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Summary 

In  the paper it  is shown how to formulate certain homogenized models of thermo- 
elastic-unelastic periodic composites under large strains and large temperature gradients. 
The models obtained describe local stresses and heat fluxes in every material component in 
term of averaged displacement and temperature fields and certain extra unknowns called 
microlocal parameters. 

1. Introduction 

The modelling of composites is based on various averaged mathematical 
descriptions of nonhomogeneous material structures representing what are called 
the effective theories of composites, cf. [4]--[14]. The aim of the paper is to 
propose a certain general effective theory of thermo-elastic-unelastie composites 
with fine periodic structure under large strains and large temperature gradients. 
The idea of the method constitutes a generalization of the nonstandard approach 
to the homogenization of thermo-elastie composites given in [3]. 

"Throughout the paper indices i, ] as well as K, L and a, fl run over 1, 2, 3; 
summation convention holds. Indices A, B and a, b run over 1, ..., M and 1 . . . . .  
m, respectively, while index E runs over 1, ..., ~V (summation convention with 
respect to a, b, E holds if otherwise stated). For an arbitrary dffferentiable func- 
tion ~(X, t), X = (X~), we define q~ -~ ~q~/~X ~ and ~ ~- ~q~/~t. 

2. Exact Equations of Thermo.Elastic.Unelastie Composites 

Let  (y, t) C R 3 • R ,  y ~ (yi), be the inertial coordinates in the Galilean space- 
t ime and ~ stands for a regular region in R a occupied at t = to by the body under 
consideration in its natural state. Setting x g = ~i~:y ~, y C ~ ,  we define the recti- 
linear coordinates in ~ .  In ~ we also introduce the curvilinear coordinates by 
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means of the known smooth mapping x = ~r with X = (X ~) E f2. Once for all 
we assume that  (X, t) C ~ • [to, tl] are our independent variables. The position 
vectors and absolute temperatures of material points will be denoted by z(X, t) 
and O(X, t), respectively. By  p~(X), T~ -~ (T f fL(X,  t)), h,~ =- (h~(X,  t)) we denote 
the mass density, the second Piola-Kirchhoff stress tensor and the heat flux 
vector, respectively, related to ~ .  Moreover, let b = (bK(X, t)), a(X,  t), s(X, t), 
s(X,  t), a(X, t) stand for the body forces, heat absorption, internal energy, bound- 
ary tractions and boundary heat supply, respectively. Define 

J(X)  -~- det Vu(X), A (X)  ~--- (Vu(X)) -~ = (A:~z(X)), 

Sk~(X, t) - -  J (X)  Z,~(X, t) AK~(X)T,K~(X, t )A~(X) ,  (2.1) 

h~(X, t) ~-~ J (X)  AK:(X) h,K(x,  t), ~(X) ~ J(X)  Q~.(X), 

f h~(X, t) r aV = f 

and assume that  / ' ,  / / a r e  the known parts of ~2. Under the forementioned 
denotations we shall postulate the ,law of motion and the heat conduction equation 
in the integral (weak) form given below which has to hold for all test functions 
v k E C l ( ~ ) , ~ E C l ( ~ ) s u c h t h a t v l ~  \ f = O , ~ l ~  \ M = O :  

f ~'~(x, t) v~.o(x) dv  = f ~(x) Ibm(X, t) -- ~(X, t)] v~(X.) dV 
~9 t2 

§ j" s~(X, t) vk(X) dA(X), 
Y 

[~(x) (~,(x, t) - ~(x,  t)) (2.2) 

+ f a(X, t) C(X) dA(X) ,  
// 

t c [to, tl], 

where dV =-- dX  1 dX  2 dX  a and dA(X)  is an element of 0Y2 at X. 
Now we introduce the Lagrangian strain tensor L ~ 0.5(Vz T V Z --  V~ T Vu 

and define the strain tensor B(X ,  t) ==- A T ( x )  L ( X ,  t) A ( X )  related to J~. We also 
introduce the temperature gradient g(X, t) related to ~ by means of y(X, t) 
~-- A T ( X )  VO. We shall assume that  the body under consideration is made of M 

homogeneous materials. Hence there is known the decomposition ~ = U~a, 
A = 1, ..., M, where t9~ n Y2 B ~ 0 for every A 4= B and where every ~2a is a 
finite set of disjointed regular regions (for some A we may deal with one but  
multiconnected region Y2A) in R a, such that  every ~(/2A) is occupied in the natural 
state ~ by the A-th material component. All material properties related to ~ are 
assumed to be constant in every ~A --~ U(DA). We also assume that  every material 
component represents the elastic-unelastic material described with the aid of the 
internal state variables V ~ (Vi, ..., V s) E R s (cf. [21], where the full list of 
references and the detailed discussion of the constitutive relations can be found). 
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Hence for A = 1, ..., M the following constitu$ive relations are assumed to be 
known: 

T~(x,  t) = ~ / ( B ( X ,  t), O(X, t), V(X,  t)), ~,,(X) = ~2  , 

~(X, t) = t~(B(X, t), O(X, t), V(X,  t)), 

h,,(X, t) ~- hA(B(X,  t), O(X, t), g(X, t), V(X, t)), (2.3) 

v(x ,  t) = ~,~A(/,, /~') GA(T~(X, t), O(X, t), V(X, t)); 

X E g2a, t E [to, ts], 
where 

/a ----- ]a(T,~(X, t), 6)(X, t), V(X, t)) E R,  OA ~ 6a(/a, /a') E {0, 1}, 

IA' = t r  ~'~ +-g-gO, 

and where ,~A >= 1 if the material properties are independent of the time scaling 
and ;tA = 1 if otherwise; at  the same time dA([a, [a') = 0 if and only if there is no 
dissipation. 

In  the paper we restrict ourselves to the composites with so called A-periodic 
material structure, where A = 0.5(--X 1, X 1) • 0 .5(--X 2, X ~) • 0 .5(--X 3, X 8) 

with X ~ as the triple of the known positive numbers. I t  means that  Y0 + A ~ D 
for some Y0 E $2 and there exists the decomposition A = UAA, A ----- 1, ..., M, of 

into M disjointed open sets Aa such that  

g 2 a = { X E ( 2 : X - - - - Y + Z ,  Y E A ,  Z E A a } ,  A = I , . . . , M ,  (2.4) 

where A ~ { Y c R  3: : y1 :~1~1 ,  y ~ : ~ 2 ,  ] z 3 : v 3 ~ n ;  ~ : 0 ,  4 - 1 , - 6 2  . . . .  ; 
= 1, 2, 3}. In  the sequel we shall t reat  Eqs. (2.1)--(2.3) as the exact governing 

equations of A-periodic thermo-elastic-unelastic composites. The boundary-value 
problem of finding functions X('), 0(.), V(-) on the basis of the forementioned 
equations (and the pert inent initial conditions) will be denoted by ~.  

The A-periodic composites met i n  engineering problems comprise a very big 
number of periodicity cells; hence the form of every par t  f2a of the region ~2 is 
very complicated. That  is why the exact theory of composites cannot be sucess- 
fully applied to engineering problems. However, the exact theory of A,periodic 
composites will be used below as the starting point for the formulation of a 
certain effective theory of the composites. The proposed passage from the exact 
to the effective theory will be called the nonstandard homogenization method due 
to the fact tha t  it takes into account some concepts of the nonstandard analysis 
[1]. The idea of the method is based on the heuristic assumption that  a body with 
a sufficiently fine periodic material structure can be modelled by  a hypothetical 
body having the "infinitely small" periodicity cells; the dimensions of such cells 
have to be described by the infinitely small numbers well defined within the 
structure of the nonstandard analysis. 
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3. Nonstandard Homogenization Method 

3.1 Fine  Periodicity Assumption 

Let  be known the 3-periodic composite governed by Eqs. (2.1)--(2.4), and let e, 
E (0, 1], be a parameter. Setting 

~9,4~ ~ {X E Q : X = Y + Z, Y E eA, Z E d a} , A = I, . . ., M , 

we shall introduce, from the purely formal point of view, a certain sA-periodie 
material structure by assuming that  every 9~ in Eqs. (2.3) is replaced by 9a~ 
for some e E (0, 1]. Let  us also assume that  all external agents b(.), ~(.), s(.), ~(.) 
as well as the mapping ~ remain unchanged for every ~ E (0, 1]. For the fixed 
initial conditions on this way we can formulate the one-parameter family 2 , ,  
s E (0, 1], of problems related to sA-periodie composites (obviously 2~ = 2).  The 

basic unknowns in the problem 2~ will be denoted by X~(-), 0~(.), V~(.). I t  must be 
emphasized that  in every physical situation we deal with the problem 2 ;  the 
family 2~, s E (0, 1] of problems has a purely formal meaning and has been 
introduced in order to define wha~ can be called the "fine periodic structure".  
Namely, the A-periodic structure in the problem ~ will be called "fine" if the 
solution Z('), 0(.), 17(.) to the problem 2 can be approximated by the pertinent 
solution X'(.), 0~(.), V~(.) to the problem 2~ for every 1/~ E N. In the sequel we 
shall deal only with A-periodic composites of fine periodic structures and hence 
we introduce the following 

Fine Periodicity Assumption.  The solution Z('), 0(.), V(.) to the problem 
under consideration can be approximated by the pertinent solution Z~(.), 0~(.), 
V(.) to an arbitrary problem 2~, 1/s E N, such that  the approximation for.. 
mulae t 

z ( r  + z ,  t) ~ z~(r + ze,  t), 

o ( r  + z, t) ,-~ o~(Y + z~, t), 

v(Y + z ,  t) ~.. v~(Y + z~, t), 

:~z(Y + z ,  t) ~ y)z~(Y + zc ,  t), 

~ o ( Y  -]- z ,  t) ,.~ ~ o ~ ( Y  -[- z s ,  t), 

:Dv (Y  + z ,  t) ~ :Dv~(Y + z~,  t), 

(3.1) 

hold for Y E A,  Z E A and Y + Z E /20, where ~20 is a subset of f2 which can be 
treated as a certain "approximation" of [2. 

I t  has to be emphasized that  the conditions (3.1) cannot de directly verified 
since the solutions X'(.), Or(.), V~(.) to the problems ~ ,  e E (0, 1], are not known 
a priori. Nevertheless, we shall tacitly assume that  in the problems under con- 

1 Symbol ~Z(') stands for all material, time or mixed derivatives of g(.) which occur 
in the problem oo; similarly we define 500(0, ~g~(-) etc. The symbol ,~ stands for "can be 
approximated by"; this approximation has to be sufficient from the point of view of the 
possible engineering applications of the theory under consideration. 
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sideration the A-periodic structure is sufficiently "fine", i.e. that  the fine periodi- 
city assumption holds. 

The first step in our line of approach will be based on the passage from the 
problem o~ to a certain problem &~, where 6 is an arbitrary but  fixed infinitely 
small positive number. Since there are no infinitely small (and infinitely large) 
numbers among standard notions of analysis, we have to formulate the problem 
2~ as the nonstandard analysis problem, [1], [2]. Then the mathematical con- 
sequence of the fine periodicity assumption is (via so called transfer principle) 
that  the solution X('), 0(.), V(.) to the problem 2 can be approximated 
by the pertinent solution Xt(.), 0~(.), V~ to the (nonstandard) problem 
b~o. All mathematical entities in problems 2~, s E (0, 1], which are independent 
of e, such as 12, H, F, b(.), T,A(.) . . . .  , have to be represented by  the pertinent 
standard entities, [1], such as *g2, *H, *F, *b(.), *T~(.)  . . . .  Hence the non- 
standard problem 2~ will be governed by  the conditions 

f tr [S~ t) Vv(X)] dV -~ f @~(X) [*b(X, t) --  2~(X, t)]- v(X) dV 

+ f *six, t). v(x) dA(X), 
* F  

f h"(X, t). VC(X) dV = f {e"(X) [*~(X, t) --  ~ (X ,  t)] (3.m 
*9 "9 

+ tr [S~(X, t) V26(X, t)]} ~(X) dV 

+ f ,~(x, t) c(x) a A ( x ) ,  t e *it0, #], 
*// 

which have to hold for every v(.) E *[C1(~)8], ~(.) E *C1(~), such that v [ *(012 \ - P )  
= 0 and r [ *(~12 \ ~r) = O, and by  the constfitutive relations 

T,~(x,  t) = *a~/(n~(X, t), O'(X, t), V~(X, t)), e~'(X) = 07 ,  (3.3.a, 2) 

e~(X, t) = *$a(BO(X, t), O~(X, t), VZ(X, t)), (3.3.3) 

h,~(X, t) = * h ~ ( f f ( X ,  t), O~(X, t), g~(X, t), V~(X, t)), (3.3.4) 

~'~(X, t) = ~,~(/~, / ; )  *G~(T,,~(X, t), O~(X, t), V~(X, t)); 
(3.3.5) 

X c 12A ~, t c *[to, tl] 

w h e r e  

12a~ ~ {XE "12: X = Y - k Z ,  YEO*A, ZE6*Aa}, A = I  . . . . .  M, 

a s  w e l l  a s  by the formulae 

S~(X, t) = *J(X) V~(X, t) *A(X) T~(X,  t) *AT(X), 
(3.4) 

h~(X, t) = *J(X) *A(X) h,,~(X, t), e~(X) = *J(X) ~,f(X), 
i 
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where we have denoted 

B~(X, t) =-- *AT(X) L~(X, t) *A(X), 

l 
L~(X, t) -~ --~ [(Vz ~) T VZ~ __ (V'z)T V*Z] (X, g), 

g~(X, t) ~-- *A t (X )  VOw(X, t). 

At the same time from (3.1) we obtain now 

*z(Y + z ,  t) ,.~ z~(v + z~, t), 

*O(Y + z ,  t) ~ o~(Y + z~, t), 

* v ( Y  + z ,  t) ..~ v~(u + z~, t), 

Y~*Z(Y § Z, t) ~ Y)X~(Y + ZO, t), 

5O*O(Y + Z, t) ~ Y~O~(Y + ZO, t), 

Y)*V(Y + Z, t) ~-~ Y)V~(Y + Z~, t), 

(3.5) 

f o r Y E * A ,  Z E * A a n d Y + Z E * F 2 0 ,  1/6 E *N N. 
Summing up we conclude that  on the basis of the fine periodicity assumption 

the problem 5 ~ can be approximated by the nonstandard problem ~ ,  where 
is an arbitrary but fixed infinitely small positive number. I t  means, roughly 

speaking, that  the continuous body with the fine A-periodic structure can be 
"approximated" by a body with the infinitely small periodicity cells. Such 
a body can be defined exclusively within the framework of the nonstandard 
analysis and that  is why we refer o ~  approach to as a nonstandard homogenization 
method. 

3.2 Microlocal Approximc~ion Assumption 

The second step in our line of approach will be based on the passage from the 
nonstandard problem ~ to a certain (also nonstandard) problem o~ by applying 
the known method of internal constraints, [22], [23]. To this aid we shall replace 
Eq. (3.3.5) (i.e. so called evo]utional equation) by its weak form given by the 
condition 

M 
Z f _  [v"(x, e) - t), r  t), V (X, t))] o V(X) aV = 0 

A=I ~2 (3.6) 

which has to hold for every U(.) E *[C(~)] s, and where ~ stands for a scalar 
product in _R s (S is the number of the internal state variables, cf. Section 2). 
In the problem ~ we look for the approximate solution to the problem ~ 
which is assumed to belong to the special class of functions. In order to specify 
this class we introduce the sequence la(.), a = 1, . . . ,  m, of the known linear 
independeflt real-valued A-periodic functions (defined on R3), having the piece- 
wise continuous first order derivatives such that  

f v z o ( x )  a v - - 0 ,  a - - 1  . . . .  ,m.  
A 
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For the sake of simplicity we shall also assume that  there exists the decomposition 
z] = (2A z, E = 1, ..., N, of A into N, N > M, disjointed regular regions AE 
such that  the functions la(') are linear in every A E. Thus  we can define the 
system of 2/X m vectors _//a E in R 3, setting 

.[~a E ~ (AEaa), Aa~ =~ la.a(X) for X E ~jE ~ = 1, 2, 3. 

Every A E will be called the finite element of A. We shall also assume that  every 
finite element A E is a subset of a certain part  Aa of A. Introducing the (non- 
standard) sets 

~8~ ~ {X C *~:  X = Y + Z,  Y C (~*A, Z c ~*AS} , E -= I,  . . ., ~',  

we define functions Pz~(') by'means of 

#s~(X)~-- / 1  if X C 9  E~, 

[ 0 if X ~ * ~ \ z 9  E~, 

as the characteristic functions of-~ E~. The meaning of objects introduced above 
will be explained in the sequel. 

Now we can formulate the second heuristic assumption of the proposed 
approach which will be referred to as 

Microtocal Approximation Assumption.  The approximate solution 2 Z6(.), 
O~(.), V~(.) to the nonstandard problem 5~ can be found in the class of functions 
given by 

) r  t) = *p(X,  t) + ~*~(x/(~) *q~(X, t), 

O~(X, t) : *~(X, t) + 6*la(X/J) %r~(X, t), (3.7) 

v~(x ,  t) = ~ ( X )  * w ~ ( x ,  t); x ~ *~, t ~ *[to, t~.], 

where /~(.),/xs~(.) are the known functions introduced above and p(.), q~(.)~ 
~(.), :r~(.), WE(.) are sufficiently regular unknown functions defined almost 
everywhere on ~9 • [to, ts] with values in R ~, R 3, R+, R, R s, respectively. 

Now the problem ~ (constituting a certain approximation of the problem 
~0) can be stated as follows: find the functions Z~(.), 0~(.), Vz(.) in the class 
of functions given by Eqs. (3.7), such that  the conditions (3.2), (3.6) hold for 
every 

v (X )  = *v~ + ~*l~(X/~) *v~(X), 

r =~176 + ~*l~(X/,~) *~a(x), (3.8) 

U(X)  = #E~(X) *UE(X); X c *~, 

2 The approximate and exact solutions to ~ are denoted here by the same symbols 
z%), 0~(-), V%). 
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where v~ v~(.) C GI(~~) 8, ~0(.), ~a(.) E CI(~), ~j'E(.) ~ ~(~)s  are arbitrary 
functions satisfying v~ \ 17 = O, ~o ] OQ \ ~ = O, and where S~(.), @~(.), 
h~(.), e~(.) are expressed by means of Eqs. (3.4), (3.3). Moreover, the standard 
parts p(.), va(.)of unknown functions Z~(.), O~(.), respectively, are assumed 
to satisfy the boundary and initial conditions similar to those for functions 
Z('), 0(.) in ~he problem ~.  At last, the functions WE(.) are assumed to 
satisfy the initial conditions similar to those for the functions V/Da, where 
Aa ~ A ~, in the problem 2.  

The microlocal approximation assumption, which makes it possible to pass 
from the problem 2~ to the problem o~, constitutes the second heuristic assump- 
tion of the proposed method of modelling. The postulated a priori functions 
l~(.) in Eq. (3.7) are called the shape functions since their role is similar to that  
of the shape functions in the well known finite element method. The new un- 
known functions p(.) and ~(-) will be called macrodeformations and macro- 
temperatures, respectively. The unknown functions WE(.) will be referred 
to as microlocal state variables; they are related to the pertinent components 
of the composite (if A E ~ Ax then WE(.) is related to the A-th material com- 
ponent). For the particulars the reader is referred to [3], [16], where some examples 
of Eqs. (3.7) are given. The main role play here the unknown functions q~(.), 
~r~(.) which describe the deformational and thermal effects due to the jump 
nonhomogeneity of the material structure of the composite and are called the 
kinematic and thermal microlocal parameters, respectively. 

I f  the microlocal approximation (3.7) is properly choosen then the solution 
Z~(.), 0~(.), V~(.)to the problem ~ should constitute a good approximation 
of the solution to the problem 2~. Hence, via the formulae (3.5), the solution to 
the problem ~ can be also treated as a certain approximation of the solution 
Z('), O(.), 11(.) to the primary problem 2.  Combining Eqs. (3.7) with the 
formulae (3.5) and setting 

1 ff X C ( f f ,  

/xz(X)= 0 if X C g 2 \ ~ E  

where 
g2E ~ {XC ~:  X = Y - f - Z ,  Y C A ,  Z E A E } ,  E = I  . . . .  ,2r 

we arrive at the following important approximation formulae (summation 
convention holds !) 

z ( x ,  t) ~ p (X,  t), 

vx(x ,  t) ~ vp(x ,  t) + ~,E(x) AaEq~ t), 

O(X, t) ,~ v~(X, t), (3.9) 

v o ( x ,  t) ~ vo(x,  t) + # . ( x )  dZ~"(x ,  t), 

v ( x ,  t) ~ # d x )  w~(x ,  t). 
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The time derivatives of X('), 0(.), Vi.) and their material gradients (provided 
that  they exist) also have to be approximated on the basis of the formulae (3.9). 
Thus we conclude that  under the fine periodicity and microloeal approximation 
assumptions it is possible to evaluate the solution of the problem ~ in terms 
of macrodeformations p(.), macrotemperatures v~(.), mierolocal parameters 
q~(-), ~ra(.), a -= 1, ..., m, and mierolocal state variables WE(-), E = 1, ..., h r. 

3.3 ~onstandard Homogenization Statement 

The heuristic foundations of the nonstandard homogenization approach 
proposed here are represented by the fine periodicity and microlocal approxi- 
mation assumptions. This approach is also based on the mathematical fact 
tha t  the (nonstandard) problem ~8 of finding functions X~(-), 0~.), V~(.) 
(in the class of functions (3.7)) can be reduced to the standard problem o~ for 
functions p(.), v~(.), q~(.), ~r~(.), WE(.). Moreover, the governing equations 
of the problem ~ represent, roughly speaking, a certain "homogenized" material 
continuum and hence they constitute an effective theory of the composites 
under consideration. 

In  order to formulate the standard problem ~ we have to introduce some 
new mathematical entities which will be defined exclusively in term of the 
notions previously introduced. Firstly, we define the following strain measures 

Setting 

1 
E(X, t) =_ -~ [FpT(x, t) ~p(x,  t) - v~r(x)  F:c(x)], 

Da(X, t) ~- VpT(X, t) qa(X, t), D(X, t) ~- (D~a(X, t)), (3.10) 

1 
Qab(x, t) ~ ~ qa(X, t) . qb(X, t) , O~x, t) ~ (Q~ t)). 

BE(X, t) =-- AT(x) E(X, t) A(X) + AT(x) D~(X, t) | AT(x) YI~ E 

-~ AT(X)/ la  E ~ AT(X) AbEQab(x, t), 

gE(X, t) - -  AT(X) V~(X, t) + A t (X)  d~%~(X, t), 

it can be shown tha t  B ~ ~ *B E and g~ ~ .gE for X C ~E~ (symbol ___ stands 
for "is infinitely close to",  cf. [1]). Secondly, introducing the symbol 

t 0 if otherwise, 
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and taking into account the definitions of B ~ and gE, we shall define the following 
constitutive functions 

~E(E, D, Q, a, WE; A) --= ~ ( B  ", ~, WE), 

~E(E, D, ~, ~, WE; A) --~ o~E~A(B E, ~, WE), (3.11) 

~ ( E ,  D, ~ ,  ~, V~, ~r, WE; A) ~ ~f fh , J (B  E, 0, g~, WE), 

~E=~ ~ E ~ a ;  summation with respect to A holds! At last we introduce ~he 
stress and heat-flux measures 

S~(X, t) ~-- J(X) [Vp(X, t) ~- /~aE ~ qa(X, t)] A(X) T ~(X, t)AT(X), 

hE(X, t) =-- J(X) A(X) h,f(X, t), (3.12) 

J ( X )  =---- J(X) e S ,  

and using the extra denotation vE ~ vol A~/vol A, we also define the following 
fields 

N N 

So(X, t) ~ Z "ESE(X, t), S~(X, t) - -  Z ~'ES~(X, t) g .  E, 
E = I  E = I  

N 21 

ho(X, t) =-- _r ~,EhE(X, t), ho(X, t) ~ 2 "EhE( X, t) Ao E, 
E = I  E = I  

N N 

eo(X) = Z ~'~eE(x), ~,(x, t) -~ Z '  ~,~e~(x, t) e,,E/oK(X). 
E=I E = I  

(3.t3) 

Using the definitions introduced above we shall formulate the basic statement 
of the nonstandard homogenization approach: 

~onstandard Homogenization Statement. Functions p(.), 0(.), qa(.), ~r~(.), 
a ~ 1 . . . .  , m, WE(.), E = 1, ..., N, in the formulae (3.7) which satisfy the 
governing relations of the problem ~ have also to satisfy (almost everywhere) 
in /2  x [to, 0] the constitutive relations 

T S ( x ,  t) = ~,~E(E(X, t), D(X, t), Q(X, t), ~(X, t), WE(X, t); A(X)), 

~(X,  t) = ~(E,(X, t), D(X, t), O(X, t), a(X, t), WE(X, t) ; A(X)) , 

h~E(X, t) ~- hS(E(X,  t), D(X, t), Q(X, t), ~(X, t), 

~ ( x ,  t), =(x ,  t), wE(x,  t); A(X)) , 

rV'~(X, t) = ,~E~E(/E, /E') (~(T,,~(X, t), ~(X, t), W~(X, t)) 

where (~E(') --= OCEA(~('), 2E(.) ~ ~EAxA('), GE(') ~ ocEaG~(") and 

IE - o,E"I.,(T. E, ~, WE), i I  - -  tr ~e~ ,  ~ ~ . ]  + - ~  ,~, 

(3.14) 
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as well as the following field equations 

Div So(X, t) + e0(X) b(X, t) = eo@(X, t), 

so (x ,  t) = o,  
(3.15) 

Div ho(X, t) d- e0(X) [~(X, t) -- ~(X, t)] -4- tr [S0(X, t) VIb(X, t)] = 0, 

ho(X, t) = 0 ;  a = 1, . . . ,  n ,  

where the denotations (3.13), (3.12) have to be taken into account. At the same 
time the arguments E(X, t), D(X, t), Q(X, t) of the constitutive functionsin 
Eq. (3.14) are related to the basic kinematical unknowns p(.), qa(.) by means 
of Eq. (3.10). Moreover, the boundary conditions 

s o ( x ,  t) n ( x )  = s(X, O ,  

h o ( X ,  t) . n ( X )  : or(X, t ) ,  

XE/~,  
(3.16) 

XE/- / ,  

where n(X) is the unit outward normal to ~O at X, together with the pertinent 
boundary and initial conditions for p(.), #(.), We(.) implied by the problem 
~s have to hold. 

The homogenization statement constitutes the crucial point of the non- 
standard homogenization approach to the thermo-elastic-unelastic composites 
with the fine periodic material structure. Equations (3.10)--(3.16) can be treated 
as the governing equations of a certain effective theory of the composites under 
consideration; this theory will be referred to as the microloeal parameter theory. 
In particular So(X, t), h0(X, t), p0(X) will be called the mean stress, the mean 
heat flux and the mean mass density (related to O). Similarly, Ss(X,  t), hE(X, t), 
pE(X) can be called the partial stress, the partial heat flux and the partial mass 
density (also related to O but describing the behavior of pertinent material 
components). The proof of the homogenization statement can be shown via. 
the direct calculations with the aid of the known theorems of the nonstandard 
analysis. To do this we have to substitute the right hand side of Eqs. (3.7), 
(3.8) into the variational conditions (3.2), (3.6). Introducing the internal fine 
partition of the standard region *O and using the procedure similar to that. 
applied in [3], we arrive at the standard variational conditions which under 
the denotations (3.10)--(3.13) and under the known regularity conditions lead 
to Eqs. (3.15), (3.16) as well as to the constitutive Eq. (3.14). 

4. General Conclusions 

The line of approach leading from the problem 2 of the "exact" theory" 
of composites (i.e. the theory of composites as nonhomogeneous bodies) to the 
problem ~ of the effective microlocal parameter theory and then to the approxi- 
mate solution to the problem 2, is realized by the following procedure: 
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(i) We start from the formulation of the problem 2 by assuming that  (for 
every A-th material component) there are known the constitutive relations 
(2.3) and the external agents b(.), ~(.), s(.), 0(-) in Eq. (2.2). We also assume 
that  the boundary and initial conditions for the unknown functions Z('), 0(.), 
V(.) are prescribed. 

(if) We introduce the decomposition of the basic periodicity cell A into 
iV non-intersecting regions A g, E----1, ..., ~V (basic finite elements) bearing 
in mind that  every A K comprises only one material component. After that  we 
introduce the A-periodic shape functions la(.), a ---- 1, ..., m. The finite elements 
and the shape functions are similar to those of the finite element method but 
are introduced only in an arbitrary but fixed periodicity cell. 

(iii) Using Eqs.  (3.11)--(3.13) we formulate the governing relations (3.10), 
(3.14)--(3.16) of the microlocal parameter theory and the problem fi  within 
this theory. 

(iv) After obtaining the solution p(.), v~(.), q~(.), ~a(.), a -~  1, . . . ,m,  
Wg(-), E ~- 1 . . . .  , N to the problem ~ we evaluate the approximate solution 
Z('), 0(.), V(.) to the primary problem 2 by means of the approximation 
formulae (3.9). 

I t  has to be emphasized that  this line of approach leads to the reliable ap- 
proximation only if the A-periodic structure of the composite under consideration 
is sufficiently fine, i.e., if the fine periodicity assumption is justified in the 
problem we deal with. Also the microlocal approximation assumption (i.e., 
the choice of finite elements A E and shape functions la(.)) has to be motivated 
by the possible distributions of the deformation and temperature gradients 
within the periodicity cells. 

5. Final  Remarks  

The effective theories of thermo-elastic-unelastic periodic composites have 
been derived here from the "exact" theories by the use of some concepts and 
theorems of the nonstandard analysis. However, the derived microlocal para- 
meter theories do not involve any nonstandard analysis notions. The main 
features of the approach outlined in Section 4 can be listed as follows: 

(i) The approach proposed in the paper is very general, i.e., it can be applied 
to different thermo-elastic-unelastic composites (such as elastic-plastic with 
hardening or elastic/viscoplastic) under large strains and large temperature 
gradients. Hence the obtained relations constitute a .good starting point for 
the specification of many special theories of unelastic periodic composites. 

(if) The analytical formulation of problems within microlocal parameter 
theories is not much more complicated than the pertinent formulations of prob- 
lems for homogeneous materials since the system of equations for microlocal 
parameters i s algebraic. Moreover, the solution to the boundary value problem 
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on the  basic periodici ty cell (needed in the  known asympto t ic  homogenizat ion 

methods)  is no t  required here. 
(iii) The adapt ive  ref inement  of the  obtained approximate  solutions is 

possible b y  the  passage to  more suitable microlocal p a r a m e t e r  approximat ions ;  
we can use here an  approach  similar to  t h a t  of the  known adapt ive  finite e lement  

method.  
The examples  of some special theories based on the  nons tandard  homo- 

genization approach were derived independent ly  in [3], [16]--[19] for thermo-  

elastic periodic composites. The general approach  to  the  microlocal parameter  

theories for unelastic periodic composites, detailed in this paper ,  was applied 

to  the  elastic-plastic composites with the  kinemat ic  s t rain hardening in [20]. 
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