sites, statistical differences in the bio-
diversity of benthic background taxa were analysed
with ANOSIM based on a Bray-Curtis resemblance
matrix with Jaccard distances (package ‘vegan’, Ok -
sanen et al. 2019). SIMPER (package ‘vegan’, Oksa-
nen et al. 2019) was then used to identify important
taxa and their contribution to the overall Bray-Curtis
dissimilarity.

3.  RESULTS

3.1.  Benthic community of the research area

Image analysis of the framegrabs from the video
taken by OFOS in the areas where we deployed our
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landers showed Asteroidea and ophiuroids to be
most abundant, followed by shrimp, mysids and gas-
tropods. Lycodes frigidus, Amblyraja hyperborea and
Cleippides quadricuspis were observed occasionally
(Table S1). The ANOSIM showed no differences in
benthic background communities at the 2 different
sites (R = 0.06, p = 0.01), indicating that the benthic
background communities within Sites 1 and 2 vary
just as much as those between the 2 sites. SIMPER
results showed ophiuroids as one of the most con-
tributing taxa to the overall Bray-Curtis dissimilarity,
with 54.31%, but no taxon contributed over 70%
(threshold).

3.2.  Scavenging community of the experimental
food falls

Amphipods dominated the scavenging community
at all bait types, with large lysianassids being the first
taxa to arrive at the bait (Figs. 2 & 3 and see Fig. 5).
After lander touchdown, these amphipods arrived at
squid and fish food falls after 5 to 10 min and after 12
to 22 min at the jellyfish food falls. The scavenger
composition in the fish experiments consisted only of
amphipods and zoarcid fish (L. frigidus), while we
additionally observed ophiuroids of the species cf.
Ophiopleura borealis and occasionally a Pantopoda
in the squid experiments (Figs. 2−5). Additionally, 1
ling (Molva molva) and a skate (A. hyperborea) were
observed near the bait plate, though they were never
observed feeding on the bait during the squid de -
ployments. In the jellyfish experiments, the commu-
nity was different, and we found almost exclusively
smaller amphipods and decapod shrimps (cf. Bytho -
caris spp.) that did not occur on the other food falls,
as well as a smaller brittle star species (cf. Ophiocten
gracilis). However, we could not identify the smaller
amphipod species from the images alone, and we did
not collect any specimens.

Morphological examination of 354 amphipods sug-
gests that the dominant amphipod is Eurythenes
gryllus. Barcoding confirmed this, and the collected
lysianassid amphipods from the fish remains be -
longed to the genus Eurythenes (1 individual with
>99% sequence coverage in Genbank with E. gryl-
lus and 1 individual with >95% sequence coverage
with the genus Eurythenes sp.). We observed at least
2 more potentially different species of lysianassid
amphipods in the images (grouped as Amphipoda
spp., Fig. 3). Other amphipod taxa from the families
Stegocephalidae and Pardaliscidae were present at
all bait types, but in lower numbers (Fig. 5). How-

ever, these taxa were not collected, and their identi-
ties could thus not be fully established. Single indi-
viduals of the amphipod cf. C. quadricuspis (family
Calliopiidae) were seen in 2 of the squid experiments
and in 1 jellyfish experiment, though they were
never ob served actively feeding.

Image analysis of time-lapse photos from the ex -
periments indicated a succession of larger amphipods
followed by smaller ones in both squid and fish
deployments, with a more obvious shift in the latter
being observed after 3 to 3.5 h. It was not possible to
confirm if the smaller amphipods in the jellyfish
experiments were the same species as those in the
fish and squid food falls. In addition, the presence of
ophiuroids and larger amphipods seemed to be in -
versely correlated in the squid experiments. A slight
increase in the abundance of ophiuroids (increasing
from 2 to 4 individuals on the bait plate) was visible
when amphipods were absent, particularly towards
the end of the deployments (a maximum of 4 individ-
uals was reached in deployment 3 after 13 h on the
seafloor) when little to no visible parts of the car-
casses were left. The numbers of amphipods slightly
declined (1 to 3 individuals) after the arrival of a zoar-
cid on or close to the bait plate, indicating a possible
negative correlation between the abundances of
these taxa.

3.3.  Consumption rates and maximum abundance
of scavengers

The soft tissue of the baits was completely con-
sumed (see removal times in Table 2) except for Peri-
phylla periphylla at deployment 4, where 30 g (8.6%)
remained on the bait plate after 16 h. For deploy-
ments 7 and 8 with S. scombrus, only bones re -
mained on the bait plate, making up 36 g (10.6%)
and 28 g (9.5%) of the deployed bait weight, respec-
tively. The remaining bait was considered when cal-
culating the consumption rates.

Squid and fish food falls were consumed in shorter
times (squid: 9.8 ± 0.3 h, mean ± SD; fish: 9.1 ± 0.3 h)
than jellyfish food falls (16.8 ± 0.9 h), resulting in sig-
nificantly higher consumption rates for squid (30.2 ±
0.4 g h−1) and fish (31.6 ± 3.7 g h−1) than for jellyfish
(20.3 ± 1.4 g h−1) (GLM [Poisson], χ2 = 7.96; df = 2; p =
0.02) (Table 2, Table S2). Multiple comparisons be -
tween food fall consumption rates revealed small sig-
nificant differences between jellyfish and squid bait
(p = 0.045) as well as between jellyfish and fish bait
(p = 0.04) (see model results in Table S2). However,
no significant difference was found for the consump-

37



Mar Ecol Prog Ser 685: 31–48, 202238

Fig. 2. Scavenger assemblages at deployments S3 (squid), J5 (jellyfish) and F7 (fish) after specific time intervals. Note that the 
9.0 h interval for fish is replaced by 8.8 h due to shorter deployment. Hours indicate time at seafloor
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Fig. 3. Mean number of amphi -
pods observed in the food fall ex-
periments with baits (a) Illex coin-
detii, (b) Periphylla periphylla and
(c) Scomber scombrus, as a func-
tion of time at the seafloor. Shad-
ing shows 95% CIs. Note the dif-
ferent scales on the y-axes. The
end of the experiments is indi-
cated by vertical dotted lines

Food fall species          Removal time (h)   Consumption rate (g h−1)   MaxN of scavengers   Time of MaxN of scavengers (h)

Illex coindetii                   9.80 ± 0.29                  30.21 ± 0.38                    382 ± 53.74                          3.00 ± 0.35
Periphylla periphylla       16.82 ± 0.92                  20.34 ± 1.44                    303 ± 73.54                          8.04 ± 0.35
Scomber scombrus          9.07 ± 0.26                  31.60 ± 3.72                  1403.5 ± 17.68                          8.19 ± 0.97

Table 2. Removal time, consumption rate, maximum number (MaxN) of scavengers and time at which the maximum numbers 
were reached, given as mean ± SD. Number of replicates totals 2 for all experiments
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Fig. 4. Representative images of bait-attending species that occurred on or in the vicinity of the bait plate. (a) Eurythenes gryl-
lus (sampled organism from squid deployment), (b) Eurythenes gryllus, (c,d) Stegocephalidae spp., (e) Pardaliscidae spp. (in-
dicated with arrows), (f) cf. Cleippides quadricuspis, (g) cf. Bythocaris spp., (h) Pantopoda spp., (i,j) Asteroidea spp., (k) cf. 

Ophiopleura borealis, (l) cf. Ophiocten gracilis, (m) Amblyraja hyperborea, (n) Lycodes frigidus, (o) Molva molva
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tion rates between fish and squid bait (p = 0.96). The
MaxN of scavengers was significantly higher on the
fish food falls (1403.5 ± 17.7) (GLM, χ2 = 246.87; df =
2; p = <0.001) (Table S2) than on the jellyfish (316 ±
83.4) and squid food falls (386.5 ± 54.5). The results
were the same when not considering zoarcid fish in
the maximum abundance of scavengers (GLM, χ2 =
246.62; df = 2; p = <0.001) (Table S2). tMaxN values
were significantly different be tween bait types (GLM
[quasi-Poisson], χ2 = 107.28; df = 2; p = <0.001) with
the covariates bait (χ2 = 5301.4, df = 2, p = <0.001)
and depth (χ2 = 164.7, df = 1, p = <0.001). Statistically

similar results were found with multiple comparisons
between tMaxN of jellyfish (t = 8.04 ± 0.35 h) and fish
(t = 8.19 ± 0.97 h), but tMaxN was reached signifi-
cantly faster for squid (t = 3.00 ± 0.35 h). ANOSIM,
which is based on maximum abundances of scaveng-
ing taxa (Table S3), revealed differences in commu-
nity composition between the 3 bait types tested (R =
0.78, p = 0.2), indicating that the dissimilarity between
the scavenger communities on the different baits is
greater than the dissimilarity within the scavenger
communities on the different baits. SIMPER revealed
that the scavenger community found at the squid bait
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Fig. 5. Mean number of other
scavengers observed in the food
fall experiments with baits (a)
Illex coindetii, (b) Periphylla peri-
phylla and (c) Scomber scom-
brus, as a function of time at the
seafloor. Dark blue: cf. Ophio-
pleura borealis; light blue: cf.
Ophiocten gracilis; green: Pan-
topoda spp.; purple: cf. Bytho-
caris spp.; orange: Lycodes
frigidus. Shading shows 95%
CIs. Note different y-axis scales
in comparison to Fig. 3 and dif-
ferent x-axis for (a), (b) and (c)
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differed 11.64% from that at the jellyfish bait and
32.46% from that at the fish bait. The overall dis -
similarity between the communities found on jelly-
fish and fish bait was 39.59%. Amphipods were the
main driver for the differences between squid and
fish scavenger communities (89.14%) and between
 jellyfish and fish scavenger communities (86.25%)
(Table S4). For differences between squid and jelly-
fish scavenger communities, amphipods, zoarcid fish
and shrimps contributed 80.57% (Table S4).

4.  DISCUSSION

This study is one of the few experiments that have
compared differences in deep-sea scavenging activi-
ties and communities associated with different
medium-sized food falls. Despite the relatively small
number of lander deployments, our study revealed
rapid scavenging for all bait types, with differences
between the baits regarding scavenger composition
and abundances. Differences in consumption rates
between bait types were overall significant, but pair-
wise comparisons revealed no significant difference
between consumption rates of fish and squid. Our
multi-taxon approach resulted in new regional infor-
mation about bait-specific scavenging responses.

4.1.  Scavenger diversity

Typically, analyses of MaxN are made per species,
rarely giving insight into the total abundances of
scavengers. Some studies exclusively focus on spe-
cific scavenger taxa, e.g. fish or amphipods (Priede et
al. 1990, Henriques et al. 2002, Jamieson et al. 2017),
and omit other scavengers in their analyses. The
overall low scavenger diversity observed in our study
(minimum of 4 species on fish and maximum of 7 spe-
cies on squid) seems to be typical for smaller food
falls (e.g. Premke et al. 2006, Sweetman et al. 2014).
It stands in contrast to the high diversity (species
richness 407 species) on large marine mammal falls
such as whales (Smith & Baco 2003). This is caused
by the long residence time of megafauna food falls,
giving opportunity for more complex successional
patterns as well as the arrival of detritivores and
microbivores.

Although our random sampling design led to the 2
jellyfish stations being further away (~6−13 km) from
the other deployment sites, no differences in back-
ground community composition were found between
the 2 sites. Thus, it can be assumed that the back-

ground composition is similar at all stations. Similar-
ity was further confirmed when investigating the taxa
that contributed the most to the differences between
the sites. This resulted in a rather low similarity per-
centage (54.31%), as generally 70% is seen as the
threshold when aiming to identify the most important
species contributing to differences be tween sites
(Clarke 1993). However, other factors not included in
our analyses such as food availability, topography or
diel and seasonal rhythms might impact the scaveng-
ing communities and rates.

The image-based identification of the amphipods
alone did not allow us to readily differentiate be -
tween species. The larger amphipods were identified
as Eurythenes gryllus or Eurythenes sp. using bar-
coding and morphological characteristics. However,
we had a low success rate with DNA barcoding.
These results fit with the high genetic variance yet
very low morphological variation within the genus
Eurythenes (d’Udekem d’Acoz & Havermans 2015).
The presence of amphipods of the family Stego-
cephalidae on all our food falls is particularly inter-
esting, as they are generally de scribed as micro-
predators associated mostly with sessile invertebrates
such as cnidarians. Only the stegocephalid genus
Andaniotes has so far been frequently captured in
baited traps and is thus considered to be at least a
facultative scavenger (Berge & Vader 2001).

Despite a similar experimental design and a com-
parable depth (1250 m), Sweetman et al. (2014)
found a completely different scavenging community
associated with experimental food falls of Periphylla
periphylla and Scomber scombrus in the Sognefjor-
den, which is around 290 km southeast from our sam-
pling location. In that study, scavenger abundances
between the fish and jellyfish food falls differed, but
the scavenger diversity and scavenging rates were
similar. The most abundant scavenger was a lysianas-
sid amphipod, Orchomenella obtusa, which occurred
in similar numbers on both food fall types (jellyfish
MaxN: 1609.5 ± 273.5, fish MaxN: 2024.7 ± 1135.9). In
contrast to our findings, which showed distinct taxa
on the nekton food falls that were absent on the jelly-
fish food falls, Sweetman et al. (2014) found that both
bait types attracted the same scavenger composition
consisting of O. obtusa, a hagfish (Myxine glutinosa),
a galatheid crab species (Munida tenuimana) and an
unidentified decapod shrimp. Similarities were
found in the abundances of the decapod shrimp in
the fjord (jellyfish MaxN: 9.0 ± 3.1, fish MaxN: 1.3 ±
0.6) and Bythocaris spp. in our samples, which were
almost exclusively found in the jellyfish experiments.
The scavenging community observed on mixed fish
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bait in the Arctic (Fram Strait, 1500−2600 m depth,
Premke et al. 2006) was relatively similar to the scav-
engers we observed on the mackerel. The dominant
amphipod species in the Fram Strait study of Premke
et al. (2006) were E. gryllus, the smaller amphipod
Tmetonyx norbiensis and a stegocephalid species
that only occurred occasionally as well as zoarcid fish
and chaetiliid isopods. However, the maximum
abundances of scavengers were considerably lower
(MaxN: 305−800) compared to our fish deployments
(MaxN: 1403.5 ± 17.68) despite the larger bait parcels
(2−5 kg) used in Premke et al. (2006). The only other
food fall experiment with only squid carcasses (Illex
argentinus) was carried out on the Patagonian slope
between 900 and 1750 m (Collins et al. 1999). Hag-
fish were the dominant scavengers in experiments
down to 1100 m, and crabs and grenadiers consumed
most of the bait at 1179 and 1442 m. The bait on 4
other deployments (1100−1740 m) remained largely
unconsumed.

4.2.  Scavenger abundance and arrival times

The large number of amphipods attracted to food
falls as well as their scavenging behaviour likely
leads to frequent underestimations of scavenger
abundances (e.g. Premke et al. 2006, Sweetman et al.
2014). Large numbers of amphipods may prevent
identification and quantification of other scavenging
fauna including the ones that are covered by other
amphipods on the images. Additionally, some am -
phipods may be completely out of view, since they
also feed on the inner parts of the carcass (Hessler et
al. 1978). Due to the limited number of specimens we
collected, combined with the difficulty to differenti-
ate between the species using images alone, we may
also have underestimated the total amphipod diver-
sity and abundance. However, such possible under-
estimations were consistent between the experiments,
and amphipods could nevertheless be identified as
the crucial taxa contributing to the differences be -
tween the scavenger community of the different bait
types, especially between fish and invertebrates.

Amphipods also arrived first at the food falls and in
a matter of minutes at the fish and squid, with only a
slightly slower reaction for the jellyfish carcasses.
This short first arrival time of amphipods is in agree-
ment with previous studies. We hypothesise that the
slight difference seen in the jellyfish experiments is
due to the smaller or less intense odour plume re -
leased by the jellyfish carcasses. Also, the carbon
and nitrogen content of P. periphylla is lower (20% C

dry weight, 3% N dry weight; Youngbluth & Båmst-
edt 2001) than that of S. scombrus (56% C dry
weight, 10% N dry weight; Jennings & Cogan 2016)
and Illex sp. (42−58% C dry weight, 5−13% N dry
weight; both varying between sex and tissue; Clarke
et al. 1994). Generally, there are 3 strategies found in
scavengers for the location of food: chemoreception,
mechanoreception and photoreception (Eastman &
Thiel 2015). Since light decreases with depth (except
for bioluminescence), photoreception is unlikely to
be a dominant strategy for carcass detection in the
deep sea. Long-range mechanoreception by sensing
the impact of the carcass when it hits the seafloor has
been suggested as a possible strategy (Dahl 1979,
Klages et al. 2002) and may be relevant to our exper-
iments, since the impact of the landers on the sea -
floor is likely large. However, in a natural situation,
chemoreception seems to be the most likely way for
amphipods to locate the relatively light medium-
sized food falls (Premke et al. 2003). Taxonomic dif-
ferences in chemoreceptive abilities might also be
the cause for some of the observed food fall-specific
scavenging responses and scavenger assemblages.
Scavengers may have species-specific responses to
amino acids released by the different carcasses
(Meador 1989).

4.3.  Food fall attendance time 
and consumption rates

The first arrival times at fish food falls in the Fram
Strait were slower (9−24 min) than those in our fish
deployments (5−10 min), while the successional
stages between different-sized amphipods were
similar to our findings (Premke et al. 2006). Scav-
engers occurred in lower abundances at the Fram
Strait food falls, but the consumption rates were 3 to
4 times higher than those in our study. These find-
ings might indicate that the frequency and abun-
dance of food falls in the Fram Strait are reduced in
comparison to those in the southern Norwegian Sea,
resulting in a more rapid food uptake. Optimal for-
aging theory considers scavengers as organisms that
utilise patches of food that are randomly distributed
(Mac Arthur & Pianka 1966, Prins & van Langevelde
2008). Scavengers probably have an optimum time
spent at the food fall, as the intake of carrion and
thus energy decreases over time as the food fall gets
smaller (Charnov 1976). Food fall attendance is not
related to satiation but is correlated with the ex -
pectation to have access to additional food falls
(Stephens & Krebs 1987). Therefore, the time that a
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scavenging organism spends at the food fall comes
at the expense of travel time to the next food fall
(Charnov 1976 from Priede et al. 1990). In a food-
rich environment, the distance to the next food fall
is relatively close, and therefore the bait attendance
time will be relatively short. Observations on bait-
attending macrourid fishes in the Pacific confirmed
this hypothesis (Priede et al. 1990). Experiments in
the Fram Strait with squid and jellyfish food falls
would be needed to further investigate these differ-
ences in attendance time of scavengers at a food
fall. Experimental squid food falls on the Patagonian
slope showed large variation in bait consumption,
with barely any activity shown in 4 of the deeper
deployments (Collins et al. 1999). However, when
scavengers attended and consumed the carcass (at
depths be tween 900 and 1100 m), the removal time
was about 4 h with a consumption rate of 200 g h−1,
which is 2 times faster than in our deployments and
with an almost 7-fold higher consumption rate. In
baited camera studies with mackerel in the NW At -
lantic (Hargrave 1985) at a depth of 5830 m, Eury -
thenes amphipods arrived first and after 3 h. The
consumption rate was much lower (100 g in ~33 h)
compared to our study (31.6 g h−1) and that of
Sweetman et al. (2014) (57.8 g h−1). Overall, this
comparison suggests that depth is an important fac-
tor in scavenging responses that need further study.

We observed small statistical differences between
consumption rates of the different baits. There was
also no significant difference between consumption
rates of fish and jellyfish food falls in Sognefjorden
(Sweetman et al. 2014). The food fall consumption
rates in Sognefjorden (Sweetman et al. 2014) were 2
to 4 times higher than those in our study. These
results are congruent with the higher (0.2−6.5 times)
amphipod abundances reported for both food fall
species in comparison to our study. Another study
using P. periphylla as bait and carried out in the same
fjord (Dunlop et al. 2018) found only around 2 times
higher consumption rates at 1250 m depth. However,
this was arguably due to the missing lysianassid
amphipods in these deployments, which were domi-
nant in the other fjord experiments (Sweetman et al.
2014) as well as in our own study. The differences in
consumption rate between the fjord study and our
study is likely related to 2 scavenging species, the
hagfish M. glutinosa and the galatheid crab M.
tenuimana. These 2 species were less abundant than
lysianassids in our study but were larger and thus
also contributed more towards the overall scaveng-
ing rate. Temperature also likely plays a role, as it is
one of the dominant abiotic factors that regulate the

metabolic and feeding rates of scavengers (Gillooly
et al. 2001, Brown et al. 2004). Bottom temperatures
in our experiments were between 0 and −1°C at all
our stations (Table 1), while the temperature in the
fjord was 8°C (Sweetman et al. 2014). Therefore,
temperature is likely another factor that contributes
to the lower consumption rates in our experiments
compared to the fjord experiments (Sweetman et al.
2014).

4.4.  Successional stages

With food supply being a major limiting factor in
the deep sea, food falls are important energy sources
(Higgs et al. 2014) that shape behaviour and the
detection of food falls (see also above, Priede et al.
1990) and hence result in successional stages in food
fall consumption (e.g. Smith & Baco 2003, Premke et
al. 2006, Soltwedel et al. 2018). Although not as con-
spicuous compared to megafaunal food falls, such
successional stages have been observed on medium-
sized food falls before (e.g. Premke et al. 2006,
Sweetman et al. 2014, Harbour et al. 2020), and we
show them here. Despite our observations being
based on relatively few deployments, we found a
clear succession between amphipods on both squid
and fish carcasses. Larger lysianassids arrived much
faster than smaller amphipods, and the latter actually
dominated the fish carcass after approximately 3 h.
We also observed a minor inverse relationship be -
tween ophiuroids and amphipods on the squid food
falls. This relationship became more clear when also
considering the ophiuroids surrounding the bait
plate. The observed succession between larger and
smaller amphipods on our squid and fish carcasses is
consistent with food fall-associated fauna in the Fram
Strait (Premke et al. 2006). This pattern might be due
to smaller individuals (1) having reduced motility or
(2) avoiding predation by the larger amphipods
(Hessler et al. 1978, Ingram & Hessler 1983). Avoid-
ance of larger amphipods may also explain the ab -
sence of fish on the S. scombrus deployments. The
inverse relationship between ophiuroids and am -
phipods might be an indirect effect of the ophiuroids
not being able to process big chunks of the carcass.
Instead of directly feeding on the food fall, ophi-
uroids might feed for longer periods of time on small
remains left over from sloppy feeding by other scav-
engers (Smith 1985). However, other ophiuroid spe-
cies have been previously observed to actively feed
off fish carcasses in situ as well as ex situ (Nagab-
hushanam & Colman 1959, Smith 1985). Thus, another
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possible explanation would be the slower movement
of ophiuroids, resulting in later arrival at the food fall
location. The fishes Lycodes frigidus and Amblyraja
hyperborea were not observed consuming the bait.
L. frigidus instead may prey on the scavenging
amphipods, which is supported by slightly declining
numbers of amphipods after the arrival of a fish on or
close to the bait plate in our experiments. This be -
havior was also observed in previous studies (e.g.
Collins et al. 1999, Premke et al. 2006) and is supported
by stomach content analyses of zoarcid species,
which revealed lysianassids and other crusta ceans as
a common dietary component (e.g. Smir nova et al.
2019, Bjelland et al. 2000). However, significant dif-
ferences between consumption rates of our food fall
species did not change when excluding fishes as
scavengers (Table S2). In comparison, the ling Molva
molva likely used the lander as shelter, as it stayed
close to one of the attached weights over an extended
period of time, suggesting an artificial reef effect
(Jamieson et al. 2006, Gates et al. 2019).

4.5.  Outlook

Here, we provide a multi-species perspective on
food fall-specific scavenging responses in the Nor-
wegian Sea. Die-offs related to squid reproduction or
jellyfish blooming can lead to mass deposition of car-
casses. Natural observations of large jellyfish food
falls suggest that higher concentrations of gelatinous
material on the bottom might create local anoxic
zones and subsequently less scavenging activity (e.g.
Billett et al. 2006, Lebrato & Jones 2009, Sweetman et
al. 2014, 2016). Therefore, the effect of multiple car-
casses and mass deposition should be analysed in
future studies, as has been started by Dunlop et al.
(2018). One paradigm in the study on deep-sea food
webs is that opportunism is a key strategy, and as a
result, obligate scavengers are rare (Stockton &
DeLaca 1982, Smith 1985, Britton & Morton 1994).
Our data suggest that species-specific preferences
for different carrion types do exist in deep-sea scav-
enging communities, but more research is needed
that includes other factors such as the availability of
other food sources for non-obligate scavengers, car-
cass deposition frequency, seafloor structure and
bathymetry. Such information will help to better
understand deep-sea benthic scavenger behaviour
and the role of scavengers in deep-sea food webs and
eventually will aid to predict the consequences of
altered fluxes of organic material to the seafloor in
ocean systems under climate change.

Data availablility. Data from the experiments are available
under https://doi.pangaea.de/10.1594/PANGAEA.935210 and
https://doi.pangaea.de/10.1594/PANGAEA.935215.
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