Holomorphic approximation in Fréchet spaces

LÁSZLÓ LEMPERT

Abstract

We prove a Runge type approximation result in a class of Fréchet spaces that includes the space s of rapidly decreasing sequences.

1. Introduction.

In this paper we shall prove a Runge type approximation result in a class of Fréchet spaces that includes the space s of rapidly decreasing sequences. The space s is special among Fréchet spaces. For one thing, spaces frequently occurring in geometry, such as smooth functions on a closed manifold, are isomorphic to it; it also has certain universality properties. As demonstrated in [L4], approximations are a key ingredient to cohomology vanishing in Banach spaces. Similarly, in [L5] we shall use the results of this paper to study analytic cohomology in Fréchet spaces.

The class of spaces we shall consider are certain generalized sequence spaces. Let Γ be a set and $p: \mathbb{R} \times \Gamma \rightarrow(0, \infty)$ a function such that $\log p(\cdot, \gamma)$ is even and convex for every $\gamma \in \Gamma$. If $x: \Gamma \rightarrow \mathbb{C}$ and $\theta \in \mathbb{R}$, define

$$
\begin{equation*}
\|x\|_{\theta}=\sum_{\gamma} p(\theta, \gamma)|x(\gamma)| \leq \infty \tag{1.1}
\end{equation*}
$$

and put

$$
\begin{equation*}
X=\left\{x: \Gamma \rightarrow \mathbb{C} \mid\|x\|_{\theta}<\infty \text { for every } \theta\right\} \tag{1.2}
\end{equation*}
$$

The norms $\left\|\|_{\theta}, \theta \in \mathbb{R}\right.$, endow X with the structure of a complete locally convex topological vector space. Convexity of $\log p$ implies that the norms $\left\|\|_{\theta}\right.$ for $\theta \in \mathbb{Z}$ would induce the same topology, hence X is a Fréchet space. If $\theta, r \in \mathbb{R}, r>0$, put $B_{\theta}(r)=\left\{x \in X:\|x\|_{\theta}<r\right\}$. With these assumptions and notation we shall prove

Theorem 1.1. Given $0<r<R, \theta \in \mathbb{R}$, any holomorphic function f : $B_{\theta}(R) \rightarrow \mathbb{C}$ can be approximated by a holomorphic $g: X \rightarrow \mathbb{C}$, uniformly on $B_{\theta}(r)$.

[^0]When p is independent of $\theta, X \approx l^{1}(\Gamma)$, a case covered in [L1]. When $\Gamma=\mathbb{N}$ and $p(\theta, \gamma)=\gamma^{|\theta|}$, the space X becomes s. Certain weights p define spaces that are isomorphic to complemented subspaces of s, such as $p(\theta, \gamma)=$ $2^{\gamma|\theta|}$, with the corresponding $X \approx \mathcal{O}(\mathbb{C})$. Beyond these, we do not know of weights that would lead to spaces X that occur in other contexts as well. Still, Theorem 1.1 is formulated in the given generality, rather than just for $X=s$, because this formulation brings out the features of s that matter for approximation. Thus nuclearity or separability are irrelevant. On the other hand, convexity of $\log p$ has to do with the existence of a so called dominant norm-all $\left\|\|_{\theta}\right.$ will be such in the case at hand,-a condition that is necessary for approximation, see section 6. (The assumption that p is even simplifies the exposition but could be done away with.) We do not know how important it is that the norms in (1.1) are isomorphic to l^{1} norms. In Banach spaces approximation theorems are available for much more general norms, see [L2].

It is remarkable that Theorem 1.1 depends on a certain convexity assumption. The importance of convexity to complex analysis has been a main theme in the twentieth century. Theorem 1.1 and the related condition on dominant norms reinforce this idea. There is a difference, though: while previously geometric convexity (pseudoconvexity, plurisubharmonicity) was the issue, here we deal with a convexity property of the topology.

For the purposes of [L5] Theorem 1.1 above is too special. In sections 4,5 we shall formulate and prove the generalizations that will be needed in [L5]. For the moment we content ourselves with sketching a proof in the situation of Theorem 1.1; it is an extension of the proof in [L1].

Thus, one first expands f in a monomial series

$$
\begin{equation*}
f(x)=\sum_{k} a_{k} x^{k}=\sum_{k} a_{k} \prod_{\gamma \in \Gamma} x(\gamma)^{k(\gamma)}, \quad a_{k} \in \mathbb{C} \tag{1.3}
\end{equation*}
$$

where k runs through multiindices, i.e. maps $k: \Gamma \rightarrow \mathbb{N} \cup\{0\}$ with finite support. One shows that the series in (1.3) converges to f uniformly on compact subsets of $B_{\theta}(R)$, and proves sharp estimates for the coefficients a_{k} ("Cauchy-Hadamard formula"). These estimates are expressed in terms of a certain semigroup Σ of compact operators in X. It is in establishing various properties of Σ (Theorem 2.5) that convexity of $\log p$ is needed. The proof is concluded by showing that with a carefully chosen family of positive numbers ω_{k} the function $g(x)=\sum_{\left|a_{k}\right| \geq \omega_{k}} a_{k} x^{k}$ has the required properties.

We shall assume the reader has some familiarity with basic complex analysis in finite and infinite dimensions. [H, D, No] are good references for much more than what we need here. We shall write $\mathcal{O}\left(M ; M^{\prime}\right)$ for the family
of holomorphic maps between complex manifolds M, M^{\prime}, and $\mathcal{O}(M)$ when $M^{\prime}=\mathbb{C}$.

2. Topology.

We start by introducing notation and terminology, partly following [L2]. Thus, V will always denote a sequentially complete, locally convex topological vector space over \mathbb{C}, whose topology is given by a family Ψ of seminorms. Suppose $v, v_{j} \in V$, for j belonging to some index set J. We write $\sum v_{j}=v$ to mean that for any $\psi \in \Psi$ and $\epsilon>0$ there is a finite $J_{0} \supset J$ such that $\psi\left(v-\sum_{J_{1}} v_{j}\right)<\epsilon$ whenever $J_{1} \supset J_{0}$ is finite. We say that a series $\sum v_{j}$ is normally convergent if $\sum \psi\left(v_{j}\right)<\infty$ for all $\psi \in \Psi$. If only countably many v_{j} differ from zero then normal convergence of $\sum v_{j}$ implies $\sum v_{j}=v$ for some $v \in V$. Suppose S is an arbitrary set and $f_{j}: S \rightarrow V, j \in J$. We say that $\sum f_{j}$ converges normally on S if $\sum \sup _{S} \psi\left(f_{j}\right)<\infty$ for all $\psi \in \Psi$, and that $\sum f_{j}=f: S \rightarrow V$ uniformly if for every $\psi \in \Psi$ and $\epsilon>0$ there is a finite $J_{0} \subset J$ such that $\sup _{S} \psi\left(f-\sum_{J_{1}} f_{j}\right)<\epsilon$ whenever $J_{1} \supset J_{0}$ is finite. Pointwise and normal convergence on S together imply uniform convergence on S. If S is a topological space, the f_{j} are continuous, and $f=\sum f_{j}$ converges uniformly on S then f is also continuous. Similarly, if S is an open subset of a locally convex space, the f_{j} are holomorphic, and $f=\sum f_{j}$ converges uniformly on S then f is holomorphic.

If $\Gamma, p,\| \|_{\theta}, X$ are as in the introduction, we shall refer to X as a simple space, a term we plan to restrict to this paper. For technical reasons we shall have to deal with l^{∞} sums of finitely many simple spaces as well, which we call semisimple. Thus a semisimple space X is of the form

$$
X=\left\{x: \Gamma \rightarrow \mathbb{C}\left|\max _{1 \leq j \leq n} \sum_{\gamma \in \Gamma^{j}} p(\theta, \gamma)\right| x(\gamma) \mid=\|x\|_{\theta}<\infty\right\}
$$

where $\Gamma^{j}, 1 \leq j \leq n$, partition Γ, and $p: \mathbb{R} \times \Gamma \rightarrow(0, \infty)$ is such that $\log p(\cdot, \gamma)$ is even and convex for all $\gamma \in \Gamma$. The spaces $X_{j}=\{x \in X$: supp $\left.x \subset \Gamma^{j}\right\}$ with the inherited norms $\left\|\|_{\theta}\right.$ are simple, and $X=\bigoplus X_{j}\left(l^{\infty}\right.$ sum). In what follows, X will always denote a semisimple space, and Γ, Γ^{j}, $p,\| \|_{\theta}$ will be as above. We write $B_{\theta}(r)=\left\{x \in X:\|x\|_{\theta}<r\right\}$.

Let $I \subset \mathbb{R}$ be an interval. A function $u: I \rightarrow[0, \infty)$ is called log-convex if $u\left(\alpha \theta+(1-\alpha) \theta^{\prime}\right) \leq u(\theta)^{\alpha} u\left(\theta^{\prime}\right)^{1-\alpha}$ for any $\theta, \theta^{\prime} \in I, \alpha \in(0,1)$. That is, $\log u$ (allowed to take the value $-\infty$) is to be convex. If such a u vanishes on I then it must be identically 0 on int I.

Lemma 2.1. Suppose u_{j} are log-convex on I and $c_{j} \in[0, \infty)$ for j in some index set J. If $u=\sum c_{j} u_{j}$ converges then it is log-convex.

Proof. This is certainly not new. Assuming J is finite, with an arbitrary collection ξ of numbers $\xi_{j}>0, u_{\xi}=\prod_{j}\left(c_{j} u_{j} / \xi_{j}\right)^{\xi_{j}}$ is log-convex. Since $u=\sup _{\xi} u_{\xi}^{1 / \sum \xi_{j}}$ by the inequality between the arithmetic and geometric means, u is indeed log-convex. By passing to the limit the lemma is obtained for arbitrary J.

Proposition 2.2. If $\theta, \theta^{\prime} \in \mathbb{R}, \alpha \in[0,1]$, and $x \in X$ then

$$
\begin{equation*}
\|x\|_{\alpha \theta+(1-\alpha) \theta^{\prime}} \leq\|x\|_{\theta}^{\alpha}\|x\|_{\theta^{\prime}}^{1-\alpha} \tag{2.1}
\end{equation*}
$$

i.e. $\|x\|_{\theta}$ is a log-convex function of θ. Also, it is increasing for $\theta \geq 0$.

Proof. This follows from Lemma 2.1 because the maximum of log-convex functions is also log-convex; and because even, convex functions increase on the positive half line.
(2.1) implies that X is a DN space, i.e. it has a dominant norm, see [V1].

Proposition 2.3. The function $\nu(\theta, x)=\|x\|_{\theta}$ is continuous on $\mathbb{R} \times X$.
Proof. Proposition 2.2 implies ν is continuous for fixed x. In addition, if $|\theta| \leq a$

$$
\begin{aligned}
\left|\|x\|_{\theta}-\|y\|_{\theta}\right| & \leq\|x-y\|_{\theta} \leq\|x-y\|_{a}, \quad \text { hence } \\
\nu(\theta, x)-\nu(\tau, y) & =\left(\|x\|_{\theta}-\|y\|_{\theta}\right)+\left(\|y\|_{\theta}-\|y\|_{\tau}\right) \rightarrow 0
\end{aligned}
$$

as $(\theta, x) \rightarrow(\tau, y)$.
Recall that a set $S \subset X$ is bounded if $\sup _{x \in S}\|x\|_{\theta}<\infty$ for all θ.
Proposition 2.4. A set $K \subset X$ has compact closure if and only if it is bounded and for every θ the series

$$
\begin{equation*}
\sum_{\gamma} p(\theta, \gamma)|x(\gamma)| \tag{2.2}
\end{equation*}
$$

converges uniformly for $x \in K$.
Proof. The series (2.2) converges for $x \in X$, and its partial sums are uniformly equicontinuous:

$$
\left|\sum_{\gamma \in \Gamma_{0}} p(\theta, \gamma)\right| x(\gamma)\left|-\sum_{\gamma \in \Gamma_{0}} p(\theta, \gamma)\right| y(\gamma)\left|\mid \leq n\|x-y\|_{\theta}\right.
$$

$\Gamma_{0} \subset \Gamma$ finite. If K has compact closure, the Arzelà-Ascoli theorem implies (2.2) converges uniformly; also K must be bounded.

Conversely, assume K is bounded and (2.2) converges uniformly. In a complete metric space such as X, having compact closure is equivalent to being totally bounded. To see this latter property, fix θ and $\epsilon>0$, choose a finite $\Gamma_{0} \subset \Gamma$ such that

$$
\sum_{\Gamma \backslash \Gamma_{0}} p(\theta, \gamma)|x(\gamma)|<\frac{\epsilon}{2} \quad \text { for } x \in K
$$

Denote the characteristic function of Γ_{0} by $\chi: \Gamma \rightarrow\{0,1\}$, and introduce the projection $\pi(x)=\chi x$. Since $\pi(K)$ is a bounded set in a finite dimensional space, it can be covered by finitely many balls $B_{\theta}(\epsilon / 2)+x_{i}, i=1, \ldots, m$. It follows that K is covered by the balls $B_{\theta}(\epsilon)+x_{i}$, so that it is indeed totally bounded.

Now consider a bounded function $\sigma: \Gamma \rightarrow[0, \infty)$. Multiplication by σ induces a continuous linear operator $x \mapsto \sigma x$ in X, and thus we obtain an action of the multiplicative semigroup of bounded functions $\sigma: \Gamma \rightarrow[0, \infty)$ on X. If $A \subset X$, let σA denote its image under σ, and consider

$$
\begin{equation*}
\Sigma=\left\{\sigma: \Gamma \rightarrow[0,1) \mid \sigma B_{\theta}(1) \text { has compact closure for some } \theta\right\} \tag{2.3}
\end{equation*}
$$

Theorem 2.5. (a) If $\sigma \in \Sigma$ and $\epsilon>0$ then $\Gamma_{0}=\{\gamma \in \Gamma: \sigma(\gamma)>\epsilon\}$ is finite;
(b) Σ is closed under multiplication;
(c) if $\sigma \in \Sigma$ and α is a positive number then $\sigma^{\alpha} \in \Sigma$;
(d) if $\sigma \in \Sigma$ then $\sigma B_{\theta}(R)$ has compact closure in $B_{\theta}(R)$ for all $\theta \in \mathbb{R}$, $R>0$;
(e) conversely, for any compact $L \subset B_{\theta}(R)$ there are $\sigma \in \Sigma$ and a compact $L_{1} \subset B_{\theta}(R)$ such that $L=\sigma L_{1}$.

Proof. It will suffice to give the proof under the assumption that X is simple.
(a) With $Y=\left\{x \in X: \operatorname{supp} x \subset \Gamma_{0}\right\}$, the set $Y \cap \sigma B_{\theta}(1)$ is a neighborhood of $0 \in Y$. If it has compact closure then Y must be finite dimensional, i.e. Γ_{0} is finite.
(b) follows simply because the continuous image of a compact set is also compact.
(c) If $\alpha \geq 1$ then $\sigma^{\alpha}(\gamma) \leq \sigma(\gamma)$ and the claim is obvious. Otherwise let $\sigma B_{\theta}(1)$ have compact closure, and with arbitrary $\Gamma_{1} \subset \Gamma, x \in X, \tau \in \mathbb{R}$, and variable $\alpha \in[0,1]$ put

$$
\begin{equation*}
u(\alpha)=\sum_{\gamma \in \Gamma \backslash \Gamma_{1}} p(\theta+\alpha \tau, \gamma) \sigma(\gamma)^{\alpha}|x(\gamma)| \tag{2.4}
\end{equation*}
$$

we use the convention $0^{0}=1$. Lemma 2.1 implies u is log-convex, whence

$$
\begin{equation*}
u(\alpha) \leq u(0)^{1-\alpha} u(1)^{\alpha} \leq u(1)^{\alpha} \tag{2.5}
\end{equation*}
$$

provided $x \in B_{\theta}(1)$. Use this first with $\Gamma_{1}=\emptyset$, to obtain

$$
\left\|\sigma^{\alpha} x\right\|_{\theta+\alpha \tau} \leq\|\sigma x\|_{\theta+\tau}^{\alpha}
$$

Thus $\left\|\|_{\theta+\alpha \tau}\right.$ is bounded on $\sigma^{\alpha} B_{\theta}(1)$. Since τ is arbitrary, this means $\sigma^{\alpha} B_{\theta}(1)$ is bounded, provided $\alpha \in(0,1]$. To show $\sigma^{\alpha} B_{\theta}(1)$ has compact closure, we use Proposition 2.4. Fix $\epsilon>0$, choose a finite $\Gamma_{1} \subset \Gamma$ such that

$$
\sum_{\Gamma \backslash \Gamma_{1}} p(\theta+\tau, \gamma) \sigma(\gamma)|x(\gamma)|<\epsilon, \quad x \in B_{\theta}(1)
$$

By (2.5)

$$
\sum_{\Gamma \backslash \Gamma_{1}} p(\theta+\alpha \tau, \gamma) \sigma(\gamma)^{\alpha}|x(\gamma)|<\epsilon^{\alpha}, \quad x \in B_{\theta}(1)
$$

so that $\sum_{\Gamma} p(\theta+\alpha \tau, \gamma)|y(\gamma)|$ converges uniformly for $y \in \sigma^{\alpha} B_{\theta}(1)$. This being true for all $\tau \in \mathbb{R}, \sigma^{\alpha} B_{\theta}(1)$ has compact closure by Proposition 2.4.
(d) If $\sigma \in \Sigma$, then by part (c) $\sigma^{1 / 2} B_{\omega}(1)$ has compact closure for some ω. Fix $\theta \in \mathbb{R}$, let $\tau=2(\omega-\theta)$ and $c=\sup _{y \neq 0}\left\|\sigma^{1 / 2} y\right\|_{\theta+\tau} /\|y\|_{\omega}<\infty$. With $\Gamma_{1}=\emptyset$ and u as in (2.4) we have $u(1 / 2) \leq u(0) u(1) / u(1 / 2)$, or

$$
\left\|\sigma^{1 / 2} x\right\|_{\omega} \leq\|x\|_{\theta}\|\sigma x\|_{\theta+\tau} /\left\|\sigma^{1 / 2} x\right\|_{\omega} \leq c\|x\|_{\theta}
$$

In other words, $\sigma^{1 / 2} B_{\theta}(R) \subset B_{\omega}(c R)$, and so $\sigma B_{\theta}(R) \subset \sigma^{1 / 2} B_{\omega}(c R)$ has compact closure. This closure is contained in $B_{\theta}(R)$, because $\sup \sigma<1$ by part (a), and (d) indeed holds.
(e) We can assume $\theta \geq 0$. Fix $q \in\left(\sup _{L}\left(\| \|_{\theta} / R\right)^{1 / 2}, 1\right)$, and construct a sequence $\emptyset=\Gamma_{0} \subset \Gamma_{1} \subset \ldots \subset \Gamma$, each Γ_{m} finite, so that

$$
\begin{equation*}
\sum_{\Gamma \backslash \Gamma_{m}} p(\tau, \gamma)|x(\gamma)| \leq 4^{-m}(1-q)^{m} q^{2} R, \quad x \in L, \tau=\theta+m \tag{2.6}
\end{equation*}
$$

Since the left hand side increases with $\tau \geq 0$, the same inequality holds if $|\tau| \leq \theta+m$. (2.6) implies $x(\gamma)=0$ if $x \in L, \gamma \notin \bigcup_{m} \Gamma_{m}=\Gamma^{*}$. Define

$$
\sigma(\gamma)= \begin{cases}2^{-m} q, & \text { for } \gamma \in \Gamma_{m+1} \backslash \Gamma_{m} \\ 0, & \text { for } \gamma \notin \Gamma^{*}\end{cases}
$$

and a closed set $L_{1}=\left\{y \in X: \sigma y \in L, y(\gamma)=0\right.$ if $\left.\gamma \notin \Gamma^{*}\right\}$. Obviously $\sigma L_{1}=L$. Since for any $y \in L_{1}, N=0,1, \ldots,|\tau| \leq \theta+N$, and $x=\sigma y$

$$
\begin{aligned}
\sum_{\Gamma \backslash \Gamma_{N}} p(\tau, \gamma)|y(\gamma)| & \leq \sum_{m \geq N} \sum_{\Gamma_{m+1} \backslash \Gamma_{m}} 2^{m} q^{-1} p(\tau, \gamma)|x(\gamma)| \\
& \leq \sum_{m \geq N} 2^{-m}(1-q)^{m} q R<2^{-N} R
\end{aligned}
$$

$L_{1} \subset B_{\theta}(R)$ is compact by Proposition 2.4.

3. Monomial expansions.

Now we bring in the torus

$$
\begin{equation*}
T=\{t: \Gamma \rightarrow \mathbb{R} / \mathbb{Z}\} \tag{3.1}
\end{equation*}
$$

with the product topology T is a compact Abelian group. In this section we shall consider certain complex manifolds Ω on which T acts by biholomorphisms. The action will induce the expansion of functions $f \in \mathcal{O}(\Omega)$ in so called monomial series, and we shall study convergence properties of such series.

Some more notation and terminology. A function $k: \Gamma \rightarrow \mathbb{N} \cup\{0\}$ with finite support will be called a multiindex. In this paper k will always stand for a multiindex, $\# k$ for the cardinality of its support, and $|k|$ for $\sum_{\gamma} k(\gamma)$. If $t \in T$ we write $k \cdot t$ for $\sum_{\gamma} k(\gamma) t(\gamma) \in \mathbb{R} / \mathbb{Z}$; if $z: \Gamma \rightarrow \mathbb{C}$ we write z^{k} for $\prod_{\gamma} z(\gamma)^{k(\gamma)} \in \mathbb{C}$. The Haar measure on T of total mass 1 will be denoted $d t$. With X a semisimple space we define an action $\bar{\rho}$ of T on X by

$$
\begin{equation*}
\left(\bar{\rho}_{t} x\right)(\gamma)=e^{2 \pi i t(\gamma)} x(\gamma), \quad t \in T, x \in X \tag{3.2}
\end{equation*}
$$

This is a continuous action, isometric for all norms $\left\|\|_{\theta}\right.$.
If D is a topological space, $s: D \rightarrow(0, \infty)$ and $\theta: D \rightarrow \mathbb{R}$ are continuous functions, define

$$
\begin{equation*}
D_{\theta}(s)=\left\{(\xi, x) \in D \times X:\|x\|_{\theta(\xi)}<s(\xi)\right\} \tag{3.3}
\end{equation*}
$$

From now on we assume D is a complex manifold, locally biholomorphic to a Fréchet space. Proposition 2.3 implies $\Omega=D_{\theta}(s)$ is open in $D \times X$, hence it is a complex manifold.

For $\xi \in D$ and k a multiindex define

$$
\begin{gather*}
M_{k}(\xi)=\sup _{\|x\|_{\theta(\xi)}<s(\xi)}\left|x^{k}\right|, \quad \text { and } \\
\Delta_{\theta, s}(q, \xi, x)=\sum_{k}|q|^{\# k}\left|x^{k}\right| / M_{k}(\xi), \quad q \in \mathbb{C}, \quad(\xi, x) \in \Omega \tag{3.4}
\end{gather*}
$$

Clearly, for any monomial $c x^{k}$

$$
\begin{equation*}
|c|=\sup _{\|x\|_{\theta(\xi)}<s(\xi)}\left|c x^{k}\right| / M_{k}(\xi) \tag{3.5}
\end{equation*}
$$

Proposition 3.1. (a) The series in (3.4) converges uniformly on compact subsets of $\mathbb{C} \times \Omega$, and $\Delta_{\theta, s}$ is continuous.
(b) Given $\mu \in(0,1)$ there is a $q \neq 0$ such that $\Delta_{\theta, s}(q, \cdot)$ is bounded on $D_{\theta}(\mu s)$.

Proof. If $X=\bigoplus X_{j}$ is the decomposition of X into simple spaces, corresponding to a partition $\Gamma=\bigcup \Gamma_{j}$, and $\Delta_{\theta, s}^{(j)}$ are the associated functions, one easily checks that

$$
\Delta_{\theta, s}(q, \xi, x)=\prod_{j} \Delta_{\theta, s}^{(j)}\left(q, \xi, x \mid \Gamma_{j}\right)
$$

Therefore it suffices to prove the Proposition for X simple, which we shall henceforward assume. Define a continuous map $A: D \times X \rightarrow l^{1}(\Gamma)$ by $A(\xi, x)(\gamma)=p(\theta(\xi), \gamma) x(\gamma) / s(\xi)$. The image of $\{\xi\} \times B_{\theta(\xi)}(s(\xi))$ is dense in the unit ball B of $l^{1}(\Gamma)$. Hence $M_{k}=\sup _{y \in B}\left|y^{k}\right|=\sup _{\|x\|_{\theta(\xi)}<s(\xi)}\left|A(\xi, x)^{k}\right|$, and setting

$$
\Delta(q, y)=\sum_{k}|q|^{\# k}\left|y^{k}\right| / M_{k}, \quad y \in B
$$

we have $\Delta_{\theta, s}(q, z)=\Delta(q, A z)$ by (3.5). The proposition thus follows from the corresponding results in $l^{1}(\Gamma)$, see [L1, Théorème 2.1] and [L3, Lemma 4.1].

If V is a sequentially complete locally convex space whose topology is given by a family Ψ of seminorms, functions $f \in \mathcal{O}(\Omega ; V)$ can be analyzed using the torus action

$$
\rho_{t}(\xi, x)=\left(\xi, \bar{\rho}_{t} x\right), \quad t \in T,(\xi, x) \in \Omega
$$

We expand f in a (partial) monomial series

$$
\begin{equation*}
f \sim \sum_{k} f_{k}, \quad f_{k}=\int_{T} e^{-2 \pi i k \cdot t} \rho_{t}^{*} f d t \tag{3.6}
\end{equation*}
$$

with $f_{k} \in \mathcal{O}(\Omega ; V)$. By restricting to the dense subset $\Omega_{0} \subset \Omega$ of pairs (ξ, x) with $\operatorname{supp} x$ finite, one finds that $f_{k}(\xi, x)=a_{k}(\xi) x^{k}$, where $a_{k} \in \mathcal{O}(D ; V)$. Convergence of finite dimensional Taylor series implies that $\sum f_{k}=f$ on Ω_{0}. We shall call f_{k} the monomial components of f.

Theorem 3.2. (a) The monomial components of $f \in \mathcal{O}(\Omega ; V)$ satisfy

$$
\begin{equation*}
\sup _{k} \sigma^{k} \sup _{K_{\theta}(s)} \psi\left(f_{k}\right)<\infty, \quad \sigma \in \Sigma, \psi \in \Psi, K \subset D \text { compact } \tag{3.7}
\end{equation*}
$$

and the series $\sum f_{k}$ converges to f, uniformly on compact subsets of Ω.
(b) Conversely, if $a_{k} \in \mathcal{O}(D ; V)$ and $f_{k}(\xi, x)=a_{k}(\xi) x^{k}$ satisfy (3.7) then $\sum f_{k}$ converges to some $h \in \mathcal{O}(\Omega ; V)$, uniformly on compact subsets of Ω. The monomial expansion of h is $\sum f_{k}$.

Proof. (b) Any compact subset of Ω can be covered with finitely many compact sets of form $K \times L \subset \Omega, K \subset D, L \subset X$, such that $\sup _{K}|\theta|=\tau<\infty$ and

$$
\begin{equation*}
\sup _{x \in L}\|x\|_{\tau}<\inf _{K} s=S \tag{3.8}
\end{equation*}
$$

Therefore, to prove uniform convergence on compacts it suffices to attend to compact sets of the above form. By (3.8) $L \subset B_{\tau}(S)$, and Proposition 2.2 implies $K \times B_{\tau}(S) \subset \Omega$. Using Theorem 2.5(e) choose $\sigma \in \Sigma$ and $L_{1} \subset B_{\tau}(S)$ compact so that $\sigma L_{1}=L$; thus $K \times L_{1} \subset \Omega$. With arbitrary $\psi \in \Psi, \xi \in K$, $x \in L$, and $y \in L_{1}$ such that $\sigma y=x$ we have

$$
\begin{equation*}
\psi\left(f_{k}(\xi, x)\right)=\sigma^{k} \psi\left(f_{k}(\xi, y)\right)=\sigma^{k} \sup _{\|z\|_{\theta(\xi)}<s(\xi)} \psi\left(f_{k}(\xi, z)\right)\left|y^{k}\right| / M_{k}(\xi) \tag{3.9}
\end{equation*}
$$

by (3.5). Since by Proposition $3.1 \sum\left|y^{k}\right| / M_{k}(\xi)$ converges uniformly for $(\xi, y) \in K \times L_{1},(3.7)$ and (3.9) imply that $\sum \psi\left(f_{k}\right)$, hence also $\sum f_{k}$ converges, uniformly on $K \times L$. Thus $\sum f_{k}$ converges uniformly on compacts, its sum h is easily seen to be holomorphic, see e.g. [L3, Propositions 2.1, 2.2] that carry over to our current set up; and upon evaluating the integrals in (3.6) with $f=h$ one verifies that the monomial expansion of h is $\sum f_{k}$.
(a) To prove (3.7) let $S=\max _{K} s$ and $\alpha=\sup _{\Gamma} \sigma<1$, cf. Theorem 2.5(a). By Theorem 2.5(d) the set

$$
P=\left\{(\xi, \sigma x):(\xi, x) \in K_{\theta}(s)\right\} \subset K \times \sigma B_{0}(S)
$$

has compact closure. Indeed $\bar{P} \subset \Omega$: for given $(\xi, y) \in \bar{P}$, let $(\xi, y)=$ $\lim _{n}\left(\xi_{n}, \sigma x_{n}\right)$ with $\left(\xi_{n}, x_{n}\right) \in K_{\theta}(s)$. Then $\|y\|_{\theta(\xi)}=\lim _{n}\left\|\sigma x_{n}\right\|_{\theta\left(\xi_{n}\right)} \leq$ $\lim _{n} \alpha s\left(\xi_{n}\right)<s(\xi)$ shows $(\xi, y) \in \Omega$.

Therefore $\sup _{P} \psi(f)=c<\infty$, so that by (3.6) $c \geq \sup _{P} \psi\left(f_{k}\right)=$ $\sigma^{k} \sup _{K_{\theta}(s)} \psi\left(f_{k}\right)$, and (3.7) follows. Now (b) implies the convergence of $\sum f_{k}$. Since its sum, a holomorphic function, agrees with f on Ω_{0}, the two must also agree on Ω.

4. Approximation.

In this section we are going to prove our main result. Let X be semisimple, Σ and V as before.

Theorem 4.1. Let D be a (finite dimensional) Stein manifold, $D^{\prime} \subset D$ open, $K \subset D^{\prime}$ an $\mathcal{O}(D)$ convex compact. Let furthermore $r, R: D \rightarrow(0, \infty)$ and $\theta: D \rightarrow \mathbb{R}$ be continuous, $r<R$. With notation as in (3.3) suppose $f \in \mathcal{O}\left(D_{\theta}^{\prime}(R) ; V\right), \varphi \in \Psi$, and $\epsilon>0$. Then there exists $g \in \mathcal{O}(D \times X ; V)$ such that $\varphi(f-g)<\epsilon$ on $K_{\theta}(r)$.

The proof will be based on Theorem 3.2. To facilitate calculations with estimates like (3.7) we start by formulating

Lemma 4.2. (a) Suppose \mathcal{K} is a set of multiindices, and for each $k \in \mathcal{K}$ we are given numbers $c_{k}, d_{k} \geq 0$ such that

$$
\sup _{k \in \mathcal{K}} \sigma^{k} c_{k}<\infty, \quad \sup _{k \in \mathcal{K}} \sigma^{k} d_{k}<\infty
$$

for all $\sigma \in \Sigma$. If $\alpha, \beta \in(0, \infty)$ then

$$
\begin{equation*}
\sup _{k \in \mathcal{K}} \sigma^{k} c_{k}^{\alpha} d_{k}^{\beta}<\infty, \quad \sigma \in \Sigma \tag{4.1}
\end{equation*}
$$

(b) If $Q>0, \sigma \in \Sigma$ then $\sup _{k} \sigma^{k} Q^{\# k}<\infty$.

Proof. (a) If $\sigma \in \Sigma$ then $\sigma_{1}=\sigma^{1 /(2 \alpha)}, \sigma_{2}=\sigma^{1 /(2 \beta)} \in \Sigma$ by Theorem 2.5(c). Since $\sigma^{k} c_{k}^{\alpha} d_{k}^{\beta}=\left(\sigma_{1}^{k} c_{k}\right)^{\alpha}\left(\sigma_{2}^{k} d_{k}\right)^{\beta}$, (4.1) follows. (b) We can assume $Q>1$.

Given $\sigma \in \Sigma$, the set $\Gamma_{0}=\{\gamma \in \Gamma: \sigma(\gamma) \geq 1 / Q\}$ is finite according to Theorem 2.5(a). Define $\sigma_{1}: \Gamma \rightarrow[0,1)$ by

$$
\sigma_{1}(\gamma)= \begin{cases}\sigma(\gamma), & \text { if } \gamma \in \Gamma_{0} \\ Q \sigma(\gamma), & \text { if } \gamma \notin \Gamma_{0}\end{cases}
$$

Then $\sup _{k} \sigma^{k} Q^{\# k} \leq \sup _{k} \sigma_{1}^{k} Q^{\left|\Gamma_{0}\right|} \leq Q^{\left|\Gamma_{0}\right|}$.
Proposition 4.3. With assumptions and notation as in Theorem 4.1, let $G \subset \subset D^{\prime}$ be an open neighborhood of K. There exists $h \in \mathcal{O}(G \times X ; V)$ such that $\varphi(f-h)<\epsilon$ on $K_{\theta}(r)$.
Proof. Let $f=\sum f_{k}$ be the monomial expansion of f. Fix a $b \in(1, \infty)$ such that $b^{2} r<R$ on G. With $Q>1, \epsilon_{1}>0$ to be determined later, define

$$
\begin{equation*}
\mathcal{K}=\left\{k: \sup _{G_{\theta}(R)} \varphi\left(f_{k}\right)>Q^{-\# k} b^{|k|} \epsilon_{1}\right\} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
h=\sum_{k \in \mathcal{K}} f_{k} . \tag{4.3}
\end{equation*}
$$

First we prove that $h \in \mathcal{O}(G \times X ; V)$. This would follow if we could show that (4.3) converges uniformly on compact subsets of $G_{\theta}(\kappa R)$, for any constant $\kappa>1$. By Theorem 3.2(b) it therefore suffices to prove

$$
\begin{equation*}
\sup _{k \in \mathcal{K}} \sigma^{k} \sup _{G_{\theta}(\kappa R)} \psi\left(f_{k}\right)<\infty, \quad \sigma \in \Sigma, \psi \in \Psi \tag{4.4}
\end{equation*}
$$

To verify (4.4) we can assume $\psi \geq \varphi$ (otherwise replace ψ by $\psi+\varphi$). We have

$$
\begin{array}{ll}
\sup _{k \in \mathcal{K}} \sigma^{k} c_{k}<\infty, & c_{k}=Q^{-\# k} b^{|k|} / \sup _{G_{\theta}(R)} \psi\left(f_{k}\right), \\
\sup _{k} \sigma^{k} d_{k}<\infty, & d_{k}=Q^{\# k} \sup _{G_{\theta}(R)} \psi\left(f_{k}\right), \tag{4.5}
\end{array}
$$

by (4.2) resp. Theorem 3.2(a) and Lemma 4.2(b). Choose $\alpha>0$ and $\beta=\alpha+1$ so that $b^{\alpha}=\kappa$. Then for $k \in \mathcal{K}$

$$
c_{k}^{\alpha} d_{k}^{\beta}=Q^{\# k}\left(b^{\alpha}\right)^{|k|} \sup _{G_{\theta}(R)} \psi\left(f_{k}\right) \geq \sup _{G_{\theta}(\kappa R)} \psi\left(f_{k}\right)
$$

so that by Lemma $4.2(\mathrm{a})$, (4.5) implies (4.4), and h is indeed holomorphic on $G \times X$.

Next we estimate $f-h$ on $G_{\theta}(r)$. Let $s=R / b$ and $M_{k}(\xi)$ as in (3.4), then for $(\xi, x) \in G_{\theta}(s)$ (3.5) implies

$$
\begin{equation*}
\varphi\left(f_{k}(\xi, x)\right) \leq\left|x^{k}\right| \sup _{G_{\theta}(s)} \varphi\left(f_{k}\right) / M_{k}(\xi) \tag{4.6}
\end{equation*}
$$

When $k \notin \mathcal{K}$

$$
\begin{equation*}
\sup _{G_{\theta}(s)} \varphi\left(f_{k}\right)=b^{-|k|} \sup _{G_{\theta}(R)} \varphi\left(f_{k}\right) \leq Q^{-\# k} \epsilon_{1} \tag{4.7}
\end{equation*}
$$

by (4.2), so that putting (4.3), (4.6), and (4.7) together

$$
\varphi(f(\xi, x)-h(\xi, x)) \leq \sum_{k \notin \mathcal{K}} \varphi\left(f_{k}(\xi, x)\right) \leq \epsilon_{1} \sum_{k} Q^{-\# k}\left|x^{k}\right| / M_{k}(\xi)
$$

for $(\xi, x) \in G_{\theta}(s)$. Fix Q so large that $\Delta_{\theta, s}(1 / Q, \cdot)$ is bounded on $D_{\theta}(s / b)$, cf. Proposition 3.1(b), then

$$
\sup _{G_{\theta}(r)} \varphi(f-h) \leq \epsilon_{1} \sup _{D_{\theta}(s / b)} \Delta_{\theta, s}(1 / Q, \cdot)<\epsilon
$$

provided ϵ_{1} is small enough.
In particular, when $D=K\left(=D^{\prime}=G\right)$ is a singleton, we obtain Theorem 1.1 for all semisimple X, even for vector valued f.

Proof of Theorem 4.1. Let $P=\max _{K} r$, then $K_{\theta}(r) \subset K \times B_{0}(P)$. In light of Proposition 4.3 all we need to prove is that if $G \subset D$ is an open neighborhood of K, and $h \in \mathcal{O}(G \times X ; V)$ then there is a $g \in \mathcal{O}(D \times X ; V)$ such that $\varphi(h-g)<\epsilon$ on $K \times B_{0}(P)$. Assume first that $D=\mathbb{C}^{N}$ and K is a polydisc centered at 0 . Now $\mathbb{C}^{N} \oplus X$ is also semisimple, and with an appropriate choice of norms $\left\|\|_{\tau}^{\prime}\right.$ on it, $K \times \overline{B_{0}(P)}$ will be a ball $\{(\xi, x) \in$ $\left.\mathbb{C}^{N} \oplus X:\|(\xi, x)\|_{0}^{\prime} \leq P\right\}$. Hence we can apply Theorem 1.1, by now proved for semisimple spaces and V valued functions, to obtain g as desired. The case of general D, G, K can be reduced to the special case of polydiscs, as explained in the proof of [L1, Théorème 1.1].

5. Approximation, bis.

For application in [L5] we shall need approximations in open sets that are defined in terms of a metric rather than a family of norms. First we shall discuss one of the many ways to metrize a Fréchet space.

Proposition 5.1. Suppose that the topology of a Fréchet space X is induced by a family of norms $\left\|\|_{\theta}, \theta \in(0, \infty)\right.$, and $\| x \|_{\theta}$ is an increasing continuous function of θ. Define

$$
\begin{equation*}
\|x\|=\inf \left\{\alpha \in(0, \infty):\|x\|_{1 / \alpha} \leq \alpha\right\}, \quad x \in X \tag{5.1}
\end{equation*}
$$

Then $\|\|$ is a pseudonorm that induces the topology of X, and $\| x \|<R$ is equivalent to $\|x\|_{1 / R}<R, R \in(0, \infty)$.

That $\|\|$ is a pseudonorm means $\| x \| \geq 0$, with equality if and only if $x=0 ;\|\lambda x\| \leq\|x\|$ if $|\lambda| \leq 1 ;$ and $\|x+y\| \leq\|x\|+\|y\|$.
Proof. Of the three axioms of pseudonorms we shall only verify the triangle inequality. By the intermediate value theorem, for any $x \neq 0$ there is a unique α such that $\|x\|_{1 / \alpha}=\alpha$; and this $\alpha=\|x\|$. Suppose $y \neq 0$, and put $\beta=\|y\|$. Then

$$
\|x+y\|_{1 /(\alpha+\beta)} \leq\|x\|_{1 /(\alpha+\beta)}+\|y\|_{1 /(\alpha+\beta)} \leq\|x\|_{1 / \alpha}+\|y\|_{1 / \beta}=\alpha+\beta
$$

Hence, by (5.1), $\|x+y\| \leq \alpha+\beta=\|x\|+\|y\|$. Since this inequality is trivial when x or $y=0,\| \|$ is indeed a pseudonorm.

Next, if $\|x\|=\alpha<R$ then $\|x\|_{1 / R} \leq\|x\|_{1 / \alpha}=\alpha<R$; and conversely, if $\|x\|_{1 / R}<R$ then (5.1) (and continuity of $\|x\|_{\theta}$) implies $\|x\|<R$. From this it also follows that the balls $\{x \in X:\|x\|<R\}, R>0$ form a neighborhood basis of $0 \in X$ as claimed.

Now return to our semisimple space X, and endow it with the pseudonorm (5.1). If D is a topological space, and $R: D \rightarrow(0, \infty)$ is continuous, let

$$
D(R)=\{(\xi, x) \in D \times X:\|x\|<R(\xi)\}
$$

Theorem 5.2. Let D be a Stein manifold, $D^{\prime} \subset D$ open, $K \subset D^{\prime}$ an $\mathcal{O}(D)$ convex compact. Let furthermore $r, R: D \rightarrow(0, \infty)$ be continuous, $r<R$. Given $f \in \mathcal{O}\left(D^{\prime}(R) ; V\right), \varphi \in \Psi$, and $\epsilon>0$, there exists $g \in \mathcal{O}(D \times X ; V)$ such that $\varphi(f-g)<\epsilon$ on $K(r)$.

Proof. Since $D(R)=D_{\theta}(R)$ with $\theta=1 / R$, and $K(r)=K_{1 / r}(r) \subset K_{\theta}(r)$ according to Proposition 5.1, the theorem follows from Theorem 4.1.

6. A necessary condition.

In this last section we want to point out that even for a weak version of our approximation theorems to hold in a Fréchet space X it is necessary
that X have a dominant norm. This condition, also called (DN), requires that the topology of X be induced by norms $\left\|\|_{n}, n=1,2, \ldots\right.$ satisfying $\|x\|_{n}^{2} \leq\|x\|_{1}\|x\|_{n+1}$. DN spaces were introduced by Vogt, and their relevance to complex analysis was further explored by himself, Dineen, Meise, and others, see [D, V1, V2, MV]. Our theorem below easily follows from the analysis of Meise and Vogt.

Theorem 6.1. Suppose that in a Fréchet space X any neighborhood U of $0 \in X$ contains another neighborhood W of 0 such that holomorphic functions on U can be approximated by entire functions, uniformly on W. Then X has a dominant norm.

Proof. Suppose X fails to have a dominant norm, and write $X=\mathbb{C} \oplus Y$, with Y a closed subspace. In [V1, MV] Meise and Vogt construct a sequence $h_{j} \in \mathcal{O}(Y)$ such that there is no $f \in \mathcal{O}(\mathbb{C} \oplus Y)$ with

$$
\begin{equation*}
f(j, \cdot)=h_{j}, \quad j \in \mathbb{N} \tag{6.1}
\end{equation*}
$$

This will imply that for the sets $U_{R}=\{(\eta, y) \in \mathbb{C} \oplus Y:|\eta|<R\}$ there is no W as in the theorem.

Indeed, suppose there is a corresponding W for U_{1}. Then $R W$ will do for $U_{R}=R U_{1}$. Let $\omega \in \mathcal{O}(\mathbb{C})$ have simple zeros at each $n \in \mathbb{N}$, and no other zero. Extend ω to $\mathbb{C} \oplus Y$, constant in the Y variable. Inductively construct $f_{n} \in \mathcal{O}(\mathbb{C} \oplus Y), n \in \mathbb{N}$, such that

$$
f_{n}(j, \cdot)=h_{j}, \quad j=1,2, \ldots, n
$$

and $\left|f_{n}-f_{n+1}\right|<2^{-n}$ on $n W$. This can be done as follows. Take $f_{1}(\eta, y)=$ $h_{1}(y)$; if f_{n} has been found, construct-by Lagrange interpolation-an $l \in$ $\mathcal{O}(\mathbb{C} \oplus Y)$ such that $l(j, \cdot)=h_{j}, j \leq n+1$. Thus $\left(l-f_{n}\right) / \omega$ is holomorphic on U_{n}, and there is a $g \in \mathcal{O}(\mathbb{C} \oplus Y)$ such that

$$
\left|\frac{\left(l-f_{n}\right)}{\omega}-g\right|<\frac{1}{2^{n} \sup _{n W}|\omega|}
$$

on $n W$. Hence $f_{n+1}=l-\omega g$ is as required.
Now the properties of f_{n} imply that $f=\lim f_{n} \in \mathcal{O}(\mathbb{C} \oplus Y)$ satisfies (6.1), after all. This contradiction proves the theorem.

References.

[D] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer, Berlin, 1999.
[H] L. Hörmander, An Introduction to Complex Analysis in Several Variables, 3rd edition, North Holland, Amsterdam, 1990.
[L1] L. Lempert, Approximation de fonctions holomorphes d'un nombre infini de variables, Ann. Inst. Fourier Grenoble 49 (1999), 1293-1304.
[L2] Approximation of holomorphic functions of infinitely many variables II, Ann. Inst. Fourier Grenoble 50 (2000), 423-442.
[L3] \qquad The Dolbeault complex in infinite dimensions, II, J. Amer. Math. Soc. 12 (1999), 775-793.
[L4] \qquad The Dolbeault complex in infinite dimensions III. Sheaf cohomology in Banach spaces, Invent. Math. 142 (2000), 579-603.
\qquad Analytic cohomology in Fréchet spaces, Commun. in Anal. and Geom. 11 (2003), 17-32.
[MV] R. Meise and D. Vogt, Counterexamples in holomorphic functions on nuclear Fréchet spaces, Math. Z. 182 (1983), 167-177.
[No] P. Noverraz, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, North Holland, Amsterdam, 1973.
[V1] D. Vogt, Vektorwertige Distributionen als Randverteilungen holomorphen Funktionen, Manuscripta Math 17 (1975), 267-290.
[V2] \qquad Charakterisierung der Unterräume vons s, Math. Zeitschrift 155 (1977) 109-117.

Department of Mathematics
Purdue University, West Lafayette, IN 47907
USA
E-mail address: lempert@math.purdue.edu
Received November 16, 2000.

[^0]: ${ }^{1}$ Research partially supported by an NSF grant.

