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Analytic cohomology in Frechet spaces 

LASZLO LEMPERT 

We consider a certain class of Frechet spaces that includes the 
space s of rapidly decreasing sequences, and prove that if Q is a 
pseudoconvex open subset of a space in this class then il9(fi, O) = 
0,<Z>1. 

1, Introduction, 

The computation of sheaf cohomology groups has been a central problem 
of complex analysis and geometry for over fifty years now. It appears that 
in an infinite dimensional setting sheaf cohomologies were first investigated 
by Douady in [Do]. In this paper we address the question whether the 
cohomology groups Hq(Q,, O) vanish when q > 1 and fi is a pseudoconvex 
open set in a complex Frechet space X. Here O denotes the sheaf of germs 
of holomorphic functions in X and O is called pseudoconvex if Q n Z is 
pseudoconvex for all finite dimensional subspaces Z C X; in particular X 
itself is pseudoconvex. 

By now it has become clear that coholomogy vanishing is sensitive to the 
geometry of the space X in question. After the first examples of nonvanishing 
by Dineen, Meise and Vogt formulated a necessary condition for Hl(X, O) — 
0 to hold, see [D1,MV]. This condition, the existence of a dominant norm, 
or (DN), is met by all Banach spaces and also by the space s of rapidly 
decreasing sequences (and its subspaces).2 On the other hand we proved 
in [LI] that llq{$\,0) = 0 if ft is pseudoconvex in a Banach space X with 
unconditional basis and q > 1; for example X could be the space P, 1 < p < 
oo, or Lp[0,1], 1 < p < oo. Here we shall show that it is possible to prove 
cohomology vanishing in nonnormable Frechet spaces as well, in particular in 
5. The space 5 deserves special attention among Frechet spaces as function 
spaces that frequently occur in geometry are isomorphic to it; it also has 
certain universality properties. 

1Research partially supported by an NSF grant. 
technically, [MV] deals with Dolbeault rather than sheaf cohomology groups, 

but the reasoning there also shows that Hl(X, O) = 0 implies (DN). 
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We shall consider sequence spaces defined as follows. Fix a function 
p : E x N -> (0, oo) such that logp(-, n) is convex for all n G N. If x : N -> C 
and 6 G K, set 

lla?lltf = EnP(0»n)la?(n)l'      and 

(1.1) 
X = {x : N -> C | Ho;)!* < oo    for all 0 G M}. 

The norms || ||^, 0 G R, endow X with the structure of a complete 
locally convex topological vector space. Convexity implies that the norms 
|| Hi, 9 G Z, would induce the same topology, so that X is a Prechet space. 
For instance, if p(0, n) = ne then X & s. 

Theorem 1.1. Let X be as above, Vt C X open and pseudoconvex. Let 
F be an arbitrary Frechet space and T the sheaf of germs of holomorphic 
functions on X with values in F.  Then 

Hq{n,F) = 0,     q>l. 

A noteworthy aspect of this theorem is the convexity condition imposed 
on log p. As already discussed in [L2], convexity is a natural assumption in 
complex analysis; the novel feature is that here it pertains to the topology 
of X. 

We are now going to sketch the proof of Theorem 1.1, an extension of 
the one in [LI] that dealt with Banach spaces. The chief difference between 
the Banach and Frechet settings is that when Q is a pseudoconvex open 
subset of a Banach space, the function - log dist(-, dtt) is plurisubharmonic; 
but this is not necessarily so in a Frechet space such as X. Accordingly, 
the exhaustion procedure of [LI] will have to be replaced by a two step 
procedure as follows. We shall mostly work with open coverings il of O 
and the corresponding Cech groups iJ^il,.?7). First we write X = C^ © Y, 
assume that fl = DxG with D C C^, G C Y, and that elements of il are of 
form V x G, V C D pseudoconvex. In this case jff9(il, J7) = 0 follows from 
the finite dimensional theory. Second we introduce a translation invariant 
metric in X and with a general pseudoconvex Q and b > 0 we consider 
the set fi[6] of points x G fi at distance > b to <9fi. We approximate Q[b] 
by product sets QJSJ- as in the first step, and show that vanishing for Q,^ 
implies jff^(95, J7)^^] = 0 for certain coverings 55 of ft by balls. Third, by 
letting b -> 0 we conclude Hq^&, T) = 0. Finally we show this latter implies 

The narrow cross section of the proof is steps 2 and 3. Both steps concern 
continuity of cohomology groups and depend on the approximation theorem 
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from [L2]. It is but for that approximation theorem that we had to restrict 
ourselves to spaces X as in (1.1). 

We assume the reader has some familiarity with complex analysis in 
finite and infinite dimensions and with sheaf theory. Some good references 
are [B,D2,H,Ma,N]. 

2. Background. 

Here we collect notation and background material that can also be found 
in [LI] or follows directly from [LI]. We shall use standard notation of 
sheaf theory. If il is an open covering of a topological space T, we call an 
ordered (q + 1) tuple Uo,...,Uq € il a g-simplex and denote it by cr; |a| 
stands for UQ Pi • • • fl Uq (q = 0,1,...). We shall also define a (-l)-simplex 
a; its body |a| is all of T. Given a sheaf S of Abelian groups on T, a q- 
cochain / is a collection of fa £ <!>(H), one for each g-simplex cr, with the 
understanding that 5(0) = (0). The group of g-cochains is denoted Cq(ii, S); 
5: C«(ii,S) -> C«+1(ii,<S) is the coboundary homomorphism, and H*(tt,S) 
are the corresponding cohomology groups. 

Suppose that for each U € il we are given an open U' C J7, and let 
{[/'} = il'. Then we have restriction homomorphisms 

(2.1) Cq(ii,S) -»Cg(il',<S),        i^(il,<S) -»fr*(li',S), 

and the image of a cochain resp. cohomology class / will be denoted f\iXf. In 
particular, any open T' C T induces a covering il' = iljT' = {U* = U Pi T" : 
U e il} of T". In this case the homomorphisms (1.1) are induced by the 
embedding T" -+ T. We shall simply denote the image /|il' of a cochain 
resp.   cohomology class / by /|T", and the image of the homomorphisms 
(2.1) by C«(il,<S)|T' resp. ^(il,<S)|T'. We shall also use the corresponding 
notation Hq(T, S)\T' for the sheaf cohomology groups. 

We shall say that il is a Leray covering of order q if for all 1 < s < q and 
all p-simplices a C il, p > 0, the groups Hs(\a\,S) vanish. We shall need 
the following result (see [LI, Proposition 1.1]). 

Proposition 2.1. Suppose 93 is a Leray covering of order q for the sheaf S 
onT. 

(a) The natural map 

(2.2) Hq{VB,S)->Hq{T,S) 
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is a monomorphism, and its image consists of those f G Hq(T,S) that satisfy 
f\V = 0 for all V G 2J. 

(b) // QJ7 is a refinement of 93, then the refinement map 

(2.3) ir*(gj,s)->fr«(gj',s) 

a's a monomorphism. 

Now consider two Prechet spaces X and F (always over C), F the sheaf 
of germs of F valued holomorphic functions on X. These pieces of notation 
will be used throughout the paper. Let u C X be open, i! a covering of u by 
open U C X, il' another covering gotten by selecting an open subset U' C U 
for each U G il. If a = (E/b,..., *75) C H, let ^ = (£/*,..., t^) C il. 

Lemma 2.2. Suppose open subsets ojjsr, Q,N C |J^ satisfy CJN C fiivnftjv+i; 
iV = 1,2,.... Fia; g = 1,2,...  and assume 

(i)  eac/fc 2: G CJ /ias a neighborhood that is contained in all but finitely many 

(ii) with a C il denoting an arbitrary (q — 2)-simplex, any u G 0(|cr|nOjvn 
QJV+IJF) can be approximated by v G C?(|oJ nn^v+ijF), uniformly on 
Mnwtf, iV=l,2,...; 

and in case g > 2 a/50 assume 

(in) if^"1 (HIOAT H fi^x, ^ = 0, N = 1,2,... . 

IfnowH*(iL,F)\nN = 0forN=l,2,... then the image of H*(<&,?) in 
Hyfa,^) is zero. 

This lemma is a slight extension of [LI, Lemma 2.1], where X was as- 
sumed to be a Banach space and CJJV, £1^ C u)(= ft). However, the same 
proof as there applies here, too. 

Next we turn to cohomology groups in product domains. Let Y be an 
arbitrary locally convex space, G C Y and D C CN open, u = D x G. We 
shall use the following pieces of notation. If V C D is open, set V(UJ) = 
V x G; if 9J is an open covering of D, set 9J(a;) = {^(a;) : V G 9J}; if 
a = (Vb, •.., Vs) C 93, set cr(a;) = ((^0(0;),..., V^a/)). Suppose in addition 
to D and its covering 03 we are also given a pseudoconvex D* C C^ in which 
D is compactly contained; for each V G 93 we are given a pseudoconvex 
V* C D* in which V is compactly contained; and 23* = {V* : V G 93} covers 
£*. Let a;* = D* x G. 
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Proposition 2.3. For q = 1,2,... the image of iJ^aT^o;*),F)\UJ in 
Hq{oj, F) is zero. 

Proof. Induce the topology of F by a family * of seminorms, and for any 
cochain h = {K} E C5(2J, T) and ^ € * define 

iftwih) = sup sup ip(ha) < oo. 
^   ki 

Let ^(QJ,^7) consist of those h G C^QJ,^7) that satisfy ^(h) < oo for all 
^ e *,- and ^(93,^*) = {/i 6 ^(SJ, J7) : ^ - 0}. The seminorms rfo 
endow both spaces with the structure of a Frechet space. Define ^SJ* etc- 
analogously. By [LI, Proposition 3.2] there is a continuous linear operator 

such that for any h G 2&>(93*, ^) we have ^ = ^l97- We sha11 reduce 

the study of cohomology groups of a;, a;^ to those of D, D* by means of 
embeddings 

iz:C
N 3<;^{(,z)€CN ®Y, zeG. 

To prove our Proposition, let / G Ci^iu*),?) be closed. At the price 
of shrinking the sets V* G 53* it can be assumed that the components /o-*^*) 
of / extend continuously to the closure of |cr*(u;*)| in a;*. In this case we 
have a holomorphic map 

see [LI, Proposition 4.2], whose simple proof carries over to our setting. Let 
g* = Si*zf; then 6gz = i*zf\<D. Since g* G C^QB,?) depends holomorphi- 
cally on z G G one easily constructs a (unique) g G Cq~1('tO(oj)jJr) such that 
i*g = gz, as in [LI, Proposition 4.3]. It is immediate that 8g = /|53(a;), so 
that the image of /|23(u;) in ^(^(o;),.?7), hence also in Hq((ju, J7), is indeed 
zero. 

3. Exhaustions. 

In this section, after some preparation, we shall approximate general open 
sets Q by simpler ones, and describe properties of the approximating sets. 
From now on we assume that X, F, and J7 are as in Theorem 1.1.   All 
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through the section we shall also assume that the weight p{0, n) is even in 
6. In particular, it increases with 6 > 0. 

Recall that a pseudonorm on X is a function || || : X -> [0, oo) such 
that \\x\\ = 0 if and only if x = 0;  ||Aa;||  < ||^|| if A E C,  |A| < 1; and 

lk + y||<INI + lly||. 

Proposition 3.1.  The formula 

(3.1) \\x\\=mi{9>0:   \\x\\1/e < 6} 

defines a pseudonorm that induces the topology of X, and ||^|| < r is equiv- 
alent to ||#||i/r < r. Also, log ||   || is plurisubharmonic. 

Proof. All but the last statement is already in [L2, Proposition 5.1]. To 
prove plurisubharmonicity, first consider a convex function F : RN x M -> M 
such that as r? increases from —oo to oo, so does F(£,r]), for all £ G RN; 
and observe that the unique solution rj = G(£) of the equation F(^, rj) = 0 
is a concave function of £ G R1*. Indeed, for fixed £ and rj = G(£) there are 
linear forms L : RN -+ M, I : E -> M such that for all £, 77 

i^f?) > F(£,rj)+L(Z-£)+l(Ti-ri); 

it follows that I is strictly increasing. Writing 7] = G(£) we obtain 0 > 
L{Z-Z)+l(Ti-rj),oi 

GiO^GiO-r'L^-i). 

Thus the graph of G is below a supporting hyperplane at (£,r/), and so G is 
concave. 

We shall now prove log || || is plurisubharmonic on the subspaces XN = 
{x G X : x(n) = 0 if n > AT}, N = 1,2,.... Since it is continuous on X, 
and (J^ XN is dense in X, it will follow that log || || is plurisubharmonic on 
X as well. 

Continuity of Htfld/fl implies that for x G -Xjv\{0}, 6 = \\x\\ is the unique 
solution of the equation ||a;||i/^ = 9. Thus 

H^ll"1 Y^p(||a;||~1,n)|a;(n)| = 1,      or, taking logarithm 
n 

F(log \x(l)\,..., log \x(N)\, - log INI) = 0, 

where F{(;,rj) = rj + log^n==iP(e775n)e^n5 and we assume temporarily that 
x(n) 7^ 0, 1 < n < N. Now the sum of logarithmically convex func- 
tions is also logarithmically convex.   For functions of one variable this is 
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proved e.g. in [L2, Lemma 2.1], and the general case follows by restrict- 
ing to lines. We conclude that F is convex. By our initial observation 
-log||a;|| = G(log|a;(l)|,... ,log|a;(iV)|) with G concave, hence -log||a;|| is 
plurisuperharmonic and log \\x\\ plurisubharmonic on the part of X^ where 
x(n) / 0, 1 < n < N. Since log|| || is continuous on X^, with values in 
[—oo, oo), we see it is plurisubharmonic on XJSI as well. 

We shall write B(x,r) = {y e X : \\x - y\\ < r}, and dist(x,A) for the 
distance between x £ X and A C X, measured in || ||. For N G N, let 
TT/V : X -± X denote the projection given by (7r^rr)(n) = x(n) resp. 0 if 
n < N resp. n > N. Put also TTQX = 0, TT^X = x. (1.1) implies 

WTTNX — TTM^We < W^x — <7rma;||^, x G X, 0<n<iV<M<m<oo 

for all 6 G H, hence by (3.1) 

(3.2)  WKNX - ^MA\ < W^nX - 7rma;||,   x e X,   0<n<N<M<m<oo. 

Let Y = Ker TTJV, D a complex manifold (or a subset of such) and R : 
D -> (0, oo] continuous. Sets of form 

{(<:,z)eDxY:\\z\\<R(Q   (resp.   < 11(C))} 

will be called sets of type (B), with base D. Such sets have the following 
Runge approximation property. 

Suppose D is a (finite dimensional) Stein manifold, D' C D open, L C D' 
compact. Given continuous functions r, R : D' -> (0, oo], set 
(3.3) 
tf - {(C, z) G D' x Y : ll^ll < i?(C)}5   A = {(C, s) G L x Y : ||^|| < r(C)}. 

Proposition 3.2. If L is O(D) convex and r < R, any u G 0(Q!\F) can 
be approximated by v G 0(D x Y; F), uniformly on A. 

Proof If Y is replaced by X in (3.3) and in the proposition, [L2,Theorem 
5.2] shows that the claim follows from the assumptions on X. Since Y 
with the seminorms || ||^ (is isomorphic to a space that) satisfies the same 
assumptions as X, the proposition holds. 

Our goal here is to exhaust a general open Q, C X by sets of type (B), 
and prove approximation results for these sets, Propositions 3.5, 3.7, 3.8. 
These propositions will be used in the next section, where we shall relate 
the cohomology groups of ft to those of the exhausting sets. Because of the 
two step exhaustion procedure mentioned in the Introduction, we shall work 
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with two families of exhausting sets that will correspond to two choices of 
the function d below. 

IfO<a< 1, iV=l,2,...,put 

(3.4) n[a] = {x e ft : dist(a?, dSl) > a,   ||a;|| < 1/a}. 

Let furthermore 

do(x) = min{l,dist(a;, 30)}, x e ft, 

and with d : ft -» (0,1] either do or the function identically 1, and 0 < a < 1, 
put 

(3.5) ftiv(a, a) = {a; G X : ITNX e ft[a], ||a; - KNXW < acf(7rjvx)}. 

We shall write ft[a], ftAr(a, a) for the sets defined as above but the strict 
inequalities replaced by <, and ft [a] by ft [a] in the case ofTiN(a,a). 

When d = do we let a, a take arbitrary values in (0,1), but when d = 1, 
we shall require a < a. In all cases we have then 

(3.6) ad(y) < dist(y, 3ft),     y € ft[a]; 

hence QN(a,a) C ft. For both choices of d, d(x) - d(y) < \\x - y\\. This 
implies d(x)/2 < d(y) < 2d{x), provided ||a; - y\\ < d(x)/2, a fact we shall 
repeatedly use. 

With CM G X the characteristic function of {M} we also introduce the 
auxiliary function 

dN+1(x) = mi{\u\ : u G C, x + ueN+i £ ft},   and the sets 

LN[a] = {x = y + teN+l € ft[a] : y G KNX, t G C,  |*| < dN+l(x)/2}. 

By [N, Definition 2.1.3 and Lemme 2.1.5] -\ogdN+l is plurisubharmonic in 
ft, provided ft is pseudoconvex. Write psh(ft) for the family of plurisubhar- 
monic functions on ft, and say that a closed C C ft is psh(ft) convex if for 
every y G ft \ C there is a v G  psh(ft) such that v{y) > supc v. 

Proposition 3.3. Supposed is pseudoconvex. ThenQ[a], LNIO] are psh(£l) 
convex, ft[a] is pseudoconvex, and so is ftiv(a,ce) provided d=l and a < a. 

Proof. Consider ft[a]. If y G ft \ ft[a] then either \\y\\ > 1/a or \\y - z\\ < a 
with some z G 5ft. In the first case v = ||   || G psh(ft) by Proposition 3.1 
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and v(y) > 1/a > sup^^v.   In the second case ||y - z\\i/a < a, again by 
Proposition 3.1. Set z - y = £ and 

t;(a;)=sup{-logjA|:A6Q   x + \£$n}. 

By [N, Definition 2.1.3 and Lemme 2.1.5] v G psh(fi), and v(y) > 0 > 
log(||^||i/0/a) > sup^ v. We conclude fi[a] is psh(fi) convex. 

In particular this means il[a] fl Z is compact and psh(f) n Z) convex for 
finite dimensional subspaces Z C X. Since ft [a] = U&>a ^[&]> ^ follows that 
ft [a] n Z, hence ft [a] is pseudoconvex. The rest of the proposition is proved 
similarly. 

Proposition 3.4. Let d = do or 1; and in the latter case assume a < a, 
7 < c. 

(a) IfN<M,2(3< a, and 2a < b then ft^(6, /?) C OMK «)■ 

^ For yixed c7 7, eac/i a; G ft[2c] has a neighborhood that is contained in 
all but finitely many ftjv(c, 7). 

(c) TT/VIWH Cft. 

(d) If 2a < c, 47 < a then TT^V+I ftjv(c,7) C LN[O]- 

Proof, (a) Supposing re e ftiv(&,/3), (3.2), (3.5), (3.6) imply 

(3.7) W^NX-TTMXW < \\irNX — x\\ < ^(TTNX) < dist(7rivrz;,9ft)/2,        hence 

dis^TTM^-X" \ ft)    >    dist(7rAra;, 5ft) — Wn^x — TTM^II 

(3.8) >   dist(7rivx,aft)/2 > a, 

IITTM^II    <    Ikiv^ - TTM^II + IKiV^II < 1 + 1/6 < 1/a. 

ThusTTM^ G ft [a]. Since f3 < 1/2, (3.7) implies d^^x) < 2d(irMx), therefore 
by (3.2) 

\\x - TTM^H < \\x — TT^VXII < l3d(7rNx) < ad^Mz), 

i.e. x G ftM(a,a). 
(b) Choose /? < min{c, 7/2}. Since lin^-^oo Tr^rz; = x, (3.5) implies a; G 

ftn(2c, y8) for some n. Thus ftn(2c, /3) is a neighborhood of a; that is contained 
in VLN{C"> 7) if N > n, by part (a). 

(c) If x = y + tew+i G I/Ar[a] with y = Tr^-rr then |t| < diV+1(a;), which 
by the definition of dN+l implies n^x = x — tew+i G ft. 
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(d) If x <E ftiv(c,7), write TTN+IX = 7rNx + teN+i. (3.7), (3.8) hold 
with 6, /3, M replaced by c, 7, N + 1. (3.8) implies nN+ix G fi[o], and 
(3.7) implies ||tejv+i|| < jd(nNx). Hence if \u\ < 2|t|, .we have ||uew+i|| < 
dist(7rNx,dn)/2 by (3.6). Therefore 

\\7rN+ix+ueN+i -TTTV^H < \\^N+ix-nNx\\ +dist(7rAr£, dCt)/2 < dist(7rNx, flft), 

and so TT^+I^ + uew+i E ft.   This means 2|t|  < dN+1(7rN+ix), whence 
TTiV+i^ € LN[a]. 

Proposition 3.5. Suppose ft is pseudoconvex. Let d be either do or 1, and 
in the latter case assume a < a. If c > 2a' > 2a and 4j < a, then any u G 
©(ft^a'jC^nftTv+^a, a); F) can be approximated by v G 0(ft7v+i(a, a);F); 

uniformly on ftAr(c, 7). 

Proof. By Proposition 3.4(a) nN(a',a) nftiv+i(a,a) D ftAr(2a,,a/2). Fur- 
thermore, this latter set is of type (B) for the splitting X = 7rNX 0 Ker TT/V 

with base Q[2af]nnNX. Similarly, nN(c,j) C ^N{2al,a/2) is also of type 
(B), with base ft^rfc] flTTivX. This latter base is compact, and psh(ftnTx^X) 
convex by Proposition 3.3 ; hence it is 0(ft fl -KNX) convex by [H, Theorem 
4.3.4]. Therefore by Proposition 3.2 ^^^(2^, a/2) can be approximated by 
w G ©(Tr^ft; F), uniformly on ftjv(c,7). According to Proposition 3.4(c) 

This latter is of type (B) for the splitting X = TTAT+IX 0 Ker TT^+I, with 
base LN[a]. Since by Proposition 3.3 and [H, Theorem 4.3.4] the base is 
©(ftflTTiv+iX) convex, Proposition 3.2 implies we can approximate w by w' G 
©(vr^^ft; F), uniformly on || ||-bounded subsets of Tr^^L^fa]. To finish 
the proof, notice that by Proposition 3.4(d,a) ftAr(c,7) is a || ||-bounded 
subset of ^+1LN[a] and ft;v(c,7) C Q.N+i(a,OL) C vr^^ft, so that v = 
w'\SlN+i(a,d) will do. 

Proposition 3.6. Let d = 1, assume 2a < 2a < c and T,J < a/5. If 
x G ftAr(c,7) then B{x,Td{x)) C ftAr(a, a). 

Proof. Since \\x - TTNX\\ < d(7rNx)/2, we have d(x) < 2d{7TNx). If y G 
B(x,rd(x)) then by (3.2), (3.6) 

\\7rNx - nNy\\ < \\x - y\\ < Td{x) < 2Td(7rNx) < dist(irNx, dQ)/2, hence 

dist^Ny, X \ ft) > dist(7r7va;, 9ft) - \\TTNX - TTNy\\ > dist(7r7v^, dSl)/2 > a, 



Analytic Cohomology in Prechet Spaces 27 

lkj\rj/|| < \\7TNx - nNy\\ + \\irNx\\ < 1 + 1/c < 1/a. 

By the last two inequalities n^y € ft[a]. Furthermore 

||y-7riv2/|| < lly-^ll + Hx-TrjvxII + llTrjvaj-Trjvyll < {^r+j)d{7rNx) < ad{7rNx), 

so that y G f2jv(a, a). 
With 0 < n < 1 set now 

(3.9) »(jx) - 95d(/i) = {B(x, /id^)) • ^(^5 M^)) C «}. 

Proposition 3.7. Let d = 1 and 4/3 < 46 < c; assume 12A < ^x 
and 107, 50A < /3. Let a = {B(xj,iJLd{xj)))j^^s C 95(/x) and a7 = 
{B(XJ, Ad(xj)))j=o5...,5 C 95(A) 6e s-simplices, s > 0. T/ien any w E 
0(\<T\nQN{b,l3) r\QN+i(b,P)\F) can be approximated by v G 0(X;F); 

uniformly on {a'l HQ^^7). 

Proo/. If |(7,| PI £2JV(C,7) = 0 there is nothing to prove. Otherwise let x G 
Icr'j n fijv(c,7). Since ||a; - a:j|| < Xd(xj) < d(xj)/2, we have 

(3.10) d{xj)/2 < d(x) < 2d{xj). 

We first claim u is holomorphic on B(x,5\d(x)):   Indeed, on the one 
hand 

B(x,5\d(x)) C nN(2b,p/2) c nN{b,/3) nQN+1{b^) 

by Propositions 3.6, 3.4(a); on the other B(x, 5Xd(x)) C |a|, since by (3.10) 

B(x, 5Xd(x)) C B(x, lQXd(xj)) C B(XJ, iid(xj)). 

We can apply Proposition 3.2 with Y = X, L = D1 = Da singleton, 
to conclude that u can be approximated by v G 0(X;F), uniformly on 
B(x,AXd(x)). Since 

la71 C B{xQ,Xd(xQ)) C J5(rz;,2Ad(a;o)) C S(a;,4Ad(a;)), 

the approximation is uniform on [o7! fl ^^(c, 7). 
Similarly one proves 

Proposition 3.8. Let  d   =    do,   2a    <    c    <    1,   and  18A    <    /i    < 
1. Given s-simplices a = (B(xj^d(xj)))j=ol..^s C 95(/i) and af = 
(B{xj,Xd(xj)))j=o-imm.i3 C 95(A), s > 0; any u G 0(|cr| nfi[a];F) can 6e 
approximated by v G 0(X;F), uniformly on [a'l nil[c]. 
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4. Cohomology of special coverings. 

We shall use notation introduced in section 3. Again we let X be as in (1.1), 
with logp(0,n) convex and even in 0. We consider coverings ^Bdoil^) of ^ 
defined in (3.9), and we shall eventually prove 

Proposition 4.1. Given q = 1,2,..., suppose H8^'^) — 0 jor any 1 < 
s < q and pseudoconvex open Q.1 C X.   If fl C X is pseudoconvex then 

We shall repeatedly use the following special case of Proposition 2.1: 

Proposition 4.2. Given q = 1,2,..., suppose HS(Q!^F) — 0 for any 1 < 
s < q and pseudoconvex open £1' C X. Let W be a collection of pseudoconvex 
open W C X, and 2U7 a refinement of%B, {jW = [JW. Then the natural 
maps 

Hq{W, F) -* Hq({J2IJ, F),        Hq{W, f) -> Hq(iXf,T) 

are monomorphisms. 

To prove Proposition 4.1 we first introduce 

C(a) = {5(a;,a/2) : x G n[a]} C ®i(a/2),   0 < a < 1, 

and study the groups Hq(<L(a), T). 

Proposition 4.3. With the assumptions of Proposition 4'lj if d = 1 and 
2a < a < 1/2 then C(a) covers nN(2a,a), and Hq(€(a),Jr)\QlN(2a1a) = 0. 

Proof We shall use notation as in Proposition 2.3 and in the lines preceding 
it. Writing D(b) = n[b]n7rNX, 0 < b < 1, and G = {rr: G Ker TT^ : ||a;|| < a}, 
we have fijv(frja) = £)(&) x G. Fix 6 G (a, 2a) and set a; = fiAr(2a, a), 
a;^ = f2Ar(&, a)- Each £ G I?(6) has a convex neighborhood £/* C TT^X such 
that U*(UJ*) — U^xG'is contained in £?(£, a/2). Inscribe relatively compact 
convex open U into each [/*, and take a finite collection il of C/'s that cover 
D(a), making sure the corresponding [/*'s cover D(b). Let 

QJ = {^(a) fl U : C/ G il}, 2J* = {JD(6) n J7* : 17 G il}. 

Thus members of QJ'*', 2J*(a;*) are pseudoconvex. Since each F*(a;*) G 
^(o;^) is contained in some B((,a/2) G C(a), C(a) indeed covers (c*;* and) 
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u = ft(2a, a). Further, there are refinement homomorphisms 

p2 : H*{£{a)\u,?) -^H^^(^)\UJ^), 

in fact monomorphisms by Proposition 4.2, for Proposition 3.1 implies balls 
B(x,r) are convex. The restrictions pi,p2 oi pl,p2 to jff*(C(a),.F)|a;* resp. 
iJ^C^a),.?7)!^ are also monomorphisms, and can be included in a commu- 
tative diagram 

61 62 

^2   v    Tjafcrt+f, .•M. .   in A 

Here ei, €2 are induced by restriction, and A is the natural map from Cech 
to sheaf cohomology; again by Proposition 4.2 A is a monomorphism. It is 
the content of Proposition 2.3 that Ae2 = 0. Thus A^ei = 0. Taking into 
account that Ap2 is a monomorphism and ei an epimorphism, the proposition 
follows. 

Proposition 4.4.   With the assumptions of Proposition 4-1 

2y*(e(a),.F)|ft[16a]=0    */   0 < a < 1/16. 

Proof. We shall apply Lemma 2.2. Let d = 1, a < a/2, fijv = ftjv(2a, a), 
a;^ = ^(Sa, a/10), CJ = n[16a], U= e:(a) C »i(a/2), 

it' = {B(a;,a/50) : x G ft [a]} C 93i(a/.50). 

The assumptions of Lemma 2.2 are satisfied by Propositions 4.3 (QN C 
(Jil), 3.4 (a,b), 3.5 (condition (ii) when q — 1), 3.7 (condition (ii) when 
q > 2), 4.2, and 4.3. The conclusion of Lemma 2.2 is that the image of 
iJ9(£(a),^:*)|ft[16a] under the natural map 

(4.1) Hq{£(a)\n[WalF) -> ff9(fi[16a],^) 

is zero. Now Proposition 3.3 implies the members of C(a)|ft[16a] are pseu- 
doconvex. Hence by Proposition 4.2, (4.1) is a monomorphism, whence 
H*{£{a),F)\Q{l%a] =0. 

Proposition 4.5.   With the assumptions of Proposition 4-1 

Hq{<Bdo{l/2),F)\n[b}=0   for any   0 < b < 1. 
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Proof. With a = 6/16 consider the map 

C(a) 3 B(x,a/2) ^ B(x,do(x)/2) G 55rf0(l/2). 

Since B(x,a/2) C B(x,do(x)/2) if x G ft [a], this map induces a homomor- 
phism of cochain complexes C*(93do(l/2)7 J

7) ->► Cf*(C(a), J7), and the corre- 
sponding homomorphism in cohomology can be included in a commutative 
diagram 

i^(2Ml/2)^)       >      H*(t{a),F) 

pi P2 

Here pi, P2, ^ are the restriction resp. refinement homomorphisms. By 
Proposition 4.4 p2 = 0, hence tpi = 0. On the other hand L is a monomor- 
phism by Propositions 3.3, 4.2. Hence pi = 0,  q.e.d. 
Proof of Proposition 4-1- Again we shall apply Lemma 2.2. First suppose q = 
1. Let d = do, a < 1/2, put u = ft, ttN = QN(1/N, a), OJN = ftiv(4/A^, a/8), 
N > 5 (and o;^ = ftiv = 0 if 1 < ^ < 4), il = it7 = Q5d0(l/2). Then 
a;^ C ftjvnftjv+i by Proposition 3.4(a). Condition (i) of Lemma 2.2 holds for 
if x G ft then x G ft[2a] for some a > 0 and Proposition 3.4(b) implies x has a 
neighborhood that is contained in ft AT (a, a) C ft;v(4/iV, a) for all but finitely 
many N > A/a. Condition (ii) follows from Proposition 3.5. Finally (3.5) 
implies ft^ C ft[l/(2iV)], so that H1(<&dQ(l/2),J:)\£lN = 0 by Proposition 
4.5. Therefore with Lemma 2.2 we conclude the map iir1(35d0(l/2), F) —> 
iJ^ft, F) is zero. Since this map is a monomorphism by Proposition 4.2, 

Jff
1(2Sdo(l/2),^) = 0 as claimed. 

When g > 2, let ft^ = ft[l/N], aw = ft[2/iV], il = 95d0(l/2), it' = 
3Srf0(l/36). Clearly o;^ C ftjv C ftiv+i, and condition (i) of Lemma 2.2 
holds. Condition (ii) follows from Proposition 3.8, and condition (iii) from 
Proposition 3.3, 4.2, and our assumptions. Finally, iJg(2$d0(l/2), T^Q.N = 0 
is the content of Proposition 4.5. As before, Lemma 2.2 and Proposition 4.2 
therefore imply iJ*(®d0(1/2), F) = 0. 

5. Proof of Theorem 1.1. 

Proposition 4.1 has the following simple consequence: 

Proposition 5.1. Suppose X is as in (1.1) with logp(#, n) convex and even 
in 6.    Given q = 1,2,...   assume HS{Q!,T) = 0 for all 1 < s < q and 
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pseudoconvex open Q,' C X. Let O C X be pseudoconvex open, and f G 
tf^jF). Iff\B(x,r/2)=Q whenever B(x,r) Cft then f = 0. 

Proof. With 95^ (1/2) as in (3.9) we have f\B = 0 for B G 2M1/2) by 
assumption. Since 23rfo(l/2) is Leray of order q, Proposition 2.1 implies / 
is in the image of the map ^(53^(1/2),^) -> H^^F), whence / - 0 by 
Proposition 4.1. 
Proof of Theorem 1.1. We shall proceed by induction, and assume 
H^Q.'.T) = 0 is already known for all pseudoconvex open Q! C X and 
1 < s < q. At the price of replacing p by i/(0,n) = max{p((97n),p(-ejn)} 
we can assume the weight p(9,n) in (1.1) is even in 9. Fix an arbitrary 
/ G #9(f2, J7), let 0o denote the collection of pseudoconvex open subsets of 
X, and (5 the collection of those G G 0o|^ for which f\G = 0. Let il C 0o be 
a covering of £1 such that / is in the image of the map Hq(ii, T) -» H9(fi, T); 
by Proposition 2.1 f\U = 0 if U G il. Hence (J 0 = ft. In the terminology of 
[LI, Lemma 8.2] 0 is descending, and inductive by Proposition 5.1. The con- 
clusion of that lemma is ft = [j 0 G 0, i.e. / = 0. Therefore H«(n, F) = 0 
as claimed. 

References. 

[B]      G. E. Bredon, Sheaf Theory, 2nd ed., Springer, New York, 1997. 

[Dl] S. Dineen, Cousin's first problem on certain locally convex topological 
vector spaces, An. Acad. Brasil. Cienc. 48 (1976), 11-12. 

[D2]  , Complex Analysis in Locally Convex Spaces, North Hol- 
land, Amsterdam, 1981. 

[Do] A. Douady, Le probleme des modules pour les sous espaces analytiques 
compacts d'un espace analytique donne, Ann. Inst. Fourier Grenoble, 
16 (1966), 1-95. 

[H] L. Hormander, An Introduction to Complex Analysis in Several Vari- 
ables, 3rd edition, North Holland, Amsterdam, 1990. 

[LI] L. Lempert, The Dolbeault complex in infinite dimensions III. Sheaf 
cohomology in Banach spaces, Invent. Math. 142 (2000), 579-603. 

[L2]     , Holomorphic approximation in Frechet spaces, Com- 
mun. in Anal, and Geom. 11 (2003), 1-15. 



32 L. Lempert 

[Ma] P. Mazet, Analytic Sets in Locally Convex Spaces, North Holland, 
Amsterdam, 1984. 

[MV] R. Meise and D. Vogt, Counterexamples in holomorphic functions on 
nuclear Frechet spaces, Math. Z. 182 (1983), 167-177. 

[N] P. Noverraz, Pseudo-convexite, convexite polynomiale et domaines 
d'holomorphie en dimension infinie, North Holland, Amsterdam, 
1973. 

DEPARTMENT OF MATHEMATICS 
PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907 
USA 
E-mail address: lempert@math.purdue.edu 

RECEIVED NOVEMBER 16, 2000. 


