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COMMENSURABILITY AND THE CHARACTER VARIETY

D.D. Long and A.W. Reid

1. Introduction

Recall that hyperbolic 3-manifolds M and N are said to be commensurable if
they have a common finite sheeted covering. This is equivalent to the fundamen-
tal groups having subgroups of finite index which are conjugate in PSL(2,C).
In general it is very difficult to determine if two manifolds are commensurable
or not, once the most obvious invariants of commensurability (for example, the
invariant trace field, see [13] and [17]) agree. When M is a finite volume hyper-
bolic 3-manifold with a single cusp, its SL(2,C)-representation and character
varieties, denoted respectively, by R(M) and X(M) throughout, have been fun-
damental tools in understanding the topology of M , see [6], [5], and [4]. These
techniques can be extended to the PSL(2,C)-character variety of M , which we
denote by Y (M) ([2], and see §2.1 for some details). Throughout, for either
SL(2) or PSL(2), we use the subscript 0 to denote a component of X(M) (or
Y (M)) containing the character of a faithful discrete representation of π1(M).
The main results of this paper concern how Y0(M) be can used to detect incom-
mensurability. For example, one of the main results can be summarized in the
following (for terminology and definitions see §2):

Theorem 1.1. Suppose that M1 and M2 are 1-cusped hyperbolic 3-manifolds
that cover a common orbifold with a flexible cusp.

Then Y0(M1) is birational to Y0(M2).

In the case when the manifolds are non-arithmetic, the work of Margulis (see
[11]) shows that the commensurability class contains a unique minimal element
and we get the more succinct re-formulation about the entire commensurability
class of M :

Theorem 1.2. Suppose that M is a non-arithmetic 1-cusped hyperbolic
3-manifold for which the minimal element in the commensurability class has
a flexible cusp.

Then Y0(M) is an invariant of the commensurability class of M .

Received June 21, 1999.
This work was partially supported by the N. S. F., The Alfred P. Sloan Foundation and T.

A. R. P. The 2nd author also wishes to thank the Department of Mathematics at U.C.S.B. for
its hospitality whilst working on the contents of this paper.

581



582 D.D. LONG AND A.W. REID

One can often verify this condition directly, for example, a rigid cusp places
constraints on the invariant trace field:

Theorem 1.3. Suppose that M is a non-arithmetic, 1-cusped hyperbolic
3-manifold whose invariant trace field does not contain either Q(

√−1) or
Q(

√−3).
Then Y0(M) is an invariant of the commensurability class of M .

Since the genus of a smooth projective curve is an invariant of birational
equivalence ([12] Chapter 7) we deduce,

Corollary 1.4. Suppose that M is a non-arithmetic 1-cusped hyperbolic
3-manifold as in 1.2 or 1.3.

Then the genus of the smooth model of Y0(M1) is an invariant of the com-
mensurability class of M .

The proof of Theorem 1.1 is contained in §3, as are further results linking
commensurability with boundary slopes.

We remark that the theorem is false for the SL(2,C)-character variety, as we
illustrate in §4. The final section contains a discussion of examples, in particular
we exhibit a pair of manifolds with the same invariant trace fields and volume
which have PSL(2,C)-character varieties of different genus and so cannot be
commensurable.

All hyperbolic manifolds and orbifolds are assumed orientable and finite vol-
ume.
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2. Preliminaries

2.1. The PSL(2,C)-character variety. For background on the SL(2,C)-
character variety we refer the reader to [6] or [5] Chapter 1. There is also a
notion of a PSL(2,C)-character variety for a finitely presented group G. This
is a good deal less well-known, and its construction not quite as standard. We
briefly recall a construction, see also [2] and [9] for closely related versions.

Let G be a finitely generated group. The Z2-central extensions of G are
classified by the finite group H2(G;Z2). For each such cohomology class u, we
form a central extension Gu which is unique up to isomorphism. Let X(Gu) be
the SL(2,C)-character variety of the group Gu; this is an affine algebraic set
which admits a natural action of the group H1(Gu;Z2), namely

ε(χρ)(γ) = χε(ρ)(γ) = ε(γ)χρ(γ).

where ε ∈ H1(Gu;Z2), χρ ∈ X(Gu) and γ ∈ Gu.
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This action is algebraic, and permutes irreducible components of X(Gu) and
the quotient space X(Gu)/H1(Gu;Z2) can be given the structure of an affine
algebraic set. The union of all these algebraic sets as u runs over elements of
H2(G;Z2) is the PSL(2,C)-character variety of the group G.

The construction of a PSL(2,C)-representation variety is entirely analogous.
Example: The knot 52. The knot 52 is a twist knot with 2-bridge normal
form (7, 5). A presentation for the fundamental group of the complement is:

〈a, b | waw−1 = b, w = a−1ba−1b−1ab−1〉.
Mathematica can be used to determine the defining polynomial equation for X0

(see [10]):
s(z, t) = 1 + 2t − t2 − t3 + (−t + t2)z2,

where z is the trace of the meridional element a (which is the same as that of
b) and t is the trace of ab−1. There is a rather obvious birational change of co-
cordinates which puts the curve in the form y2 = f(t) with f(t) = (1 + 2t− t2 −
t3)(t − t2), a polynomial with distinct roots. This curve (or rather the smooth
model of the projective completion) is then hyperelliptic of genus 2 (see [10]).

For all knots in S3, representations come in pairs. In this case, the action of
H1(π1(M);Z2) ∼= Z2 on the character variety is given by (z, t) → (−z, t) so that
we can identify the component Y0 of the PSL(2,C)-character variety with the
zero set of

p(q, t) = 1 + 2t − t2 − t3 + (t2 − t)q.
The affine curve p(q, t) = 0 is a punctured sphere, since it is easy to see from
the equation that q is a rational function of t. Hence the smooth model of the
projective completion of Y0 is a sphere. Indeed the covering of smooth models
X̂0 → Ŷ0 is a hyperelliptic covering of a genus 2 surface branched over the sphere.

2.2. Dehn surgery on orbifolds : flexible and rigid cusps of orbifolds.
For more details on the contents of this section see [19], [14] and [8].

If Q is a finite volume hyperbolic 3-orbifold with a single cusp, then the cusp
end of the orbifold has the form T × [0,∞) where T is an orientable Euclidean
2-orbifold. The possibilities for T are T 2, a pillowcase or a turnover, see [8].
Recall by a pillowcase we mean a sphere with 4 cone points of cone angle π. We
shall henceforth denote this orbifold by P . By a turnover we mean a sphere with
3 cone points with cone angles one of

{(π, π/2, π/2), (2π/3, 2π/3, 2π/3), (π, 2π/3, π/3)},
corresponding to quotients of the Euclidean plane by the triangle groups (2, 4, 4),
(3, 3, 3) and (2, 3, 6) respectively.

Now triangle groups are well known to be rigid in that they admit a finite
number of PSL(2,C)-representations up to conjugacy. The pillowcase, P is
flexible, in the sense that it admits many distinct Euclidean structures. We call
a cusp of a 3-orbifold rigid if a horospherical cross-section of the cusp end is a
turnover, and flexible if it is a torus or a pillowcase.
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This dichotomy manifests itself in defining Dehn surgery on cusps of hyper-
bolic 3-orbifolds. We briefly recall the details, see [8] for more.

Let Q be a cusped hyperbolic 3-orbifold. If a cusp of Q is flexible, Dehn
surgery may be performed as follows. In the case where a horospherical cross-
section is a torus, one proceeds as in the case of a manifold. For the pillowcase
we proceed as follows. There is a canonical involution τ : T 2 → T 2 acting as −1
on H1(T 2;Z), and which defines an orbifold covering map π : T 2 → P . The
involution τ extends to a map between the solid torus, and so π extends to a
map between the solid torus and the solid pillowcase. By choosing a homology
basis for the 2-fold cover of P we can define p/q-surgery on the end P × [0,∞)
to mean cutting off the end and regluing it in a way that induces p/q-surgery on
the 2-fold cover of the end. This corresponds to attaching a disc to a p/q-curve
γ say, in the 2-fold cover of the end so that under the map π, γ projects to a
power of a simple loop in P . Following Thurston ([19], [14] and also [15] for some
corrections), this extension holds for generalized hyperbolic Dehn surgeries on a
pillowcase end of an orbifold.

There is no non-trivial Dehn surgery on a rigid cusp, the point of difference
being that no solid torus quotient has a turnover as boundary — since any
self-homeomorphism of a solid torus takes meridians to meridians.

As in the case of manifolds, Thurston’s generalized hyperbolic Dehn surgery
space is closely related to the components X0 and Y0 of the appropriate character
varieties. Roughly, we associate to a point of the hyperbolic Dehn surgery space
a holonomy representation into PSL(2,C), and then take its character. Thus,
as in the case of manifolds the following can be deduced from the existence of
hyperbolic deformations in the Dehn surgery space, see [8].

Theorem 2.1. Let Q be a 1-cusped hyperbolic 3-orbifold of finite volume. If Q
has a rigid cusp then Y0(Q) is a single point, and if Q has a flexible cusp then
dimC(Y0) = 1.

Remarks.
(i) The definition of Y0 is unambiguous because the character of a discrete

faithful representation is a smooth point and therefore lies on a unique
component.

(ii) When Q has more than one cusp an analogous statement holds. In this
case, the dimension of Y0 is the same as the number of flexible cusps of Q
(see [8]).

3. Main results

3.1. The key tool in our analysis is the following simple lemma. To make the
cleanest statement we define a representation ρ of a group G into SL(2,C) to be
strongly irreducible if the image group ρ(G) contains free group of rank two. Note
that strongly irreducible representations are always in particular irreducible. The
same definition will be used in the context of PSL(2,C)-representations. Irre-
ducible representations which are not strongly irreducible are fairly rare (the lift
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of the irreducible representation of the infinite dihedral group from PSL(2,C)
to SL(2,C) is an example) and it follows, for example, from the results of [6]
that if a component of the character variety contains the character of a strongly
irreducible representation, then the characters of strongly irreducible represen-
tations are Zariski open.

Lemma 3.1. If two representations of a group G into SL(2,C) are strongly
irreducible on a subgroup of finite index and agree up to signs, then they agree
up to signs on G.

Proof. Let the representations be ρ1 and ρ2 and the subgroup of finite index
given by the hypothesis be denoted by F .

Note that by passing to the kernel of the map F → H1(F ;Z2), we may
as well assume that the representations agree exactly on a subgroup of finite
index; we denote the common value of the representations by ρ. By passage to
another subgroup of finite index if necessary, we may as well suppose that this
latter subgroup, K say, is normal in G. We note that the hypothesis of strong
irreducibility guarantees that ρ continues to be irreducible when restricted to
the normal subgroup K.

Let g ∈ G and consider any element k ∈ K. Then

ρ1(g)ρ2(g−1)ρ(k)ρ2(g)ρ1(g−1) = ρ1(g)ρ2(g−1kg)ρ1(g),

and since g−1kg lies in the normal subgroup, the right hand side is

ρ1(g)ρ(g−1kg)ρ1(g) = ρ1(g)ρ1(g−1kg)ρ1(g) = ρ1(k) = ρ(k).

That is, the matrix ρ1(g)ρ2(g−1) centralises the irreducible representation ρ
so by Schur’s Lemma (see Proposition 4 of [18] for example), this matrix must
be central in SL(2,C) and so lies in {±I}.

This lemma demonstrates why passage to the PSL(2,C) character variety
is required. As discussed in §2, the discrepency on lifting representations to
SL(2,C) is a change of sign. Given this, a convenient way to use this lemma is
the following, which has the same proof as 3.1:

Corollary 3.2. If two representations of G into PSL(2,C) agree and are
strongly irreducible on a subgroup of finite index, then they agree on G.

3.2. Before applying the results of §3.1 we introduce some notation. Suppose
p : M → T is a covering of finite volume hyperbolic 3-orbifolds. Then via
restriction of representations, p induces a map at the level of representation and
character varieties, p∗ : Y0(T ) → Y0(M). Corollary 3.2 implies,

Theorem 3.3. Suppose that p : M → T is a covering of 1-cusped hyperbolic
3-orbifolds.

Then the induced map p∗ : Y0(T ) → Y0(M) is injective on characters of
strongly irreducible representations.
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Proof. If the induced map were not injective then we could find a pair of distinct
characters, and hence distinct strongly irreducible representations that agreed
on a subgroup of finite index of πorb

1 (T ). This contradicts Corollary 3.2.

If T has a rigid cusp, so that by Theorem 2.1, Y0(T ) is a point, then Theorem
3.3 gives little information. However, in the presence of flexible cusps we have:

Theorem 3.4. Suppose that p : M → T is a covering of one cusped orbifolds
and suppose that the cusp of T is flexible.

Then the induced map p∗ : Y0(T ) → Y0(M) is a birational equivalence.

Proof. By Theorem 3.3, the map p∗ injects characters of strongly irreducible
representations of Y0(T ) into Y0(M). Now since hyperbolic Dehn surgeries on
T and M give rise to a Zariski dense subset of characters of strongly irreducible
representations in Y0(T ) and Y0(M) respectively, to prove the theorem it suffices
to show the map p∗ has nonzero degree at such points. To see this we proceed
as follows.

Perform a genuine hyperbolic Dehn surgery on the cusp of M . This determines
a character χρ ∈ Y0(M). We can extend the covering p to a finite orbifold
covering M(γ) → T (p(γ)) so that in particular T (p(γ)) is a hyperbolic orbifold.
Thus the pre-image of χρ is non-empty.

We have therefore shown p∗ is a degree 1 map from Y0(T ) to Y0(M) and
therefore a birational equivalence.

We have thus proved Theorem 1.1 of the introduction:

Theorem 3.5. Suppose that M1 and M2 are 1-cusped hyperbolic 3-manifolds
which cover a common orbifold with a flexible cusp.

Then Y0(M1) is birational to Y0(M2).

Restricting to the non-arithmetic case we can use 3.5 to make deductions
about the entire commensurability class. The reason is that Margulis’s charac-
terization of arithmeticity implies that if Mi (i = 1, 2) are non-arithmetic and
commensurable, then there is a unique minimal element T in the commensura-
bility class of M1 and M2, see [11] and we therefore have finite sheeted coverings
Mi → T for i = 1, 2. If we assume that T does not have a rigid cusp we see that
3.5 implies Theorem 1.2 of §1:

Theorem 3.6. Suppose that M is a non-arithmetic 1-cusped hyperbolic
3-manifold for which the minimal element in the commensurability class has
a flexible cusp.

Then Y0(M) is an invariant of the commensurability class of M .

The existence of a rigid cusp places strong restrictions on the cusps of man-
ifolds in the commensurability class. For example, given an orbifold with a
rigid cusp C, then any horospherical cross-section of a finite covering of C has
Euclidean modulus in Q(

√−1) or Q(
√−3) (see [13] or [16]). It is not hard

to deduce from this (see [16]) that the invariant trace-field of such a manifold
contains Q(

√−1) or Q(
√−3). With this we obtain the following.
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Theorem 3.7. Suppose that M1 and M2 are commensurable, non-arithmetic,
1-cusped hyperbolic 3-manifolds whose invariant trace fields do not contain either
Q(

√−1) or Q(
√−3).

Then Y0(M1) is birational to Y0(M2).

Proof. The discussion above and the hypothesis on the invariant trace-field,
shows that the minimal element in the commesurability class T cannot have a
rigid cusp. Theorem 3.4 implies the result.

Corollary 3.8. Suppose that M is a non-arithmetic, 1-cusped hyperbolic 3-
manifold whose invariant trace field does not contain either Q(

√−1) or Q(
√−3).

Then Y0(M) is an invariant of the commensurability class of M .

Remarks:
1. For knots in S3 the figure-eight knot is the only arithmetic knot [16], and

the existence of a rigid cusp quotient of non-arithmetic knot complements
is related to the question of whether the minimal element in the commensu-
rability class of a non-arithmetic hyperbolic knot complement is “smaller”
than the orbifold obtained as the quotient of the knot complement by the
group of orientation-preserving isometries (see [16] and [13]). In particu-
lar, apart from the figure-eight knot, the only knot complements that are
known to cover an orbifold with a rigid cusp are the two dodecahedral
knots of Aitchison and Rubinstein [1].

2. Theorem 3.4 and Corollary 3.5 have multi-cusp analogs. In this case the
manifolds and quotient orbifold should have the same number of cusps,
and in the latter case these should be flexible.

3.3. Some of the information contained in the invariant Y0 can also be ex-
pressed in terms of detected slopes. Recall the following from [6].

Let M be a 1-cusped hyperbolic 3-manifold of finite volume and let
Γ = π1(M). For γ ∈ Γ define the (regular) function Iγ : X(M) → C by
Iγ(χ) = χ(γ). Let α be a boundary slope and β a slope with {α, β} a generating
set for the fundamental group of the peripheral torus. We say α is detected by
a component X1 ⊂ X(M) if there is a sequence of characters {χj} ∈ X1 of
irreducible representations with Iα(χj) remaining bounded, but |Iβ(χj)| → ∞.

If there is a sequence of characters in a component X1 which is bounded
on all peripheral elements but still blows up on some element γ, we detect a
closed embedded incompressible surface. In this case we say X1 detects a closed
incompressible surface.

As discussed in §2 the passage to PSL(2,C)-charactetrs is only a matter
of sign, and so the property of “blowing-up” will be preserved on passage to
sequences of PSL(2,C)-characters. Thus, we may use the above notation on the
variety Y (M). In this language our results show:

Corollary 3.9. Let M1 and M2 be as in Corollary 3.5. Then
(i) The number of boundary slopes detected by Y0(M1) is the same as the

number detected by Y0(M2).
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(ii) If Y0(M1) detects a closed incompressible surface so does Y0(M2).

Proof. Let T denote the common orbifold quotient, with pi : Mi → T the
quotient maps (i = 1, 2). Now the peripheral subgroups of M1 and M2 have
finite index in the peripheral subgroup of T . The main observation to make
is that the property of a slope γi blowing up or remaining bounded on Y0(Mi)
implies the same for pi(γi) on Y0(T ) (i = 1, 2). The fact that such a sequence of
characters lifts to Y0(T ) is again an application of Theorem 3.5.

Thus, if β is a boundary slope detected on Y0(M1) for M1, then we can, by the
above process associate a detected slope β∗ for M2. This process defines a 1-1
map between the sets of detected slopes on Y0(M1) and Y0(M2). Furthermore,
reversing this argument implies that from a slope detected on Y0(M2), we get a
slope detected on Y0(M1). Hence we get a bijective correspondence between the
set of detected boundary slopes on Y0(M1) and Y0(M2).

Case (ii) follows using a similar argument from the remarks above.

These results also allow us to deduce the existence of additional components
in Y (M); various statements are possible, the simplest being:

Corollary 3.10. Suppose M1 and M2 are commensurable 1-cusped hyperbolic
3-manifolds without closed incompressible surfaces. Suppose that M1 has more
detected slopes than M2.

Then at least one of the Y (M1) or Y (M2) has more components that Y (T ).

Proof. By Lemma 3.1, each component of Y (T ) injects into some component of
Y (M1) and since each component of the latter variety is a curve by the hypothesis
on closed incompressible surfaces, this maps components of Y (T ) birationally
into components of Y (M1). A similar statement holds for M2.

Any component of Y (T ) produces the same number of boundary slopes in M1

and M2. Therefore the hypothesis shows that at least one (and possibly both) of
Y (M1) or Y (M2) must have a component which does not appear in Y (T ).

4. Examples

In what follows we made considerable use of SnapPea [20] and MathematicaTM.
We assume familiarity with both. In particular the nomenclature mabc refers
to that used in SnapPea for manifolds in the 5-tetrahedra census. Fundamental
groups and peripheral data used are those given by SnapPea — for knots in S3,
this is usually not the usual meridian/longitude framing. We make no effort to
detail the mathematica calculations. The main computations are straightfor-
ward applications of resultants in elimination theory. All examples considered
had 2-generator fundamental groups. Letting a and b be generators, X(M) (and
Y (M)) are determined by three traces:

P = tr(a), Q = tr(b), and R = tr(ab).

In the cases at hand, the calculations were simplified as X0(M) was given as a
plane curve in terms of P and Q.
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Example: The complement of the knot 52 (m015) and m017.
The components X0 and Y0 for m015 were computed in §2.1 — from there

we see that X̂0(m015) has genus 2. The manifolds m015 and m017 have the
same volume and invariant trace field being the cubic with one complex place
and discriminant −23. The two manifolds can be shown to be commensurable
— for instance SnapPea shows they have a common 2-fold cyclic cover. The
variety X0(m017) is defined by the plane curve F (P, Q) = 0 where:

F (P, Q) = P 2Q − Q + 1.

In this example R = 1−3P 2+P 4

P 3−P . Note that multiplying the equation P 2Q−Q +
1 = 0 by Q, and setting x = PQ, y = Q, the curve is birational to x2 = y2 − y.
This is a punctured sphere. Thus the SL(2,C)-character varieties of these two
manifolds are not birational. As computed in §2.1, the PSL(2,C)-character
variety is a punctured sphere.

Example: The manifolds m222 and m224.
These manifolds are knots in S3, see [3]. The manifold m222 being the com-

plement of the knot 820, and m224 being the complement of the 11 crossing
knot 11405, see [3]. They share the same volume, and have the same degree 5
invariant trace-field with two complex places and discriminant 5864. However
these examples can be shown to be incommensurable using Theorem 1.1. To
apply Theorem 1.1 first note that since the invariant trace-field has degree 5,
the manifolds are non-arithmetic, and they cannot cover an orbifold with a rigid
cusp. Hence to prove incommensurable, it suffices to check the (smooth models
of the) curves Y0 have different genus.

The components X0 and Y0 for these manifolds are:

X0(m222) := −1 + 4P 2 + 3P 3 − 4 P 4 − P 5 + P 6 + P
(−2 + 2Q2 − Q4

)
= 0

Y0(m222) := −1 + 4P 2 + 3P 3 − 4 P 4 − P 5 + P 6 + P
(−2 + 2Z − Z2

)
= 0

X0(m224) := −4 P + 10P 3 − 6 P 5 + P 7 +
(−2 + 2P 2

)
Q +

(
1 − P 2

)
Q3 = 0

Y0(m224) := −4 + 10Z − 6 Z2 + Z3 + V (−2 + 2Z) + V 3
(
Z − Z2

)
= 0

First consider the curve for Y0(m222) above. After a birational equivalence, this
can be rewritten as:

W 2 = −P − P 2 + 4P 3 + 3P 4 − 4 P 5 − P 6 + P 7,

where W = (PZ − P ). Now the right hand side factors as

P
(−1 − P + P 2

)2 (−1 + P + P 2
)
,

and so, as is easy to see, a further birational equivalence yields the plane cubic
curve given by y2 = x(x2 + x− 1). This is an elliptic curve since the right hand
side has distinct roots. Thus the genus of Ŷ0(m222) is 1.

We now claim that the genus of Ŷ0(m224) is 4 so that the manifolds cannot
be commensurable. The usual way to compute the genus is to take the plane
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curve and compute its genus as if it were smooth, and then subtract contribu-
tions from singular points. The following remarkable theorem (unpublished) of
F. Rodriguez-Villegas gives a very simple way to compute the genus in many
cases.

Theorem 4.1. Let C be an irreducible plane curve which is smooth except per-
haps at infinity. Assume C is defined by the equation F (x, y) = 0. Let N denote
the Newton polygon of F . Assume the edge polynomials of N have no multiple
roots. Then the genus of the smooth projective model of C is the number of
lattice points in the interior of N .

It is easily seen from above that the plane curve Y0(m224) is smooth except
at infinity and satisfies the edge conditions in Theorem 4.1. A count of interior
lattice points gives 4 as required. We remark that using SnapPea these manifolds
can also be shown to be incommensurable using their cusp volume.
Example: The figure-eight knot complement (m004) and m022.

Like the invariant-trace field, the curve Y0 is not a complete invariant of
commensurability. For example, the two manifolds in question are not com-
mensurable, the invariant trace-fields being Q(

√−3) and a totally imaginary
quartic field respectively. However, the varieties X0(m004) and X0(m022) are
birational, as are the varieties Y0(m004) and Y0(m022). The curve X0(m004) is
an elliptic curve of conductor 40 (see [10]) and the latter is a sphere.
Example: The complement of the knot 74, m006 and m007.

Using SnapPea, it can be checked these three manifolds are commensurable.
The volumes of m006 and m007 are the same, approximately 2.5689706009 . . .
and the volume of S3 \ 74 is twice this. The invariant trace-field is cubic of
discriminant −59. Thus any orbifold quotient of these manifolds has a flexible
cusp. The PSL(2,C) curve which is an invariant of the commensurability class
has genus 0. The main interest in these examples is that the character variety
Y (S3\74) has an additional component containing an irreducible representation.
The character varieties for m006 and m007 do not. This is reflected in the fact
that S3 \ 74 has three detected boundary slopes (cf., Corollary 3.10).

Another interesting feature about the manifolds m006 and m007 is that it ap-
pears that the number of boundary slopes is exactly 2 — not just strict boundary
slopes. If this is not the case then there would be an undetected strict bound-
ary slope, which seems unlikely. The fact that at least 2 slopes are detected on
X(M) (or Y (M)) is proved in [7]. The A-polynomials for these two manifolds
are given below:

Am006(µ, λ) = λ5µ2 + µ3 + λ(−1 + 2µ2) + λ2(−µ − µ3) + λ3(−µ2 − µ4)
+ λ4(2µ3 − µ5),

Am007(µ, λ) = −λ + 2λµ2 + µ3 − λ2µ3 + λµ4 − λ3µ4 + λ2µ5 − λ4µ5

− 2λ3µ6 + λ3µ8.

From [4] the slopes of the edges of the Newton polgon are boundary slopes
for the manifold. These account for all detected slopes. The boundary slopes for
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m006 are {−3, 1/2} and for m007 are {−3, 5/3}. In both these cases, −3-Dehn
surgery gives a manifold with positive first betti number. All other slopes are
rational homology spheres.
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