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Holomorphic approximation in Frechet spaces 

LASZLO LEMPERT 

We prove a Runge type approximation result in a class of Frechet 
spaces that includes the space s of rapidly decreasing sequences. 

1. Introduction. 

In this paper we shall prove a Runge type approximation result in a class of 
Frechet spaces that includes the space s of rapidly decreasing sequences. The 
space s is special among Frechet spaces. For one thing, spaces frequently 
occurring in geometry, such as smooth functions on a closed manifold, are 
isomorphic to it; it also has certain universality properties. As demonstrated 
in [L4], approximations are a key ingredient to cohomology vanishing in 
Banach spaces. Similarly, in [L5] we shall use the results of this paper to 
study analytic cohomology in Frechet spaces. 

The class of spaces we shall consider are certain generalized sequence 
spaces. Let F be a set and p : Ex F -» (0, oo) a function such that logp(-, 7) 
is even and convex for every 7Gr. If x : F -> C and 6 e M, define 

(1.1) Me = ^2p(e,j)\x(7)\<^, 
7 

and put 

(1.2) X = {x : F -► C I \\x\\e < 00 for every 6}. 

The norms || \\o, 9 e M, endow X with the structure of a complete locally 
convex topological vector space. Convexity of logp implies that the norms 
|| ||0 for 6 e Z would induce the same topology, hence X is a Frechet space. 
If 0, r G K, r > 0, put ^(r) = {x E X : ||a;||0 < r}. With these assumptions 
and notation we shall prove 

Theorem 1.1. Given 0 < r < R, 6 G R, any holomorphic function f : 
BQ(R) -> C can be approximated by a holomorphic g : X -» C, uniformly 
on Bo(r). 
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When p is independent of 0, X « ^(F), a case covered in [LI]. When 
F = N and p{9^) = 7'^', the space X becomes s. Certain weights p define 
spaces that are isomorphic to complemented subspaces of 5, such as p(0-, 7) = 
27^l, with the corresponding X « 0(C). Beyond these, we do not know of 
weights that would lead to spaces X that occur in other contexts as well. 
Still, Theorem 1.1 is formulated in the given generality, rather than just for 
X = 5, because this formulation brings out the features of s that matter 
for approximation. Thus nuclearity or separability are irrelevant. On the 
other hand, convexity of logp has to do with the existence of a so called 
dominant norm—all || ||^ will be such in the case at hand,—a condition that 
is necessary for approximation, see section 6. (The assumption that p is even 
simplifies the exposition but could be done away with.) We do not know how 
important it is that the norms in (1.1) are isomorphic to I1 norms. In Banach 
spaces approximation theorems are available for much more general norms, 
see [L2]. 

It is remarkable that Theorem 1.1 depends on a certain convexity as- 
sumption. The importance of convexity to complex analysis has been a main 
theme in the twentieth century. Theorem 1.1 and the related condition on 
dominant norms reinforce this idea. There is a difference, though: while 
previously geometric convexity (pseudoconvexity, plurisubharmonicity) was 
the issue, here we deal with a convexity property of the topology. 

For the purposes of [L5] Theorem 1.1 above is too special. In sections 
4, 5 we shall formulate and prove the generalizations that will be needed in 
[L5]. For the moment we content ourselves with sketching a proof in the 
situation of Theorem 1.1; it is an extension of the proof in [LI]. 

Thus, one first expands / in a monomial series 

(1.3) /(*) = 2 akx
k = £ ak JJ sfr)*™,    ak 6 C, 

k k 7€r 

where k runs through multiindices, i.e. maps k : F —> N U {0} with finite 
support. One shows that the series in (1.3) converges to / uniformly on 
compact subsets of ^(JR), and proves sharp estimates for the coefficients 
afc ("Cauchy-Hadamard formula"). These estimates are expressed in terms 
of a certain semigroup S of compact operators in X. It is in establishing 
various properties of E (Theorem 2.5) that convexity of logp is needed. The 
proof is concluded by showing that with a carefully chosen family of positive 
numbers Wk the function g(x) == ]C|aJ>u;fc 

akxk has the required properties. 
We shall assume the reader has some familiarity with basic complex 

analysis in finite and infinite dimensions. [H, D, No] are good references for 
much more than what we need here. We shall write 0{M\ M') for the family 
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of holomorphic maps between complex manifolds M, M', and O(M) when 
M' = C 

2. Topology. 

We start by introducing notation and terminology, partly following [L2]. 
Thus, V will always denote a sequentially complete, locally convex topologi- 
cal vector space over C, whose topology is given by a family ^ of seminorms. 
Suppose v, Vj e V, for j belonging to some index set J. We write J2vj — v 

to mean that for any ^ G * and e > 0 there is a finite JQ D J such that 
^(v ~~ Z)ji vj) < e whenever Ji D Jo is finite. We say that a series Ylvj 'IS 

normally convergent if Y^ VK^j) < ^ for all ^ G 1Ir. If only count ably many 
Vj differ from zero then normal convergence of ^ Vj implies ^ Vj = v for 
some v G V. Suppose S is an arbitrary set and fj : S -> V, j G J. We say 
that X) /j converges normally on 5 if ^ sup5 ^(fj) < oo for all ip G *, and 
that Yl fj ^ f : $ -* V uniformly if for every ip G * and e > 0 there is a 
finite JQ C J such that sup^ ip(f - Yl^ /j) < e whenever Ji D Jo is finite. 
Pointwise and normal convergence on 5 together imply uniform convergence 
on S. If S is a topological space, the fj are continuous, and f — Yfj 
converges uniformly on S then / is also continuous. Similarly, if S is an 
open subset of a locally convex space, the fj are holomorphic, and f = Yfj 
converges uniformly on S then / is holomorphic. 

If F, p, || Hi, X are as in the introduction, we shall refer to X as a simple 
space, a term we plan to restrict to this paper. For technical reasons we 
shall have to deal with 1°° sums of finitely many simple spaces as well, which 
we call semisimple. Thus a semisimple space X is of the form 

X={x:r^C\  max    V  p{e^)\x(j)\ = \\x\\e < oo j, 

where F-7, 1 < j < n, partition F, and p : E x F -» (0, oo) is such that 
logp(-,7) is even and convex for all 7 G F. The spaces Xj; = {x G X : 
supp IE C F-7} with the inherited norms || \\Q are simple, and X = 0^- (Z00 

sum). In what follows, X will always denote a semisimple space, and F, F-7, 
p, || We will be as above. We write Bo(r) = {x G X : ||a;||i < r}. 

Let 7 C M be an interval. A function u : / -» [0,00) is called log-convex 
if ti(a0 + (1 - a)^) < '?i(6>)a^((9/)1"a for any (9, ^ G J, a G (0,1). That is, 
logu (allowed to take the value —00) is to be convex. If such a u vanishes 
on / then it must be identically 0 on int /. 
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Lemma 2.1. Suppose Uj are log-convex on I and Cj G [0, oo) for j in some 
index set J. Ifu = Y^ cjuj converges then it is log-convex. 

Proof. This is certainly not new. Assuming J is finite, with an arbitrary 
collection £ of numbers ^ > 0, u^ = YIJ(CJUJ/^J)^ is log-convex.   Since 

u = sup^ uJ J by the inequality between the arithmetic and geometric 
means, u is indeed log-convex. By passing to the limit the lemma is obtained 
for arbitrary J. 

Proposition 2.2. If 9, 9' e R, a e [0,1], and x € X then 

(2.1) IMIa*+(i-a)*' < lkll?ll^lljra, 

i.e. 11 a; || 0 is a log-convex function of 9. Also, it is increasing for 9 > 0. 

Proof. This follows from Lemma 2.1 because the maximum of log-convex 
functions is also log-convex; and because even, convex functions increase on 
the positive half line. 

(2.1) implies that X is a DN space, i.e. it has a dominant norm, see [VI]. 

Proposition 2.3.  The function z/(0, x) = \\X\\Q is continuous on E x X. 

Proof. Proposition 2.2 implies u is continuous for fixed x. In addition, if 
|0| < a 

\\\x\\o - \\y\\e\ < \\x - y\\e < \\x - y\\a, hence 

v(0,x) - i/(r,y) = (\\x\\e - \\y\\e) + (\\y\\e - Mr) -+ 0 

as (9,x) -> (r,y). 
Recall that a set S C X is bounded if sup^^ ||a;||0 < oo for all 0. 

Proposition 2.4. A set K C X has compact closure if and only if it is 
bounded and for every 9 the series 

(2-2) ;>>(0,7)k(7)l 
7 

converges uniformly for x G K. 

Proof The series (2.2) converges for x E X, and its partial sums are uni- 
formly equicontinuous: 

| £ P(0,7)|s(7)|- E P(^7)|y(7)l| <n\\x-y\\g, 
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To C T finite. If K has compact closure, the Arzela-Ascoli theorem implies 
(2.2) converges uniformly; also K must be bounded. 

Conversely, assume K is bounded and (2.2) converges uniformly. In a 
complete metric space such as X, having compact closure is equivalent to 
being totally bounded. To see this latter property, fix 9 and e > 0, choose a 
finite FQ C F such that 

X>(0,7)l*(7)l<f     forsGK 
r\ro 

Denote the characteristic function of To by x : r -> {0,1}, and introduce the 
projection ^(x) — xx' Since ^{K) is a bounded set in a finite dimensional 
space, it can be covered by finitely many balls BQ(e/2) + xi, i = 1,..., m. It 
follows that K is covered by the balls ^(e) + x^ so that it is indeed totally 
bounded. 

Now consider a bounded function a : T —► [0, oo). Multiplication by a 
induces a continuous linear operator x \-> ax in X, and thus we obtain an 
action of the multiplicative semigroup of bounded functions a : T —t [0, oo) 
on X. If A C X, let a A denote its image under a, and consider 

(2.3) E — {a : T -> [0,1)   |   <JBO(1) has compact closure for some 6}. 

Theorem 2.5. (a) If a £ S and e > 0 then TQ = {7 G T : (7(7) > e} is 
finite; 

(b) E is closed under multiplication; 

(c) if a E S and a is a positive number then aa G E; 

(cty if cr G E then GBQ(R) has compact closure in BQ(R) for all 9 G M, 
i?>0; 

(e) converseiy, for any compact L C BQ{R) there are o G E and a compact 
L\ C BQ{K) such that L = ovLi. 

Proof. It will suffice to give the proof under the assumption that X is simple. 
(a) With Y" = {x G X : supp x C FQ}, the set Y fl C7^(l) is a neighbor- 

hood of 0 G Y. If it has compact closure then Y must be finite dimensional, 
i.e. FQ is finite. 

(b) follows simply because the continuous image of a compact set is also 
compact. 
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(c) If a > 1 then ^(j) < (7(7) and the claim is obvious. Otherwise let 
CTBQQ) have compact closure, and with arbitrary Fi C F, x E X, r G M, 
and variable a G [0,1] put 

(2.4) u(a)=    J2    ^ + ^7)cT(7)a|x(7)|; 
7€r\ri 

we use the convention 0° = 1. Lemma 2.1 implies u is log-convex, whence 

(2.5) u(a) < uiQ)1'01^!)" < u(l)Q, 

provided x E 5^(1). Use this first with Fi = 0, to obtain 

lkoa;||0+aT < lka;||^T. 

Thus || ||^+aT is bounded on O-^JB^I). Since r is arbitrary, this means 
aaB0(l) is bounded, provided a E (0,1]. To show o-ajB^(l) has compact 
closure, we use Proposition 2.4. Fix e > 0, choose a finite Fi C F such that 

Yl P(0 + T>7M7)|s(7)l < c,   x E ^(1). 
r\ri 

By (2.5) 

J] p(e + or,7M7)ak(7)| < c^,   x E 5,(1), 
r\ri 

so that Xlr^(^ + aT5 7)l2/(7)l converges uniformly for y E (Ja^(l). This 
being true for all r E K, aa

JB^(l) has compact closure by Proposition 2.4. 
(d) If a E S, then by part (c) cr1/2BCJ(l) has compact closure for some 

v. Fix 6 E M, let r = 2(a; - 0) and c = sup^0 \\<r1/2y\\o+T/\\y\\u, < 00. With 
Fi = 0 and w as in (2.4) we have u(l/2) < u(0)u(l)/u(l/2), or 

lk1/2^L < Ikll^lla^n^/iicT1/^!!, < cllxH,. 

In other words, cr1/2^^) C J5w(cJf2), and so (TBQ(R) C a^B^cR) has 
compact closure. This closure is contained in BQ(R), because super < 1 by 
part (a), and (d) indeed holds. 

(e) We can assume 0 > 0. Fix q E (supL(|| \\Q/R)
1
/

2
, 1), and construct a 

sequence 0 = FQ C FI C ... C F, each Ym finite, so that 

(2.6) ^p(T,7)k(7)l<4-m(l-g)V^        xEL, r^^ + m. 
r\rm 
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Since the left hand side increases with r > 0, the same inequality holds if 
|T| < 9 + m. (2.6) implies a;(7) = 0 if x € L, 7 £ IJm rm = r*. Define 

a(7) = 1 0, 
for 7 € rm+i \ I\ 
for 7 ^ r*, 

and a closed set Li = {y G X : ay G -^,2/(7) = 0 if 7 ^ F*}. Obviously 
crLi = L. Since for any y € Li, iV = 0,1,..., | r |< 6 + N, and x = ay 

E p(^7)|y(7)l < E    E    2mrt(T,7)k(7)l 
rxr^v m>Ar rm+i\rm 

< E 2~m(l - <i)m(iR < 2~NRI 
m>N 

Li C BQ(R) is compact by Proposition 2.4. 

3. Monomial expansions. 

Now we bring in the torus 

(3.1) T={t:r->IR/Z}; 

with the product topology T is a compact Abelian group. In this section we 
shall consider certain complex manifolds Q, on which T acts by biholomor- 
phisms. The action will induce the expansion of functions / G 0(0.) in so 
called monomial series, and we shall study convergence properties of such 
series. 

Some more notation and terminology. A function k : F -> N U {0} with 
finite support will be called a multiindex. In this paper k will always stand 
for a multiindex, #& for the cardinality of its support, and |fe| for $^7 £(7). 

If t E T we write k • t for £7 M7M7) € H/z; if z : T -* C we write ^ for 

n7 ^(7)*^ G C The Haar measure on T of total mass 1 will be denoted 
dt. With X a semisimple space we define an action p of T on X by 

(3.2) foaOfr) = e^Wxfr),   * € T, re G X. 

This is a continuous action, isometric for all norms || ||^. 
If D is a topological space, 5 : D —► (0,00) and 9 : D -+ R are continuous 

functions, define 

(3.3) £>„(«) = {fox) eDxX:  \\x\\g^ < s(0}. 
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Prom now on we assume D is a complex manifold, locally biholomorphic to 
a Prechet space. Proposition 2.3 implies fi = DQ{S) is open in D x X, hence 
it is a complex manifold. 

For f 6 D and k a multiindex define 

Mk{£) =      sup      [a;* |,        and 
Nko<*(0 

k 

Clearly, for any monomial cxk 

(3.5) |c| =      sup      \ca*\/Mk(€). 
Me{t)<s(C) 

Proposition 3.1. (a) The series in (3.4) converges uniformly on compact 
subsets ofCxQ, and AQ)S is continuous. 

(b) Given fj, G (0,1) there is a q ^ 0 such that A^jS(g, •) is bounded on 
De(fis). 

Proof. If X = 0 Xj is the decomposition of X into simple spaces, corre- 

sponding to a partition P = (JPJ, and AQS are the associated functions, one 
easily checks that 

Therefore it suffices to prove the Proposition for X simple, which we shall 
henceforward assume. Define a continuous map A : D x X —>• /1(r) by 
A(Z,x){'Y)=p(e(£),>y)x('y)/s(Z). The image of {^ x J?*(0(s(0) is dense in 
the unit ballJ5 of/^P). Hence M^ = s\ipyeB \yk\ = sup^^^^,^) \A(^x)kl 
and setting 

A(q,y) = J£\q\*k\yk\/Mk,      yeB, 
k 

we have Aoi8(q,z) = A(q,Az) by (3.5). The proposition thus follows from 
the corresponding results in /1(r), see [LI, Theoreme 2.1] and [L3, Lemma 
4.1]. 

If V is a sequentially complete locally convex space whose topology is 
given by a family ^ of seminorms, functions / € 0(fi; V) can be analyzed 
using the torus action 

P*(&aO = (6Ptx),        *GT, fox) eft. 
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We expand / in a (partial) monomial series 

(3.6) /~I>'   /*= [e-^tifdt, 
k JT 

with fk G 0(0,] V). By restricting to the dense subset fio C fi of pairs (^, x) 
with supp x finite, one finds that /*;(£,#) = afc(£)a;fe, where a^ G 0(D; V).. 
Convergence of finite dimensional Taylor series implies that ^ fk = / on 

fto- We shall call /jfc the monomial components of /. 

Theorem 3.2.  (a)   The monomial components of f G (9(fi; V) satisfy 

(3.7) supafc sup ^(/fc) < oo,    a G S, ^ € *, if C JD compact, 

and the series ^ /jfe converges to /, uniformly on compact subsets of ft. 
(bj Converseiy if a^ G 0(1?; V) and /*(£, x) = ak{(i)xk satisfy (3.7) then 

Y^fk converges to some h G 0(Cl;V), uniformly on compact subsets ofQ,. 
The monomial expansion ofh is Ylfk- 

Proof, (b) Any compact subset of Q, can be covered with finitely many 
compact sets of form KxL C fi, K C D, L C X, such that sup^ \9\ = r < oo 
and 

(3.8) sup||a;||T < inf s = 5. 
xeL K 

Therefore, to prove uniform convergence on compacts it suffices to attend to 
compact sets of the above form. By (3.8) L C BT(S), and Proposition 2.2 
implies KxBr(S) C O. Using Theorem 2.5(e) choose a G SandLi C BT(S) 
compact so that aLi = L; thus K x Li C ft. With arbitrary ^ G *£, ^ G if, 
a; G I/, and y G Li such that ay = x we have 

(3.9) </>(/*(£,*)) = °kiKfk&v)) = ^      sup      WibK^JJI^'l/MfcK), 
lklU(o<*(0 

by (3.5). Since by Proposition 3.1 X] 1^1/^(0 converges uniformly for 
(£,?/) G K x Li, (3.7) and (3.9) imply that YL^Uk)-, hence also Yjfk con- 
verges, uniformly on K x L. Thus ^ /^ converges uniformly on compacts, 
its sum h is easily seen to be holomorphic, see e.g. [L3, Propositions 2.1, 
2.2] that carry over to our current set up; and upon evaluating the integrals 
in (3.6) with f = h one verifies that the monomial expansion of h is Y, fk- 
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(a) To prove (3.7) let S = max^s and a = supra < 1, cf. Theorem 
2.5(a). By Theorem 2.5(d) the set 

P = {(£,ax) : fax) 6 Kfa)} CKx aBQ(S) 

has compact closure. Indeed P C ft: for given fay) e P, let fay) = 
liuini^axn) with (tmXn) € K9(s). Then \\y\\0^) = limn \\(Jxn\\e^n) < 
limna5(^n) < sfa shows fay) G ft. 

Therefore supp^(/) = c < oo, so that by (3.6) c > suippip(fk) = 
cr^sup^^) tpifk), and (3.7) follows. Now (b) implies the convergence of 
J2fk- Since its sum, a holomorphic function, agrees with / on QQ, the two 
must also agree on ft. 

4. Approximation. 

In this section we are going to prove our main result. Let X be semisimple, 
E and V as before. 

Theorem 4.1. Let D be a (Unite dimensional) Stein manifold, Df C D 
open, K C D' an O(D) convex compact. Let furthermore r, R : D —> (0, oo) 
and 9 : D —> E be continuous, r < R. With notation as in (3.3) suppose 
f e 0(D,

e{R)]V)J ip e *, and e > 0. Then there exists 0 6 0(Z? x X]V) 
such that (p(f — g) < e on Ke{r). 

The proof will be based on Theorem 3.2. To facilitate calculations with 
estimates like (3.7) we start by formulating 

Lemma 4.2. (a) Suppose JC is a set of multiindices, and for each k G /C we 
are given numbers Ck, d^ > 0 such that 

supcr^Cfc < oo, s\ipcrkdk < oo 
keJC keJC 

for all a € S. If a, /? € (0, oo) then 

(4.1) supcr^df < oo,        a G S. 
fce/c 

(bj If Q > 0, a e S then sup*. c^Q** < oo. 

Proof, (a) If a G S then ai = cr1/(2«)5 a2 = ^1/(2^) e S by Theorem 2.5(c). 

Since crkc^d^ = (a^c^ia^dk)^, (4.1) follows,   (b) We can assume Q > 1. 
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Given o e E, the set TQ = {7 G T : a(j) > 1/Q} is finite according to 
Theorem 2.5(a). Define ai : T -> [0,1) by 

Then snpka
kQ*k < supka^Q\r^ < Q™. 

Proposition 4.3. With assumptions and notation as in Theorem 4.1, let 
G CC D' be an open neighborhood of K. There exists h G 0(G x X\V) 
such that <p(f - h) < e on Ke{r). 

Proof. Let / = $2 fk be the monomial expansion of /. Fix a b G (1,00) such 
that b2r < R on G. With Q > 1, €1 > 0 to be determined later, define 

(4.2) /C = {fc :  sup   V(/fc) > Q-#*&l*lci} 

and 

(4.3) h = YJ fk- 
keK, 

First we prove that /i G C?(G x X;^). This would follow if we could 
show that (4.3) converges uniformly on compact subsets of Ge(^R), for any 
constant K > 1. By Theorem 3.2(b) it therefore suffices to prove 

(4.4) sup ak   sup    ip(fk) < 00,   a G E, ^ € *. 

To verify (4.4) we can assume ^ > (p (otherwise replace ^ by V + ¥>)■ We 
have 

sup akck < oo, cfc = Q-*kbW/ sup  ^(A), 
. keJC Ge{R) 

sup (jfcdA. < 00, dk = Q#fc sup ^(/fc), 
A; G^(ii) 

by (4.2) resp. Theorem 3.2(a) and Lemma 4.2(b). Choose a > 0 and 
/3 = a + 1 so that ba = K. Then for k G /C 

c^ = Q#*(nW   sup   ^(/ib)>sup    W*), 
G0(R) Ge(KR) 

so that by Lemma 4.2(a), (4.5) implies (4.4), and h is indeed holomorphic 
on G x X. 
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Next we estimate / - h on Gg(r). Let s = R/b and Mk(^) as in (3.4), 
then for (f,a;) e Ge(s) (3.5) implies 

(4-6) ¥>(/*(£,*)) < 1**1 sup <p(fk)/Mk(S). 
Ge(s) 

When k i K 

(4.7) sup  <p{fk) = 6-lfel sup   ^(/fc) < Q-#fc
ei 

by (4.2), so that putting (4.3), (4.6), and (4.7) together 

k^K k 

for fax) e Go(s). Fix Q so large that A^5(l/Q, •) is bounded on De{s/b), 
cf. Proposition 3.1(b), then 

sup <p{f - h) < ci   sup    Ao,s{l/Q, •) < c, 

provided ei is small enough. 
In particular, when D = K(= £>' = G) is a singleton, we obtain Theorem 

1.1 for all semisimple X, even for vector valued /. 
Proof of Theorem 4.1. Let P = max^r, then Ko(r) C K x Bo(-P)- In 
light of Proposition 4.3 all we need to prove is that if G C D is an open 
neighborhood of K, and h G 0(G x X; F) then there is a g e 0(D x X; F) 
such that (^(/i - g) < e on K x -Bo(P). Assume first that D = C^ and if 
is a polydisc centered at 0. Now C^ 0 X is also semisimple, and with an 
appropriate choice of norms || \\'T on it, K x BQ(P) will be a ball {fax) E 
C^ 0 X : ||(f, a;)||o < P}- Hence we can apply Theorem 1.1, by now proved 
for semisimple spaces and V valued functions, to obtain g as desired. The 
case of general D, G, K can be reduced to the special case of polydiscs, as 
explained in the proof of [LI, Theoreme 1.1]. 

5. Approximation, bis. 

For application in [L5] we shall need approximations in open sets that are 
defined in terms of a metric rather than a family of norms. First we shall 
discuss one of the many ways to metrize a Frechet space. 
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Proposition 5.1. Suppose that the topology of a Frechet space X is in- 
duced by a family of norms \\ \\Q, 0 £ (0, oo)7 and \\x\\0 is an increasing 
continuous function of 9. Define 

(5.1) ||z|| = inf{cx € (0, oo) : ||a:||1/a < a},        x E X. 

Then \\ \\ is a pseudonorm that induces the topology of X, and \\x\\ < R is 
equivalent to \\x\\i/R < R, R G (0, oo). 

That || || is a pseudonorm means ||a;|| > 0, with equality if and only if 
x = 0; ||A£|| < ||n;|| if |A| < 1; and \\x + y\\ < \\x\\ + ||y||. 
Proof. Of the three axioms of pseudonorms we shall only verify the triangle 
inequality. By the intermediate value theorem, for any x ^ 0 there is a 
unique a such that ||a;||i/Q: = a; and this a — ||rr||. Suppose y ^ 0, and put 
i8=||y||. Then 

W* + y||l/(a+/3) < lklll/(a+/3) + Ily||l/(a+i8) < Iklll/a + hWl^ =a + p. 

Hence, by (5.1), ||a; + y|| < a + (3 = ||a;|| + \\y\\. Since this inequality is trivial 
when x or y = 0, || || is indeed a pseudonorm. 

Next, if ||a:|| = a < R then ||a:||i/ft < ||x||i/a = a < R; and conversely, if 
Iklli/K < R then (5.1) (and continuity of ||a;||^) implies ||a;|| < i?. Prom this 
it also follows that the balls {x G X : ||a;|| < i?}, R > 0 form a neighborhood 
basis of 0 G X as claimed. 

Now return to our semisimple space X, and endow it with the 
pseudonorm (5.1). If D is a topological space, and R : D -» (0, oo) is 
continuous, let 

D(R) = {fox)eDxX:\\x\\<R(Z)}. 

Theorem 5.2. Let D be a Stein manifoid, D' C D open, K C D1 an 0{D) 
convex compact. Let furthermore r, R : D -» (0, oo) be continuous, r < R. 
Given f G 0(D'(R)]V)9 <p G *, and e > 0, there exists g G 0(D x X]V) 
such that (p(f — g) < e on K(r). 

Proof. Since D(R) = De(R) with 0 = 1/R, and K{r) = K1/r{r) C ^(r) 
according to Proposition 5.1, the theorem follows from Theorem 4.1. 

6. A necessary condition. 

In this last section we want to point out that even for a weak version of 
our approximation theorems to hold in a Prechet space X it is necessary 
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that X have a dominant norm. This condition, also called (DN), requires 
that the topology of X be induced by norms || ||n, n = 1,2,... satisfying 
IMIn — IMIilMU-fi- DN spaces were introduced by Vogt, and their relevance 
to complex analysis was further explored by himself, Dineen, Meise, and 
others, see [D, VI, V2, MV]. Our theorem below easily follows from the 
analysis of Meise and Vogt. 

Theorem 6.1. Suppose that in a Frechet space X any neighborhood U 
of 0 £ X contains another neighborhood W of 0 such that holomorphic 
functions on U can be approximated by entire functions, uniformly on W. 
Then X has a dominant norm. 

Proof. Suppose X fails to have a dominant norm, and write X = C 0 Y", 
with Y a closed subspace. In [VI, MV] Meise and Vogt construct a sequence 
hj e 0(Y) such that there is no / G 0(C © Y) with 

(6.1) fti,-)=hj,        jeN. 

This will imply that for the sets UR = {(77, y) G C © Y : \r]\ < R} there is no 
W as in the theorem. 

Indeed, suppose there is a corresponding W for Ui. Then RW will do 
for UR = RUi. Let UJ G (9(C) have simple zeros at each n G N, and no other 
zero. Extend UJ to C © Y, constant in the Y variable. Inductively construct 
fn G 0(C © y), n G N, such that 

fnijr) =hji        J = l,2,...,n, 

and \fn — /n+il < 2~n on nW. This can be done as follows. Take /i(77, y) = 
hi{y)\ if fn has been found, construct—by Lagrange interpolation—an / G 
0(C © Y) such that l(j, •) = hj, j < n + 1. Thus (I - fn)/u is holomorphic 
on Un, and there is a g G 0(C © V) such that 

(l-fn) _g 

LJ 
< 

2ns\ipnW\uj\ 

on nW. Hence fn+i = I — ujg is as required. 
Now the properties of /n imply that / = lim/n G 0(C ®Y) satisfies 

(6.1), after all. This contradiction proves the theorem. 
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