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Holomorphic approximation in Fréchet spaces

LASzZLO LEMPERT

We prove a Runge type approximation result in a class of Fréchet
spaces that includes the space s of rapidly decreasing sequences.

1. Introduction.

In this paper we shall prove a Runge type approximation result in a class of
Fréchet spaces that includes the space s of rapidly decreasing sequences. The
space s is special among Fréchet spaces. For one thing, spaces frequently
occurring in geometry, such as smooth functions on a closed manifold, are
isomorphic to it; it also has certain universality properties. As demonstrated
in [L4], approximations are a key ingredient to cohomology vanishing in
Banach spaces. Similarly, in [L5] we shall use the results of this paper to
study analytic cohomology in Fréchet spaces.

The class of spaces we shall consider are certain generalized sequence -
spaces. Let I" be a set and p: RxT' — (0, 00) a function such that logp(-,~)
is even and convex for every vy €. If z: ' = C and 0 € R, define

(1.1) lzlle = > (6, 7)|2(7)] < oo,
v
and put
(1.2) X={z:T = C||zll¢ < oo for every 6}.

The norms || ||g, 6 € R, endow X with the structure of a complete locally
convex topological vector space. Convexity of logp implies that the norms
Il llo for @ € Z would induce the same topology, hence X is a Fréchet space.
If0,r e R, r >0, put Be(r) = {z € X : ||z|l¢p < r}. With these assumptions
and notation we shall prove

Theorem 1.1. Given 0 < r < R, § € R, any holomorphic function f :
By(R) — C can be approximated by a holomorphic g : X — C, uniformly
on By(r).
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2 L. Lempert

When p is independent of §, X =~ [}(T), a case covered in [L1]. When
I' =N and p(0,7) = 4101 the space X becomes s. Certain weights p define
spaces that are isomorphic to complemented subspaces of s, such as p(6,) =
27l with the corresponding X ~ O(C). Beyond these, we do not know of
weights that would lead to spaces X that occur in other contexts as well.
Still, Theorem 1.1 is formulated in the given generality, rather than just for
X = s, because this formulation brings out the features of s that matter
for approximation. Thus nuclearity or separability are irrelevant. On the
other hand, convexity of logp has to do with the existence of a so called
dominant norm—all || || will be such in the case at hand,—a condition that
is necessary for approximation, see section 6. (The assumption that p is even
simplifies the exposition but could be done away with.) We do not know how
important it is that the norms in (1.1) are isomorphic to /! norms. In Banach
spaces approximation theorems are available for much more general norms,
see [L2].

It is remarkable that Theorem 1.1 depends on a certain convexity as-
sumption. The importance of convexity to complex analysis has been a main
theme in the twentieth century. Theorem 1.1 and the related condition on
dominant norms reinforce this idea. There is a difference, though: while
previously geometric convexity (pseudoconvexity, plurisubharmonicity) was
the issue, here we deal with a convexity property of the topology.

For the purposes of [L5] Theorem 1.1 above is too special. In sections
4, 5 we shall formulate and prove the generalizations that will be needed in
[L5]. For the moment we content ourselves with sketching a proof in the
situation of Theorem 1.1; it is an extension of the proof in [L1].

Thus, one first expands f in a monomial series

(1.3) f@ =Y az* =) a [[ s, aeC
P

k ver

where k£ runs through multiindices, i.e. maps k : I' = N U {0} with finite
support. One shows that the series in (1.3) converges to f uniformly on
compact subsets of Byp(R), and proves sharp estimates for the coefficients
ar, (“Cauchy-Hadamard formula”). These estimates are expressed in terms
of a certain semigroup ¥ of compact operators in X. It is in establishing
various properties of ¥ (Theorem 2.5) that convexity of log p is needed. The
proof is concluded by showing that with a carefully chosen family of positive
numbers wy, the function g(z) = ZI ap|>wk arz® has the required properties.

We shall assume the reader has some familiarity with basic complex
analysis in finite and infinite dimensions. [H, D, No] are good references for
much more than what we need here. We shall write O(M; M) for the family
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of holomorphic maps between complex manifolds M, M', and O(M) when
M =C.

2. Topology.

We start by introducing notation and terminology, partly following [L2].
Thus, V will always denote a sequentially complete, locally convex topologi-
cal vector space over C, whose topology is given by a family ¥ of seminorms.
Suppose v, v; € V, for j belonging to some index set J. We write Yvj=w
to mean that for any 9 € ¥ and € > 0 there is a finite Jy D J such that
P(v — 3 vj) < € whenever J; D Jp is finite. We say that a series 3 vj is
normally convergent if Y ¥(v;) < oo for all 4 € ¥. If only countably many
v; differ from zero then normal convergence of ) v; implies ) v; = v for
some v € V. Suppose S is an arbitrary set and f; : S =V, j € J. We say
that ) f; converges normally on S if ) supg 9(f;) < oo for all ¥ € ¥, and
that > f; = f : § = V uniformly if for every 1 € ¥ and € > 0 there is a
finite Jy C J such that supg ¥ (f — >_;, fj) < € whenever Ji D Jo is finite.
Pointwise and normal convergence on S together imply uniform convergence
on S. If S is a topological space, the f; are continuous, and f = ). f;
converges uniformly on S then f is also continuous. Similarly, if S is an
open subset of a locally convex space, the f; are holomorphic, and f =) f;
converges uniformly on S then f is holomorphic.

IfT, p, || |lg, X are as in the introduction, we shall refer to X as a simple
space, a term we plan to restrict to this paper. For technical reasons we
shall have to deal with [ sums of finitely many simple spaces as well, which'
we call semisimple. Thus a semisimple space X is of the form

x={o:rel max 3 p0,)l0 = llolo <oo},
T qyeld

where IV, 1 < j < n, partition T, and p : R x I' — (0,00) is such that
logp(-,y) is even and convex for all v € I'. The spaces X; = {z € X :
supp ¢ C IV} with the inherited norms || ||¢ are simple, and X = @ X; (I*°
sum). In what follows, X will always denote a semisimple space, and T', T/,
D, || llo will be as above. We write By(r) = {z € X : ||z|l¢ < T}

Let I C R be an interval. A function u: I — [0,00) is called log-convex
if u(af + (1 — @)0') < u()®u(0')}=2 for any 6, 8’ € I, o € (0,1). That is,
logu (allowed to take the value —o0) is to be convex. If such a u vanishes
on [ then it must be identically 0 on int I.
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Lemma 2.1. Suppose u; are log-convex on I and c; € [0,00) for j in some
index set J. If u =) cju; converges then it is log-convex.

Proof. This is certainly not new. Assuming J is finite, with an arbitrary
collection § of numbers &; > 0, ug = ]—[j(c]-uj/fj)ff is log-convex. Since

u = supg ué/ X4 by the inequality between the arithmetic and geometric
means, u is indeed log-convex. By passing to the limit the lemma is obtained
for arbitrary J.

Proposition 2.2. If, ¢ € R, a € [0,1], and z € X then

(2.1) Il ao+1-ayer < lll§ g,
i.e. ||z||g is a log-convex function of . Also, it is increasing for 6 > 0.

Proof. This follows from Lemma 2.1 because the maximum of log-convex
functions is also log-convex; and because even, convex functions increase on
the positive half line. v

(2.1) implies that X is a DN space, i.e. it has a dominant norm, see [V1].

Proposition 2.3. The function v(6,z) = ||z|| is continuous on R x X.

Proof. Proposition 2.2 implies v is continuous for fixed z. In addition, if
0] <a
llzllo = llylle] < llz = yllo < llz = ylla,  hence
v(0,z) — v(t,y) = (llzlls — llylle) + (lylle — llyll-) — 0
as (0,z) = (1,y).
Recall that a set S C X is bounded if sup,cg ||z]lg < oo for all 6.

Proposition 2.4. A set K C X has compact closure if and only if it is
bounded and for every 8 the series

(22) > (0, 7)|z()]
Y

converges uniformly for z € K.

Proof. The series (2.2) converges for z € X, and its partial sums are uni-
formly equicontinuous:

> p@ Mz = D o0, My(NI] < nllz - ylls,

v€lo ~v€Tlo
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Iy C T finite. If K has compact closure, the Arzela-Ascoli theorem implies
(2.2) converges uniformly; also K must be bounded.

Conversely, assume K is bounded and (2.2) converges uniformly. In a
complete metric space such as X, having compact closure is equivalent to
being totally bounded. To see this latter property, fix # and € > 0, choose a
finite I'g C T such that

> p0e() <5 froek.
I'\lo

Denote the characteristic function of I'g by x : I' = {0, 1}, and introduce the
projection 7(z) = xz. Since 7(K) is a bounded set in a finite dimensional
space, it can be covered by finitely many balls By(e/2) + z;, i = 1,...,m. It
follows that K is covered by the balls By(e) + z;, so that it is indeed totally
bounded.

Now consider a bounded function ¢ : I' — [0, 00). Multiplication by o
induces a continuous linear operator z — oz in X, and thus we obtain an
action of the multiplicative semigroup of bounded functions o : I' — [0, 00)
on X. If AC X, let oA denote its image under o, and consider

(23) S ={o:I'—=[0,1) | oBs(1) has compact closure for some 6}.

Theorem 2.5. (a) Ifc € S ande >0 thenTy = {y €T : o(y) > €} is
finite;

(b) X is closed under multiplication;
(c) ifo € ¥ and « is a positive number then o® € ¥;

(d) if o € ¥ then oBy(R) has compact closure in By(R) for all 0 € R
R>0;

(e) conversely, for any compact L C By(R) there are o € ¥ and a compact
L; C By(R) such that L = oL.

Proof. It will suffice to give the proof under the assumption that X is simple.

(a) WithY = {z € X : supp z C I'g}, the set Y NoBy(1) is a neighbor-
hood of 0 € Y. If it has compact closure then Y must be finite dimensional,
i.e. T'p is finite.

(b) follows simply because the continuous image of a compact set is also
compact.
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(c) If @ > 1 then 0%(y) < o(y) and the claim is obvious. Otherwise let
0By(1) have compact closure, and with arbitrary 'y C T, z € X, 7 € R,
and variable a € [0, 1] put

(2.4) wa@) =Y p0+ar,7)o()z();
~eT'\I'1

we use the convention 0° = 1. Lemma 2.1 implies u is log-convex, whence
(2.5) u(e) < u(0)' " *u(1)* < u(1)%,
provided z € By(1). Use this first with I'; = ), to obtain

||O'a$||0+a‘r < ”U"E”(01+T'

Thus || |lg+ar is bounded on 0®By(1). Since 7 is arbitrary, this means
0®By(1) is bounded, provided a € (0,1]. To show 0c*By(1) has compact
closure, we use Proposition 2.4. Fix € > 0, choose a finite I'; C I" such that

> pO+7,7o(Mz(7)| <€, z€ By(l).
I

By (2.5)

Z p(0 + ar,v)o(7)%|z(7)| < €%, z € By(1),
I'\T,

so that Y p(6 + a,v)|y(y)| converges uniformly for y € 0®By(1). This
being true for all 7 € R, 0®By(1) has compact closure by Proposition 2.4.

(d) If ¢ € %, then by part (c) ¢'/2B,,(1) has compact closure for some
w. Fix 0 € R, let 7 = 2(w — ) and ¢ = sup, o 2yllg-+/ |yll < co. With
I't =0 and v as in (2.4) we have u(1/2) < u(0)u(1)/u(1/2), or

1/2 1/2

zllw < cllzllo-

o zllw < llzllollozllo+rr/llo

In other words, 0'/2By(R) C B,(cR), and so 0 By(R) C 0'/2B,,(cR) has
compact closure. This closure is contained in By(R), because supo < 1 by
part (a), and (d) indeed holds.

(e) We can assume 6 > 0. Fix g € (sup; (]| |l¢/R)'/?,1), and construct a
sequence ) =T'g C 'y C ... CT, each I'y, finite, so that

(2.6) > p(nNE) <4 ™1- ™R, zE€L, T=0+m,
M\l
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Since the left hand side increases with 7 > 0, the same inequality holds if
|7| < 0+ m. (2.6) implies z(y) =0ifz € L, v ¢ |J,,['m = I'*. Define

_f 27™y, fory€eTmi1 \Tm
o(v) = { 0, for v ¢ T*,

and a closed set Ly = {y € X : oy € L,y(y) = 0if v ¢ I'"*}. Obviously

oL; = L. Since for any y € L, N=0,1,...,|7|< 0+ N, and z = oy
SIS D DY 27 p(r, ) le()]
F\FN . m>N Fm+1\Fm
<) 27™(1-¢™gR<27VR,
m>N

Ly C By(R) is compact by Proposition 2.4.
3. Monomial expansions.

Now we bring in the torus
(3.1) T={¢t:T'>R/Z};

with the product topology T is a compact Abelian group. In this section we
shall consider certain complex manifolds 2 on which T acts by biholomor-
phisms. The action will induce the expansion of functions f € O(2) in so
called monomial series, and we shall study convergence properties of such
series.

Some more notation and terminology. A function £ : I' - NU {0} with
finite support will be called a multiindex. In this paper k will always stand
for a multiindex, #k for the cardinality of its support, and |k| for Z,y k(7).
Ift € T we write k- ¢ for }°_ k(7)t(y) € R/Z; if z : T — C we write 2* for
11, 2(7)¥(") € C. The Haar measure on T of total mass 1 will be denoted
dt. With X a semisimple space we define an action p of T on X by

(3.2) (Pz)(v) = ™M a(y), teT, z€X.

This is a continuous action, isometric for all norms || ||g-

If D is a topological space, s : D — (0,00) and 6 : D — R are continuous
functions, define

(3.3) Dy(s) = {(§,2) € D x X ¢ lzllg(ey < s(€)}-
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From now on we assume D is a complex manifold, locally biholomorphic to
a Fréchet space. Proposition 2.3 implies Q2 = Dy(s) is open in D X X, hence
it is a complex manifold.

For £ € D and k£ a multiindex define

M) = sup |z¥|,  and
[lzllo ey <s(§)

(3.4)
Bala.t,2) = L lPH/ME, e T (Ga) en

Clearly, for any monomial cz®

(3.5) lcf = sup |ez®|/M(€).
[lzllo ey <s(€)

Proposition 3.1. (a) The series in (3.4) converges uniformly on compact
subsets of C x 2, and Ay s is continuous.
(b) Given p € (0,1) there is a q # 0 such that Ag s(g,-) is bounded on

Dy ().

Proof. If X = @ X is the decomposition of X into simple spaces, corre-

sponding to a partition I' = (JT';, and Ag{g are the associated functions, one
easily checks that

AG,S(Q7§7 H A (q,ﬁ,wll" )

Therefore it suffices to prove the Proposition for X simple, which we shall
henceforward assume. Define a continuous map A : D x X — [}(T) by
A(€,2)(3) = p(B(€),7)x()/5(¢). The image of {€} x By(e)(s(¢)) is dense in
the unit ball B of I*(T"). Hence M} = sup,¢p |v*| = SUD|[z5c) <s(£) |A(¢, z)¥),
and setting

v) =Y ld**yfl/M,,  ye B,
k

we have Ag;(q,2) = A(g, Az) by (3.5). The proposition thus follows from
the corresponding results in [}(T), see [L1, Théoréme 2.1] and [L3, Lemma
4.1].

If V is a sequentially complete locally convex space whose topology is
given by a family ¥ of seminorms, functions f € O(Q;V) can be analyzed
using the torus action

pi(&,x) = (€ pm),  teT, (§,z) €
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We expand f in a (partial) monomial series

(3.6) Fe Y fo o= [ s

Tk
with fx € O(Q;V). By restricting to the dense subset Q¢ C Q of pairs (¢, z)
with supp « finite, one finds that fi(¢,z) = ax(€)zF, where a; € O(D; V).
Convergence of finite dimensional Taylor series implies that Y. fy = f on
Q. We shall call fy the monomial components of f.

Theorem 3.2. (a) The monomial components of f € O(; V') satisfy

(3.7) supo® sup ¢(fr) < oo, o€, ¥ € ¥, KC D compact,
k Kg(s)

and the series Y fi converges to f, uniformly on compact subsets of .

(b) Conversely, ifa, € O(D;V) and fi(¢£, x) = ax(£)z* satisfy (3.7) then
>~ fr converges to some h € O(Q;V), uniformly on compact subsets of §2.
The monomial expansion of h is Y, fi.

Proof. (b) Any compact subset of 2 can be covered with finitely many
compact sets of form KxL C Q, K C D, L C X, such that supg |6] =7 < o
and

(3.8) sup||z|lr < infs = S.
z€L K

Therefore, to prove uniform convergence on compacts it suffices to attend to
compact sets of the above form. By (3.8) L C B;(S), and Proposition 2.2
implies K X B (S) C Q. Using Theorem 2.5(e) choose o € ¥ and L1 C B(S5)
compact so that oLy = L; thus K x L; C Q. With arbitrary y € ¥, { € K,
z € L, and y € L; such that oy = £ we have

(3.9) (& 7)) = FP(fr(&,y) =0F  sup  B(fu(&, 2))WF|/Mi(8),

llzllg(gy<s(€)

by (3.5). Since by Proposition 3.1 3" |¢*|/My(€) converges uniformly for
(&,v) € K x Ly, (3.7) and (3.9) imply that > 9(fx), hence also Y f con-
verges, uniformly on K x L. Thus ) fx converges uniformly on compacts,
its sum h is easily seen to be holomorphic, see e.g. [L3, Propositions 2.1,
2.2] that carry over to our current set up; and upon evaluating the integrals
in (3.6) with f = h one verifies that the monomial expansion of h is Y f.
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(a) To prove (3.7) let S = maxg s and o = suppo < 1, cf. Theorem
2.5(a). By Theorem 2.5(d) the set

P={(¢o0x):(¢&z) € Ky(s)} C K x aBy(S)

has compact closure. Indeed P C Q: for given (£,y) € P, let (¢,y) =
limy, (§n, 02p) with (§n,2n) € Ko(s). Then |lyllge) = limg [loznllge,) <
lim, as(&,) < s(§) shows (&,y) € Q.

Therefore supp ¥ (f) = ¢ < oo, so that by (3.6) ¢ > supp¥(fi) =
o supKo(s)zﬁ( fx), and (3.7) follows. Now (b) implies the convergence of
>~ fx. Since its sum, a holomorphic function, agrees with f on Qo, the two
must also agree on 2.

4. Approximation.

In this section we are going to prove our main result. Let X be semisimple,
. X and V as before.

Theorem 4.1. Let D be a (finite dimensional) Stein manifold, D' C D
open, K C D' an O(D) convex compact. Let furthermorer, R: D — (0, 00)
and 0 : D — R be continuous, r < R. With notation as in (3.3) suppose
f € O(Dy(R);V), ¢ € ¥, and € > 0. Then there exists g € O(D x X;V)
such that o(f — g) < € on Ky(r).

The proof will be based on Theorem 3.2. To facilitate calculations with
estimates like (3.7) we start by formulating

Lemma 4.2. (a) Suppose K is a set of multiindices, and for each k € K we
are given numbers c, dr, > 0 such that

sup o¥e, < o0, supakd,xc < 00
kex kex

for allo € ¥. If a, B € (0,00) then

(4.1) supo cadﬁ < o0, o€

kex
(b) IfQ > 0, 0 € & then sup, cFQ#* < co.

Proof. (a) If o € ¥ then o1 = ¢'/(29) | g, = ¢1/(28) € 53 by Theorem 2.5(c).
Since o cadﬂ (0¥ cr)(okdy)P, (4.1) follows. (b) We can assume Q > 1.
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Given 0 € X, the set Ty = {y € T : o(y) > 1/Q} is finite according to
Theorem 2.5(a). Define o1 : T' — [0,1) by

— 0-(7)’ if v E 1-\0
n() = { Qo(y),  ify¢T.

Then sup;, c*Q#* < supy, ok QlTol < QITol.

Proposition 4.3. With assumptions and notation as in Theorem 4.1, let
G CC D' be an open neighborhood of K. There exists h € O(G x X;V)
such that o(f — h) < € on Ky(r).

Proof. Let f = ¥ fx be the monomial expansion of f. Fix a b € (1,00) such
that b%r < Ron G. With Q > 1, ¢; > 0 to be determined later, define

(4.2) K={k: sup o(fp) > Q **blle}
Gy(R)
and
(4.3) h=>" fi
keK

First we prove that h € O(G x X;V). This would follow if we could
show that (4.3) converges uniformly on compact subsets of Gg(xR), for any
constant x > 1. By Theorem 3.2(b) it therefore suffices to prove

(4.4) sup of sup Y(fy) <oo, cEX, YV
kek Gy(kR)

To verify (4.4) we can assume ¢ > ¢ (otherwise replace ¥ by ¢ + p). We
have

sup oFc¢t, < oo, cr = Q HFbIF/ sup (fi),
(4.5) kek Go(R)
sup o¥dy < oo, di, = Q** sup ¥(fr),
k Go(R)

by (4.2) resp. Theorem 3.2(a) and Lemma 4.2(b). Choose oo > 0 and
B =a+1 sothat b* = k. Then for k € K

c@d? = Q#* (™) sup P(fe) > sup  P(fi),
Gy(R) Gg(kR)

so that by Lemma 4.2(a), (4.5) implies (4.4), and h is indeed holomorphic
on G x X.
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Next we estimate f — h on Gy(r). Let s = R/b and My(£) as in (3.4),
then for (¢,z) € Gy(s) (3.5) implies

(4.6) o(fr(& 7)) < |2F| s o(fx) /My (€).

When £ ¢ K

(4.7) sup o(fr) = b7 sup @(fi) < Q *k¢
Go(s) Gy(R)

by (4.2), so that putting (4.3), (4.6), and (4.7) together

O(F(& ) = h(E,2) <Y @(fulé,2)) < ey Q HR|ak| /My (€)
k

kgK

for (§,z) € Gy(s). Fix Q so large that Ag(1/Q,-) is bounded on Dy(s/b),
cf. Proposition 3.1(b), then

sup So(f - h’) S €1 sup AG,S(I/Q, ') <€,
Go(r) Dg(s/b)

provided €; is small enough.

In particular, when D = K(= D' = G) is a singleton, we obtain Theorem
1.1 for all semisimple X, even for vector valued f.
Proof of Theorem 4.1. Let P = maxgr, then Ky(r) C K x By(P). In
light of Proposition 4.3 all we need to prove is that if G C D is an open
neighborhood of K, and h € O(G x X;V) then there isa g € O(D x X;V)
such that ¢(h — g) < € on K x By(P). Assume first that D = CN and K
is a polydisc centered at 0. Now CN @ X is also semisimple, and with an
appropriate choice of norms || ||’ on it, K x By(P) will be a ball {(¢,z) €
CV @ X : (¢ 7)|ly < P}. Hence we can apply Theorem 1.1, by now proved
for semisimple spaces and V' valued functions, to obtain g as desired. The
case of general D, G, K can be reduced to the special case of polydiscs, as
explained in the proof of [L1, Théoréme 1.1].

5. Approximation, bis.

For application in [L5] we shall need approximations in open sets that are
defined in terms of a metric rather than a family of norms. First we shall
discuss one of the many ways to metrize a Fréchet space.
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Proposition 5.1. Suppose that the topology of a Fréchet space X is in-
duced by a family of norms || |lg, @ € (0,00), and ||z|l¢ is an increasing
continuous function of 6. Define

(5.1) lzll = inf{a € (0,00) : [lzlli/a < @},  z€X.

Then || || is a pseudonorm that induces the topology of X, and ||z|| < R is
equivalent to ||z||;)r < R, R € (0, c0).

That || || is a pseudonorm means ||z|| > 0, with equality if and only if
z=0; [|[Az]| < Izl if [A| <15 and ||z + yl| < [lz]| + [lyl|-
Proof. Of the three axioms of pseudonorms we shall only verify the triangle
inequality. By the intermediate value theorem, for any z # 0 there is a
unique « such that ||z||;/, = @; and this & = ||z||. Suppose y # 0, and put
B = llyll. Then

1z + yll1/a+p) < N2ll1j@r8) T 1Yl jars) S N2llija + lYllys = @+ B.

Hence, by (5.1), ||z +y|| < a+ 8 = ||z||+ ||y||- Since this inequality is trivial
when z or y =0, || || is indeed a pseudonorm.

Next, if [|z]| = @ < R then ||z|l,/r < ||Z|l1/a = @ < R; and conversely, if
lzlli/r < R then (5.1) (and continuity of ||z||s) implies ||z|| < R. From this
it also follows that the balls {z € X : ||z|| < R}, R > 0 form a neighborhood
basis of 0 € X as claimed.

Now return to our semisimple space X, and endow it with the
pseudonorm (5.1). If D is a topological space, and R : D — (0,00) is
continuous, let

D(R) ={(¢,z) € Dx X : [|lz]| < R(§)}.

Theorem 5.2. Let D be a Stein manifold, D' C D open, K C D' an O(D)
convex compact. Let furthermore r, R: D — (0,00) be continuous, r < R.
Given f € O(D'(R);V), ¢ € ¥, and € > 0, there exists g € O(D x X;V)
such that o(f — g) < € on K(r).

Proof. Since D(R) = Dy(R) with 6 = 1/R, and K(r) = Ky.(r) C Kp(r)
according to Proposition 5.1, the theorem follows from Theorem 4.1.

6. A necessary condition.

In this last section we want to point out that even for a weak version of
our approximation theorems to hold in a Fréchet space X it is necessary
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that X have a dominant norm. This condition, also called (DN), requires
that the topology of X be induced by norms || ||, » = 1,2,... satisfying
llz|l2 < ||z|l1||z|ln+1- DN spaces were introduced by Vogt, and their relevance
to complex analysis was further explored by himself, Dineen, Meise, and
others, see [D, V1, V2, MV]. Our theorem below easily follows from the
analysis of Meise and Vogt.

Theorem 6.1. Suppose that in a Fréchet space X any neighborhood U
of 0 € X contains another neighborhood W of 0 such that holomorphic
functions on U can be approximated by entire functions, uniformly on W.
Then X has a dominant norm.

Proof. Suppose X fails to have a dominant norm, and write X = Co Y,
with Y a closed subspace. In [V1, MV] Meise and Vogt construct a sequence
hj € O(Y) such that there isno f € O(C@®Y) with

This will imply that for the sets Ur = {(n,y) € C®Y : |n| < R} there is no
W as in the theorem.

Indeed, suppose there is a corresponding W for U;. Then RW will do
for Ur = RU;. Let w € O(C) have simple zeros at each n € N, and no other
zero. Extend w to C@ Y, constant in the Y variable. Inductively construct
fmneOCa®Y), n €N, such that

fn(Ja):h]a j=1)2a""na

and |fn — frnt1| < 27™ on nW. This can be done as follows. Take f1(n,y) =
hi(y); if f, has been found, construct—by Lagrange interpolation—an [ €
O(C@®Y) such that I(j,-) = hj, j <n+1. Thus (I — f»)/w is holomorphic
on U, and there is a g € O(C®Y) such that

'(i:lrﬁ L

2n Sup,w le

on nW. Hence fr4+1 =1 — wg is as required.
Now the properties of f, imply that f = lim f, € O(C @ Y) satisfies
(6.1), after all. This contradiction proves the theorem.
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