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Abstract

Default rules express concise pieces of knowledge having implicit exceptions, which
is appropriate for reasoning under incomplete information. Specific rules that ex-
plicitly refer to exceptions of more general default rules can then be handled in a
non-monotonic setting. However, there is no assessment of the certainty with which
the conclusion of a default rule holds when it applies. We propose a formalism in
which uncertain default rules can be expressed, but still preserving the distinction
between the defeasibility and uncertainty semantics by means of a two steps process-
ing. Possibility theory is used for representing both uncertainty and defeasibility.
The approach is illustrated in persistence modeling problems.
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1 Introduction

Reasoning under incomplete information by means of rules having exceptions,
and reasoning under uncertainty are two important types of reasoning that
artificial intelligence has studied at length and formalized in different ways
in order to design inference systems able to draw conclusions from available
information as it is. However, the joint handling of exceptions and uncertainty
has received little attention in non-monotonic reasoning, up to few noticeable
exceptions [1-3]. This is the topic of this paper.

Default rules are useful in order to express general behaviors concisely, without
referring to exceptional cases. Moreover they only require general information
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to be fired, which agrees with situations of incomplete information. In prac-
tice, reasoning from a set of exception-tolerant default rules in presence of
incomplete knowledge first amounts to select default rules. The selected set
of rules should focus on the current context describing the particular incom-
plete information situation that is considered, and then this set of rules can be
applied to this information situation in order to draw plausible conclusions.
When new information is available on the current situation, these conclusions
may be revised at the light of more appropriate default rules. The selection
problem is solved in practice by rank-ordering the default rules in such a way
that the most specific rules whose conclusion may conflict with the conclusion
of more general defaults, receive a higher level of priority [4], following the
idea first proposed in [5]. Clearly, the level of (relative) priority of a particular
rule depends on the whole set of default rules that are considered.

However, conclusions that we want to privilege in a given context may them-
selves be pervaded with uncertainty. Indeed, when a rule of the form “if @ then
b generally” is stated, no estimate of the certainty of having b true in context
a is provided, even roughly. The status of being a default rule, is just a proviso
for possible exceptional situations to which other rules in the knowledge base
may refer. The priority level of a default rule in a set of such rules cannot be
regarded as a kind of qualitative certainty level. In fact, it may happen that a
specific rule provides default conclusions that are less certain than more gen-
eral rules, or on the contrary strengthens the certainty of its conclusion. For
instance, the rule “birds with large wings fly” is more certain than “birds fly”,
while one may consider that the rule “Antarctic birds fly” is less certain than
“birds fly”, assuming that in Antarctic there are many penguins (that do not
fly) together with some more sea birds that fly. But, even if it is less certain,
the specific rule that fits the particular context of incomplete information at
hand, is the right one to use. More generally, the uncertainty attached to a
rule is not necessarily related to its specificity level.

As already said, reasoning with default rules and under uncertainty are two
important research trends that have been developed quite independently from
each other in Artificial Intelligence, even if conditional probabilities do exhibit
a kind! of non-monotonic behavior when its context part is modified. They
indeed address two distinct problems, in general using symbolic and numeri-
cal approaches respectively. Default rules are concise pieces of knowledge (by
omitting some propositional variables that are needed for describing excep-
tional situations), which are especially useful in case of incomplete informa-
tion. Reasoning with non-defeasible rules requires the complete specification
of all relevant variables. It is still the case when reasoning under uncertainty.
However, handling uncertainty, at least qualitatively, in a given incomplete

! Indeed translating the default “if a then b generally” by a constraint of the form
Prob(b| a) > « violates System P postulates of non-monotonic reasoning [6,7].



information context is crucial in various situations. For example, high level
descriptions of dynamical systems often requires both the use of default rules
that express persistence (for the sake of concise representation) and the pro-
cessing of uncertainty due to the limitation of the available information.

This paper proposes a joint handling of defaults and uncertainty in qualita-
tive possibility theory, where there already exist separate treatments for them
(although other uncertainty representation settings could be considered). Sep-
arate refreshers on the possibilistic handling of uncertainty and defaults are
given in Annex A and B while the problem raised by their joint processing
is first discussed. Then three methods for default reasoning are presented be-
fore integrating uncertainty in these methods. The approach is illustrated on
the problem of persistence handling in dynamical environments (persistence
rules are by nature default rules), and links with related works are discussed.
Another illustration about reasoning with fuzzy defaults such as “young birds
cannot fly” understood as “the younger the bird, the more certain it cannot
fly” can be found in a previous version of this paper [8]. This paper is a revised
and slightly expanded version of the main parts of two conference papers [9,8].

2 Uncertain default rules

We assume a representation language .Z built on a set of propositional vari-
ables 7. The set of interpretations associated with this language is denoted
by €2. An interpretation w € €) represents a state of the system under study. In
order to have a more expressive representation formalism, we now introduce
the notion of uncertain default rule.

Definition 1 An uncertain default rule is a pair (a ~ b, a) where a and b
are propositional formulas of £, and « is the certainty level of the rule, the
symbol ~ is a non classical connective encoding a non-monotonic consequence
relation between a and b.

In the following, for simplicity, we use for certainty levels the real interval
scale [0, 1]. However a qualitative scale could be used, since only the complete
preorder between the levels is meaningful. The intuitive meaning of (a ~ b, @)
is “by default” if a is true then b has a certainty level at least equal to a.
For instance, let b, f, w stand for “bird”, “fly”, “wounded”. Then (b~ f, ;)
means that “a bird generally flies” with certainty «;. It is a default rule since
it admits exceptions mentioned in other rules: for instance, (b A w ~» = f, as)
(“wounded birds generally do not fly”). But it is also an uncertain rule since
when all we know is that we are in presence of a bird, the certainty level «; is
attached to the provisional conclusion that it flies. Thus, the a’s provide an
additional information with respect to the default rule. Moreover, the more



specific rule about wounded birds is again an uncertain default rule since some
ones may fly. Note that, in general, as suggested by the above example where
there is no clear inequality constraint between a; and as, there is no relation
between the certainty level associated with a default rule and the certainty
level associated with a more specific rule. In particular, it would be wrong to
assume that the more specific rule always provides a more certain conclusion.

The core of our treatment of uncertain default rules is based on the idea of
translating them into a set of uncertain (non defeasible) rules. This can be
done in different ways, depending on how default rules are handled and on the
kind of uncertainty representation framework. In the following, uncertainty is
modeled in the qualitative setting of possibility theory [10,11] and possibilistic
logic (see Annex A). Indeed, this agrees with the qualitative nature of default
rules. We present several approaches for dealing with default rules.

Roughly speaking, default reasoning amounts to apply a set of default rules
A to a factual propositional base F'C describing a context at hand.

e A first idea is then to select the subset of the rules of A that is appropriate
for the factual context F'C' under consideration and remove the other rules,
and to turn the selected rules into classical propositional rules. As we shall
see, this idea is not entirely satisfactory, because many information are lost
(due to a drowning effect that leads to a problem of inheritance blocking).

e A method that copes with this difficulty, still relying on the context, named
contextual entailment, has been proposed in [12]. This method may be too
cautious and has no known efficient algorithmic counterpart. Based on this
idea, we propose a contextual rational entailment that is less cautious than
the previous one. The problem is that the context should be given before each
deduction, so for each change of context a compilation of the default base
must be done.

e Another approach that we also explore further in the following, and for which
we provide an efficient algorithm, is to rewrite each default rule into a propo-
sitional rule by making its condition part more precise (by explicitly naming
the exceptions mentioned in the default base). This approach is more satis-
factory with respect to the problems encountered by the previous methods.
However, to be able to deal with incomplete information, this set of rewritten
rules should be augmented with an additional set of rules that depends on
the context and states in what respect this context is not exceptional. These
additional rules aim at completing the factual context in order to be able to
apply the rewritten rules.

In the next section, we discuss in detail the three above alternatives for han-
dling default rules before presenting the treatment of uncertain default rules
in a new section.



3 Handling default rules

A normative approach to default reasoning is provided by System P [13] that
defines a “preferential” inference between formulas, denoted |~ , relation obey-
ing one axiom and five inference postulates:

Reflexivity: a |~ a

Left logical equivalence: if = a < b and a |~ ¢ then b~ ¢
Right weakening: if a = b and ¢~ a then ¢~ b

Cut: if aANbj~cand al~b then apc

Cautious monotony: if a b and a j~c then a Ablvc
Or:ifaprcand bl c then aVblve,

where a |~ b reads “b follows non-monotonically from a” (in this paper, we
indifferently replace a by a set of formulas viewed as equivalent to their con-
junction). The set of conclusions that one can obtain by using a “preferential”
entailment is usually regarded as the minimal set of conclusions that any
reasonable non-monotonic consequence relation for default reasoning should
generate. Lehmann and Magidor [14] have defined a more adventurous con-
sequence relation (which allows to draw more conclusions), named “rational
closure entailment”, which is a “preferential” relation that also obeys a Ra-
tional Monotony rule:

Rational monotony: if aj~b and a |t —c then a A ¢~ b

Another landmark work in the treatment of default rules is the system Z [4]
for stratifying a set of default rules according to their specificity (see Annex
B). Given a set of default rules A, System Z stratification partitions it into
subsets Ay, ..., A,, where rules in A; have priority over the ones in A; if ¢ > j.
These priorities reflect specificity levels since specific rules get higher priority.
System Z is a rational closure entailment. Besides rational closure entailment
and System Z entailment have been shown to be equivalent to a possibilistic
treatment of default rules briefly recalled in Annex B [15].

In the following, we consider a set A of default rules, together with a propo-
sitional factual base F'C' describing all the available information about the
context. Three methods for drawing plausible conclusions from FC' using A
are presented below. The factual base F'C'is supposed to be consistent. More-
over, we also assume that the set A is consistent. This means that we cannot
encounter a situation where it is not possible to compute the specificity levels
of A. This consistency condition is equivalent to the existence of a possibility
measure I satisfying the set of constraints II(a A b) > II(a A —b) associated
with each default in the base A, leading to a possibilistic logic handling of the
specificity levels (see Annex B and A). This is the basis of the first method.



Method 1: Possibilistic selection of the rules in a given context

Given a set A of default rules and a factual base F'C', the possibilistic approach
proceeds in two main steps:

e Associate to each default rule r = a ~ b € A its specificity level d(r) =
ZT(Q;A, where Z(r) is the rank of the stratum of  once the system Z procedure
has been applied (see Annex B). Let D, be the possibilistic knowledge base s.t.
D, = {(a; — b;,d(a; ~ b;))|a; ~ b; € A} where — is the classical material
implication. Besides, each proposition ¢ in F'C' is encoded in a possibilistic
format: (¢, 1), which amounts to consider the factual information as totally
certain. Then compute the inconsistency level Inc(D, U FC) (see Annex A).
e Applying default rules in A to F'C' amounts to reason with the formulas in
D, U FC that are above Inc(D, U FC). Hence, remove each formula (a; —
b;, 0;) from D, such that o; < Inc(D, U FC).

Definition 2 (rational closure entailment)

A formula v is said to be a rational closure consequence of A given a factual

context F'C, denoted by FC |~ p A0, if and only if 1 is a classical consequence

of FCUD, where D = {a; — b;a; ~ b; € A and d(a; ~ b;) > Inc(D;UFC)}:
FCpat iff FCUDFEY

Example 1 We consider the following default base, describing the fact that birds
generally fly and wounded birds generally do not fly: o1 : b~ f and pa : bAw ~ = f.
System Z gives: Ao = {¢1}, A1 = {p2}. The specificity levels associated to the rules
of Ao and Ay are 1/3 and 2/3 respectively. Let D, be the possibilistic knowledge
base associated to A { (b — f, 1/3), (b ANw — —=f, 2/3)}. Let FC = {(bAw,1)},
meaning that we are considering a wounded bird. Then Inc(D; U FC) =1/3 since
D, UFC b, (f,1/3) from rule p1, we have also Dy U FC F, (=f,2/3) from rule
a2, hence Dy U FC 5 (L,1/3) (applying the resolution rule of possibilistic logic,
where b, denotes the possibilistic entailment, see Annex A). So, the final base D
only contains the formula (b Aw — —f). So FCU Dyt (=f,2/3). One concludes
that a wounded bird is unable to fly.

However, this method suffers from the “drowning effect”. For instance, if we
had the rule “birds generally have legs (I)”, then it will not be possible to
conclude that “wounded birds generally have legs”, since the rule b ~ [ will
have 1/3 as specificity level.

Method 2: Contextual rational entailment

Our second approach is based on an idea presented in [12] and aims to remedy
to the “drowning effect” problem. In this work, the authors studied under
which conditions they can infer b from a A ¢, given a rule “generally, a’s are
b’s”. Classical logic always answers that a A ¢ infers b (monotony property).
Default reasoning should answer like classical logic except when the ¢’s are
exceptions of the rule. Hence, it is important to check if a A ¢ is an exception
of the rule “generally, a’s are b’s”.



Benferhat and Dupin de Saint-Cyr [12] used System P in order to answer
this latter question since System P never draws undesirable conclusions. In
the following, the approach of [12] is extended by using “rational closure”
inference relations instead of “preferential” inference relations. It is based on
the identification of rules having exceptions in a given context (the approach
is similar to [12], but uses rational closure instead of preferential closure)

Definition 3 Let F'C be a propositional consistent factual base considered as
the current context and fc € £ be the associated proposition made of the
conjunction of the formulas in FC. Let A be a set of default rules. A default
rule a; ~ b; of A has an exception with fc if and only if one of the two
following conditions is satisfied: (1) a; \ fe\b; is inconsistent, or (2) Jp € 2L,
s.t., fel @ and a; N FVR,A_‘bi; where r.a U8 the inference relation defined
by the rational closure of the relation |~ over the set obtained by interpreting

each default a; ~ b; of A as a; |~ b;.

For each rule a; ~ b; of A, we can check if it is exceptional or not in the given
context. If not, we change it into a strict rule a; — b;, else we delete it.

Definition 4 (contextual rational entailment) A formula 1 is said to be

a CR-consequence (C for context and R for rational) of A given a factual

context fc, denoted by fc %CR’AQ#, of and only if ¥ is a classical consequence

of Lrc U{fc}, where Xy = {a; — bila; ~ b; € A has no exception with fc}:
deCR,AQ/} iff  LpeU{felF .

Using the same reasoning as in [12], we can argue that |~ .,  is non-monotonic,
since increasing the context reduces the set of rules that have no exception,
and thus the set of conclusions.

Proposition 1 If fck fc then ¥, C Xyo.

Proof :Indeed, if 3o; — (; & X4 then (1) either {o; A f¢ A B; is inconsistent since
fek fc then {a; A fe A B; is also inconsistent, or (2) Jp s.t. fd' F ¢ (hence fe b )
and a; A @ |NR,A_'ﬁi' Hence, a; — (; € Y. O

We show now that |~ ., , is “rational”, so, the conclusions obtained by the
first method can be obtained by contextual rational entailment as well.

Proposition 2 VA, |~ 5\ C g

Proof :Indeed, if a rule a; ~ b; has exceptions in a given context fc, then it means
that a; A fcl r.a"bi. So this rule has a specificity level smaller or equal to the
level of inconsistency of D, U {fc} (where D, is the possibilistic knowledge base
associated to A, D = {(a; — b;,d(a; ~ b;))|a; ~ b; € A} ). Hence, a rule having
exception in a given context cannot be used by |~ R.A- Oince we translate every
default rule that has no exception into a material implication, and use classical
entailment on the set obtained, we use at least all rules that are kept by |~ RA- So,



this system can at least draw every conclusion obtained by |~ 5 A- O

Proposition 3 |, o verifies Reflexivity, Left logical equivalence, Right
weakening, Or, Cautious monotony, Cut and Rational monotony.

See appendix C, for the proof. Moreover, contextual rational entailment can
obtain more conclusions than rational entailment, namely it does not suffer
from the drowning effect:

Example 2 Let us consider the following default base A = {b~» f, bAw~ =f,
b~ 1} We have SZppy = {bAw — = f,b— 1}, sobAwl op Al

Note that some scholars (e.g. [16]) have pointed that “rational closure” may
lead to deduce undesirable results in examples where no conclusion is better
than too a bold conclusion:

Example 3 Let A be a default base representing that “Quakers normally are paci-
fists”, “Quakers are generally Americans”, “Americans normally like base-ball”,
“Quakers generally do not like base-ball” and “Republicans are generally not paci-
ficists”. A = {q~ p,q~ a,a~ b,q~> —b,r~ —p}. Then qATkaR’ApAaA —b,
since Xgnr = {q¢ — p,q¢ — a,q — —b}.

The result “pacifist” can be debatable (note that the two other conclusions
are desirable). One can argue that it would be better to not conclude any-
thing about the plausibility of having p true or false. In our opinion, it is
not the fault of “rational closure” but, it is rather due to the ambiguity of the
example. In this example, there is only one piece of information about “Repub-
licans”. Indeed, here, “Republican” can be considered as a general property,
as general as “American”. So its specificity level is as low as the American
property. Meanwhile, if we learn that Republicans are Americans that have a
given particularity (if they were only Americans, then the two words would be
synonymous) then the conclusions would change. Hence as discussed in [16], it
is not rational monotony that leads to undesirable conclusions, but it is rather
a lack of information in the knowledge base. A too adventurous conclusion is
only caused by missing pieces of knowledge that the system cannot guess on
its own, and these pieces can be always added to the default base (without
leading to inconsistency) in order to get the desirable conclusion (cf. [16]).

To conclude on this approach, it gives better results than the first one, but
the computation depends on the context: a computation of the set of rules
having no exception should be done before any new contextual deduction.

Method 3: Rewriting the rules by expliciting their exceptions

The first method handles default reasoning by deleting all the rules under a
level of inconsistency in a given context. It has the “drowning effect” as a
drawback: rules that are not directly involved in the inconsistency may be



deleted, while the second method correctly addresses this problem. However
the computation in the second method depends on the context: before each
deduction a computation of the rules that are kept must be done. Indeed,
this computation may be heavy since the whole set of default rules A should
be examined with respect to any new context. Hence, we propose another
method that somewhat handles these drawbacks. The idea is to transform the
default rules independently of any context into a set of non-defeasible rules.
The idea is to generate automatically from A a set of non-defeasible rules D
in which the condition parts explicitly state that we are not in an exceptional
context to which other default rules refer. In the same time, strict rules called
“completion rules” stating that we are not in an exceptional situation are
added to a new set C'R. The use of these completion rules is motivated by
the need of reasoning in presence of incomplete information: the completion
allows us to still be able to apply the modified rules which now have a more
precise condition part. Note that the rules in C'R will only be used if they are
consistent with the context described in F'C' (taking D into account). Hence,
it only requires to do a consistency test each time the context F'C' is changed.

Definition 5 (Explicit Rule and Completion Rule)

Let D = {a; — b;i}i=1. x be a set of strict rules. For any given default rule
r =a~> b, we define the set of exceptions in D to the rule r by:
E(a~b,D)={a; | a; = b; € D, {a; Na} UD ¥ L {b; N\b} UDF L}.

The explicit rule associated with r is defined by a A N\yep,py ¢ — b.

A completion rule associated with r is of the form a — —x where x € E(r, D).

REWRITING ALGORITHM

. A = {a;~ b;}i=1 i aset of default rules
input
Ay, ..., A, the stratification given by System Z (A, is the most specific stratum)

D the set of all rules rewritten from A
output

CR the set of completion rules.
k (rank of the current stratum), Dy (set of rules already rewritten
local variables| from Ay), r (rule currently examined), E(r, D) (current set of
exceptions to r in the current D)
begin
k:=n—1;, CR:=@; D :={an; — bpilan; ~ bp; € A, }; { initialization }
while k > 0



do! D, := @,
for each rule r = a~» b € Ay do:
E(r,D) := @;
for eachruled’ -V € Ds. t. {and}UDVF L and {V AD}UDFE L
do: E(r,D) := E(r,D)U{d'} ; CR:=CRU{a — —d'};
Dy := D U{a A \yep(,p) "¢ — b}
D := DU Dy;

ki=k—1; { examine the previous stratum }

end

Note that the rules of the last stratum n do not admit exceptions with respect
to the knowledge base A since they are the most specific ones. This is why they
are directly transformed into strict classical rules. Then the algorithm begins
with the rules of the stratum n—1. The stratum n—1 contains rules that admit
exceptions only because of rules in the last stratum. More generally, a stratum
k contains rules that admit exceptions only because of rules in strata with rank
greater or equal to k + 1. More precisely for each rule in a given stratum, all
its exceptions (coming from strata with a greater rank) are computed in order
to rewrite this rule by explicitly stating that the exceptional situations are
excluded in its condition part. Moreover, completion rules are added for each
exceptional case found; as already said, completion rules are useful to state in
what respect the current context is not exceptional. For instance, if b is the
only exception to the rule a ~ ¢, then the rule is modified into a A—b — ¢, and
the completion rule, associated with it, has the form a — —b. This completion
rule will only be used if it is consistent with the current context and the set
of rewritten strict rules.

Proposition 4 This algorithm terminates.

Proof :The algorithm examines each rule of each stratum. For a rule of a stratum
Ap, the algorithm executes at most two consistency tests with each rule of strata of
rank greater or equal to k4 1. Since each stratum is finite, the algorithm terminates.

O

Proposition 5 The set D of strict rules given by this algorithm is consistent.

Proof :At the beginning D is consistent since it is built on the set A, of rules
tolerated by the set A\ (AgU---UA,_1) = A,,. It means that it exists wy = an1 Abp1
where a,1 ~ by is the first rule of A, and satisfying every other rules of A,,. Hence
wo ): an1 N bp1 A {(_‘ani \4 bTLZ) | Api ~> by € An}

At each step, a rule is added to D only if its conclusion is consistent with every
conclusion of a rule of D. For a rule r = a ~ b from a stratum Ay, if it exists a rule
a’ — b in D such that ¥ AbA D F L, then r is replaced by a A —a’ ~+ b. Note that
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a A\ —d’ is consistent since, by construction, every rule of A, is tolerated by r, it
means that it exists w Ea AbA DA (= V), i.e, w = a A —a’ Ab. r modified by
specifying all its exceptions is added to D only when there is no more rule in Ay
whose conclusion is inconsistent with b. So D remains consistent. O

Note that each rule of the initial default knowledge base is present, modified
or not, in the resulting rule base. So, there is no loss of information as with
the previous method. Moreover the addition of rules a ~ —a’ and a A —a’ ~» b
in situations such that a ~ b and a A @’ ~ —b hold, is in full agreement
with postulates of rational closure [14]. Indeed, from a A ¢~ —b, we have by
consistency, a A ¢ b. Then from a |~ b and a A ¢t b, we get a |~ —c applying
one of the equivalent forms of rational monotony. Moreover from this result
and a b we obtain a A =¢ |~ b by cautious monotony.

Definition 6 (Rewriting entailment) A formula ¢ is said to be a RW —
consequence (RW for rewriting) of A given a factual context FC, denoted by
FC gy A, if and only if for any CR' C CR, such that CR' is mazimally
consistent with FCUD, FCUDUCR' & 1 where D and C'R are respectively the
set of strict rules and the set of completion rules obtained from the rewriting
algorithm.

Proposition 6 VA, |, C pwa

Proof :As previously noticed, the addition of rules a A —a’ ~ b in situations such
that @ ~ b and a A a’ ~ —b hold, is in full agreement with postulates of rational
closure. Moreover the consistency of D computed from A (Proposition 5) allows us
to transform ~» into —. More formally, it gives: |~ p o D. The same reasoning can be
done for the completion rules: a ~» —a’. It leads to )N R,ACR- Hence, RADUCR,
by right weakening, we get r z ADUCR' where CR' C CR. So, if FC |~ p A% then,
by cautious monotony, FC U D UCR' v g a9, i.e., FC P gy At O

Proposition 7 |~ rw.a verifies Reflexivity, Left logical equivalence, Right
weakening, Or, Cautious monotony, Cut and Rational monotony.

See appendix C for the proof.

Example 4 Now we can rewrite the rule of example 2 by describing explicitly
their exceptions starting from the last stratum. It gives the following knowledge base
D={brAw — —f,bAN—-w — f,p3:b— l}. There is only one completion rule:
CR = {b — —w}, hence, in the context FC = {b}, the completion rule is consistent,
so it allows us to deduce f Al. In the context FC = {b A w} we cannot add the
completion rule since it is inconsistent with FC so we can conclude = f N l.

For “Nizon Diamond” example (see example 3), the algorithm gives D = {q —
p,q — a,q — —b,a A —=q — b,r N =g — —p} and CR = {a — —q,r — —q}. In the
context, ¢ A r we deduce p, a and —b. An intuitive interpretation of the fact that
pacifist is obtained is that the context Quaker is more specific than Republican in
this knowledge base, since Republican is compatible with all the rules which is not

11



the case for Quaker.

It is now interesting to check if method 3 retrieves all the conclusions of method
2. We can establish that it is the case.

Proposition 8 VA, | p A € I gipa-

The last part of the proof (presented in Appendix C) has also pointed out
that method 3, which is based on the rewriting of the default rules, is only
protected against existing exceptions that can be discovered by compiling the
default base. In case the context F'C' corresponds to a new exception to which
A does not refer, method 3 cannot conclude anything meaningful (as it is the
case of method 1), while method 2 would lead to non trivial conclusions by
getting rid of rules inconsistent with F'C'. However, we may assume that the
default rule base refers to any exception that can be encountered in practice.
Otherwise, it would mean that there is some important missing information

in A.

4  Handling uncertain default rules

Let UA be a set of uncertain default rules of the form (a ~ b, «), while
A continues to represent a set of default rules without certainty levels. In
this paper, two types of levels are involved: namely levels encoding specificity
and levels of certainty. Although in the first approach specificity levels are
handled by possibilistic logic in the same manner as the certainty levels will
be processed in this section, the two types of levels should not be confused
and the inference process uses the two scales separately. In fact in each of the
three above methods for handling default rules, specificity is used to determine
which rules are appropriate in the current context. We denote by D the set of
strict rules obtained from A by applying one of the three rewriting methods,
and we denote by UD the corresponding set of strict rules associated with
their certainty levels. Then, in the resulting base UD, the certainty levels
should be taken into account in agreement with possibility theory in order to
draw plausible conclusions with their certainty levels.

Using the first method, an uncertain default rule (a ~ b,«) is considered
under the form (a ~» b) and on the basis of its specificity level is selected
or not with respect to the current context. If the rule is selected, it is then
rewritten into the form (a — b, a).

Using the second method, an uncertain default rule (a ~ b, «) is also con-

sidered under the form (a ~» b). If it is not exceptional in the given context
according to rational closure then it is changed into a strict rule as in the
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previous method. Otherwise it is deleted. If the rule is selected, it is then
rewritten into the form (a — b, a).

For the third method, an uncertain default rule (a ~ b, ) is considered under
the form (a ~ b) and on the basis of its specificity, its set of exceptions is
computed, say a},. .., a;. Then this rule is rewritten into the form (a A —a} A

.\ —ajy, — b,7). Moreover, k completion rules are created and added to the
set of completion rules C'R, namely, (a — —a},6;), ... (a — —aj, 0x). Remind
that each rule in C'R is used only if it is consistent with the context and the
set of rewritten rules. We have now to discuss how to determine the levels

77517 s a(sk-

The third method can be justified in the following way. On the one hand, as
already said, the addition of rules a ~ —a} and a A —a; ~ b in situations
such that a ~ b and a A a ~ =b hold, is in full agreement with postulates
of rational closure [14]. Moreover, we have to assess the certainty levels v and
01, ..., 0, associated with the added default rules. This can be done easily
by interpreting the certainty levels of the default rules we start with, as lower
bounds of conditional necessity, namely N (bla) > « and N(—blaAa;) > [3;, and
noticing? that when the bounds are strictly positive, they coincide with the
necessity of the corresponding material implication. Then from N(—-aVb) > «
and N(—a V —a) V —=b) > [3;, applying possibilistic resolution rule (see Annex
A), we get N(—a V —a) > min(a, ;). Then we can take §; = min(a, ;).
Moreover, the rule a A —a; — b is at least as certain as a — b by monotonicity
of necessity measure (see Annex A), so we can take v = a.

Example 5 If we consider the following uncertain default base UA, describing the
fact that birds generally fly with certainty o, wounded birds generally do not fly with
certainty awe, and birds generally have legs with certainty ag: {(b~ f,a1), (bAw ~
—\f, 042), (b ~> l, Oég)}.

Then the possibilistic knowledge base D, associated with UA by the first method is
the following (at this step, the ignored certainty levels are kept between parentheses):
{(b — [, 1/3 (al))7(b/\ w—~f, 2/3 (Oég)),(b — 1, 1/3 (043))}

Let FC = {(bAw,1)}, meaning that we are considering a wounded bird. As previ-
ously computed, Inc(D, U FC) = 1/3. Hence the final uncertain base UD contains
only the uncertain formula (b A w — —f,a3). So UDU FC b (=f,a2). It means
that it is certain at level as that a wounded bird is unable to fly, but we cannot
conclude anything about its legs.

The second method rejects the rule b — f, since it admits exceptions in the given

2 M(bla) is defined as the largest solution of the equation Il(a A b) =
min(I1(bla),II(a)) applying the minimal specificity principle, which favors the
greatest possibility degrees that are in agreement with the constraints. It yields:
II(bla) = 1 if II(a A b) > II(a A =b) and II(bla) = II(a A b) otherwise. Then
N(bla) = 1 —TI(—alb) = 0 if N(a — —b) > N(a — b) and N(bla) = N(a — b)

otherwise.

13



context b Aw, leading to the resulting base:{(bAw — —f, as2), (b — l,a3)}. It means
that it is certain at level ag that a wounded bird is unable to fly, and at ag that it
has legs.

The third method gives the following knowledge base D:A(b A w — —f, as),(b A
~w — f,aq),(b — l,a3)}, together with the uncertain completion rule base {(b —
—w, min(ay,az)}, hence, in the context FC = {(b,1)}, the completion rule is con-
sistent with FC and D, so it allows us to deduce f with certainty min(ay,as) and
I with certainty as. However, the use of methods 1 or 2 would have permitted to get
a better lower bound of the necessity measure of f, namely ay. This poorer lower
bound is the price paid for the computational simplicity of method 8 (compared to
method 2). In the context FC = {(bAw, 1) we cannot add the completion rule since
it 1s inconsistent with FC so we can conclude —f with certainty as and | with as.

Note that the possibilistic setting also allows us to process uncertain factual
contexts, namely formulas in F'C' may have certainty levels less than 1.

5 Application to persistence modeling

The ability of handling uncertain default rules is useful for representing dy-
namical systems. Indeed, default reasoning can help solving the “frame” and
“qualification” problems. The “frame problem” pertains to the quasi-impossibility
to enumerate every fluent that is not changed by an action. The “qualification
problem” refers to the difficulty to exactly define all the preconditions of an
action. An idea common to many proposals for solving the frame problem is to
use default comportment descriptions for expressing persistence. Stating de-
fault transitions may be also useful for coping with the qualification problem.
Besides, the available knowledge about the way a real system under study can
evolve may be incomplete. This is why uncertainty should also be represented,
at least in a qualitative way.

In this section, the variables set ¥, on which the representation language .Z
is built, may contain occurrences of action. More formally, let ./ be the set of
action symbols. We consider that the variables set 7* contains in addition to
the symbols representing facts all the symbols do(a) where a € o7, representing
action occurrences. When there is ambiguity, variables may be indexed by a
number representing the time point in which it is considered. We denote by f;
the formula f in which all variables are indexed by time point ¢. The evolution
of the world is described by uncertain default rules of the form (a; ~ by iy, @)
with £ > 1, meaning that if a is true at time ¢ then b is generally true at time
t + k with a certainty level of a.

In order to handle the frame problem, we choose to define a frame axiom.
Among all the kinds of fluents, we can distinguish persistent fluents (for which
a change of value is surprising), from non persistent ones (which are also called
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dynamic [17]). Here, we assume that a set of non persistent literals NP is
defined. Note that occurrences of actions are clearly non persistent fluents:

{do(a)la € &/} C NP.

Definition 7 (frame axiom) Vf € ¥, if f & NP then (fi ~ fir1,p(f))
and if =f & NP then (=fy ~ —fi1,p(—f)) where p(f) is the persistence
degree of f.

The persistence degree depends on the nature of the fluent, for instance, the
fluent asleep is persistent but it is less persistent than deaf.

Given the description of an evolving system composed of a set of uncertain
default transition rules A describing its behavior (A contains pure dynamic
laws and default persistence rules (coming from the frame axiom)) and a
possibilistic knowledge base F'C; that describes the initial state of the world,
we can study the problem of predicting the next state F'C}; of the world. The
following example inspired from [18] shows how to describe a coffee machine
behavior with uncertain default transition rules.

Example 6 Let us consider a coffee machine that may be working (w), have
enough money in it (m), have a goblet under the tap (g). Its normal behavior is
roughly described by:

w1 Mg~ gey1 A My 0.9 w2 1My A 2w ~ g 0.9

where 1 means that if the machine has money in it then in the next step a goblet
1s under the tap and the money is spent. This first rule describes the intended coffee
machine behavior supposing that it is working correctly. But it admits an exception
described by wa. The agent is able to perform only one action on this machine: “give
money” (gm). This action has an uncertain effect since giving money may fail if
the coin is faked money (f).

3 do(gm)y ~ myy1 0.8 g s do(gm)y A fr~ —mypq 0.7

We consider m as the only non persistent fluent (as soon as m is true, it becomes
false because of the rule v1): NP = {m}. Hence, persistence is encoded as follows
(for the simplicity of the example, we have put the same level of persistence for all
rules, but it is not compulsory):

©5 gt~ Gir1 0.9 w6t wg~ wyer 0.9 w7 fi~ fie1 0.9

pg @ my ~ myyq 0.9 g9 : gt ~ 1geyr1 0.9 P10 @ "W~ "Wy 0.9
o1 fe~ 2 fier 0.9

In the initial state the agent is not absolutely sure that the coffee machine is work-
ing but he puts money in it (he thinks it is not faked money). FCy = {(do(gm)o, 1),

(—mg, 1), (—g0,1),(—=f0,0.9)}, there is no money, no goblet, and it is almost certain
that the money is not faked.

From a set of uncertain default transition rules of the form (a; ~ byy1, @), we
can apply the methods presented in the previous section in order to obtain a
set D of uncertain transition rules of the form (a; — byy1, ). From D and a
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knowledge base F'C; describing the initial state, the next state can be com-
puted syntactically as follows:
FCii1 = {(bys1,a)|3(ar, ) s.t. (ap — b1, ) € D and FCy b, (ay,y) and o =
min(/3, )}
More generally, the resulting state can be computed by considering the ex-
tended set of rules D’ that correspond to all the possible states of knowledge
about the initial state of the system [18]:

D = {(\/[(/\Jai) — \/[(/\Jbi), min;eyug &Z)\V(az — bl', Oél') € D}
where [ and J are any independent sets of indices of rules in D.

Example 7 System Z gives three strata for example 6: Ao = {p1,¢5,...,011},
Ay = {2, 3} and Ay = {p4}. Applying the first method leads to compute Inc(FCyU
D;) where Dy is the possibilistic knowledge base associated with A. Then delete
all the rules of D, that have a smaller specificity level. Only three rules are kept:
w2 1 (M A —~wg — 21, 0.9),03 @ (do(gm)y — myy1,0.8) and g = (do(gm)e A fr —
—my41,0.7). Hence, we can deduce (my41,0.8) meaning that the machine has money
in it in the next state.

The above example shows a drawback of the first method: all the persistence
rules are drowned. Hence we are not able to determine the value of the fluents
that are not concerned by transitions. The third method has not this drawback
and preserves the following larger rule base where the modified parts of rules
are in bold:

Example 8 ¢4 : (do(gm)e A fr = —~my41,0.7); o2 @ (my A —wy — —ge41,0.9); @3
(do(gm)iN—fy — myy1,0.8); o1+ (MyAwe A =(do(gm)g A —fy) — g1 A—mys1,0.9);
@5 (geN(mg A ~wy) — g441,0.9); w6 @ (W — wig1,0.9); w7 @ (fr = fi41,0.9);
@g 1 (-myA=(do(gm)g A —fy) — —my11,0.9); @9 1 (mgr — —g641,0.9); @10 (Cwp —
Wi41, 09), ¥11 - (_‘ft — _'ft+17 09)

Note that exceptions to persistence laws correspond to occurrences of actions, as ex-
pected. If the initial knowledge base FCy is {(do(gm)¢, 1), (=my, 1), (—gt, 1)}, com-
pletion rules are: {(do(gm); — —fi,min(0.8,0.7) = 0.7), (m; — w,0.9), (my —
=(do(gm)e A = ft),0.8), (g0 — —(my A —wy),0.9) }. So at time point t + 1, FCpyq
contains (mi+1,0.7), (4g:+1,0.9), (= fi+1,0.9), meaning that there is money (with a
certainty degree of 0.7) in the machine, no goblet and the coin is not faked (with a
certainty degree of 0.9).

One noticeable advantage of the third method is that the deduction can be
iterated without recompilation of the default base (whereas it would be nec-
essary with the second method).
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6 Related Works

The two non-monotonic inference relations “Contextual rational entailment”
and “Rewriting entailment”, that we have proposed in this paper, and used
in method 2 and method 3 respectively, are new. They are both “rational
closure” entailments, and allow us to deduce more conclusions than “System
Z” [4] entailment (or its equivalent “best-out” entailment [19]). There has
been other proposals for “rational closure” inference from defaults, among
them, the “lexicographic entailment” [19,20] is an approach that is recognized
to give good results, in particular, as our two approaches, it avoids “blocking
of inheritance problems”. Meanwhile it has a drawback, it is sensitive to direct
or indirect redundancy since it is based on a counting of the rules, while our
two methods are not:

Example 9 (variations on Nixon example) Direct redundancy: {q ~ p,q~
p,r ~ —p}, what can be said about g Nr ?

Indirect redundancy: {q ~ p,r ~ —p,e ~> p} where the last rule means that “ecolo-

gists are generally pacifists”. What can be said about g A\r Ne?

Lezicographic entailment allows us to conclude pacifist in the two redundancy cases,

meanwhile in these two cases “rational contextual entailment” concludes to an in-

consistency and “rewriting entailment” cannot conclude neither to pacifist nor to

not pacifist. This ambiguity preservation seems to be a desirable conclusion in such

an example.

There has been very few works handling both defeasibility and uncertainty, up
to the noticeable exception of system Z*[1] that handles default rules having
strengths modeled in the setting of Spohn ordinal condition functions [21],
and their exploitation by maximum entropy principle, taking advantage of the
probabilistic interpretation of Spohn functions [22]. In system Z7*, a default
rule (a ~ b) is extended with a parameter representing the degree of strength
or firmness of the rule and denoted by (a —° b). This is interpreted as a
constraint of the form x(aAb) < k(aA—b)+4§ where & is a Spohn kappa function
associating any set of interpretations with an integer value that expresses
impossibility (thus 0 means full possibility and oo means full impossibility).
Translated in possibilistic terms, it amounts to deal with constraints of the
form II(a A b) > Ek.Il(a A —b) with k > 1, using the standard transformation
between kappa functions and possibility measures [23]. Thus, the k’s are like
uncertainty odds. In Z*, the ranking of defaults is obtained by comparing sums
of strength degrees, somewhat mixing the ideas of specificity and strength.
Separate scales for specificity and certainty are not used is this approach,
so certainty levels are introduced in the computation of the levels reflecting
specificity ordering. This leads to an interaction between the two notions. For
instance, encoding our Example 1 in a ZT formalism, we get: 7y : b — f
and ry : bAw —° —f, where §; and J, are non negative integers. System
Z7T generates the following ranking on the two interpretations {b,w, f} and
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{byw,—f}: k({b,w, f}) = Z1(re) =01+ 02+ 1 and k({b,w,~f}) = Z7(r) =
01. Thus in Z*, the strengths of the defaults are combined for determining their
respective specificity level, and paradoxically, not really for computing the
certainty levels of the conclusions. The approach presented here distinguishes
more carefully between specificity and certainty:.

As shown on the following example, the way system Z* handles defeasibility
and certainty in a mixed way may not always yield the expected conclusion.

Example 10 Consider the following default base stating that birds generally fly,
birds generally are not palmate, wounded birds generally do not fly, and that duck
birds generally are palmate. {b =9 f b —% =p b Aw —% —=f, b Ad —% p}

System Z* associates to these defaults the following respective ranks d;, s,
01 + 03 + 1, 99 + 94 + 1. Assume that the values of the d;’s are such that
01 < 61 +03+1 <y < dg+ 04+ 1 (which does not correspond to a refinement
of the Z ordering!). Then, from a wounded duck bird, System Z* concludes
that it is palmate but cannot conclude that it cannot fly as System Z will do.

Another interesting approach handling both defeasibility and uncertainty has
been proposed in [2] in a setting where probabilistic logic is combined with
default reasoning. Lukasiewicz proposes a framework that can handle simulta-
neously strict propositional rules, probabilistic formulas and default formulas.
A basic difference with our proposal is that default formulas are classical de-
fault rules, meanwhile in this paper a new kind of default rules that are also
pervaded with uncertainty is considered. Recently, Lukasiewicz and Schellhase
[24] have proposed a setting for representing variable strength conditional
preferences where a default contextual preference is stated together with a
strength, in the spirit of system ZT. Our setting could be also used in that
perspective keeping the handling of the default nature of preferences separate
from the processing of the strengths.

Nicolas et al. [3,25] also present an approach that deals with defeasibility and
uncertainty in a possibilistic framework. But, they combine possibilistic logic
with Answer Set Programming rather than using the same setting for default
and uncertainty handling. Certainty levels are used in order to help to restore
consistency of a logic program by removing rules that are below a level of
inconsistency. As our first method, this approach does not avoid the drowning
problem, while our two other methods do.

Using an uncertain framework in order to describe an evolving system has been
done by many authors, for instance in a probabilistic setting. But reasoning in
this setting implies to dispose of many a priori probabilities, this is why using
defeasibility may help to reduce the size of information for representing the
system. Besides, it is a common idea to define a frame axiom in terms of default
rules (see [26] for an overview). But, as far as we know, frame rules are either
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considered as default rules (see [27,28] for instance), or are associated with
low priority levels (see [29]), but do not involve both default and uncertainty
feature.

7 Conclusion

We have proposed a representation framework that allows us to handle rules
which are both uncertain and defeasible. Three inference methods have been
presented, which have two steps: first building a set of non defeasible rules
that can be used in the current context, and then processing the uncertainty
of the identified rules in the setting of possibility theory. Two of these meth-
ods avoid the blocking of inheritance effect. In the “rewriting entailment”
method, only a small part of the set of rules (namely, the “completion” rules
stating by default that we are not in an exceptional situation) depends on
the context. This contrasts with the other new method proposed, namely the
“contextual rational entailment”, in which all the rules must be reexamined
when the context changes. Besides, the “rewriting entailment” where defaults
are rewritten by mentioning explicit exceptions is reminiscent of techniques
used in circumscription-based approaches. Moreover, it could be interesting to
study how to cast the “rewriting entailment” into a logic programming setting
to solve the drowning problem encountered in [25].

We have suggested that uncertain default rules may be of interest in the con-
text of dynamic systems for handling the “frame” and the “qualification”
problems, thanks to default transition rules. The approach allows us to in-
troduce different levels of persistence. It would be even possible to deal with
decreasing persistence (i.e., the value of the persistence level depends on the
time spent). This could be processed by using fuzzy default rules, encoded in
a possibilistic manner as in [8] (where the level of uncertainty is a membership
degree whose value depends on the instantiation of variable(s) appearing in
the first order logic part of possibilistic formulas).

Besides, the use of the approach for handling fuzzy default rules may also find
applications for handling default inheritance in fuzzy description logic in a
possibilistic logic setting [30].

Annex A: Background on possibility theory

Possibility theory [10] associates to a formula f two measures, namely its possibility
I1(f) which measures how unsurprising the formula f is (II(f) = 0 means that f
is bound to be false) and its dual necessity N(f) = 1 —II(=f) (N(f) = 1 means
that f is bound to be true). Necessity obeys to the characteristic axiom N(f Ag) =
min(N(f),N(g)). A possibilistic knowledge base is a set K = {(p;,;),i =1...n},
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where ¢; is a propositional formula of .Z and its certainty level (or weight) «; is
such that N(¢;) > aj, N being a necessity measure.

The resolution rule [31] is valid in possibilistic logic: (a V b, a); (—a V ¢,3) = (b V
¢, min(cq, (3)), where - denotes the syntactic inference of possibilistic logic. Classical
resolution is retrieved when all weights are equal to 1. The resolution rule allows us to
compute the maximal certainty level that can be attached to a formula according to
the constraints expressed by the base K. This can be done by adding to K the clauses
obtained by refuting the proposition to evaluate, with a necessity level equal to 1.
Then it can be shown that any lower bound obtained on 1, by resolution, is a lower
bound of the necessity of the proposition to evaluate. Let Inc(K) = max{a | K, F
1} with K, = {f|(f,5) € K and 8 > a}, with the convention maz(2) = 0. In case
of partial inconsistency of K (Inc(K) > 0), a refutation carried out in a situation
where Inc(KU{(—f,1)}) = a > Inc(K) yields the nontrivial conclusion (f, «), only
using formulas whose certainty levels are strictly greater than the inconsistency level
of the base. This is the syntactic possibilistic entailment, noted .

Annex B: Background on default rules

A default rule is an expression a ~» b where a and b are propositional formulas of .Z
and ~ is a new symbol. a ~» b translates, in the possibility theory framework, into
the constraint II(aAb) > II(aA—b) which expresses that having b true is strictly more
possible than having it false when a is true [32]. The use of default rules has two
main interests. First, it simplifies the writing: it allows us to express a rule without
mentioning every exceptions to it. Second, it allows us to reason with incomplete
descriptions of the world: if nothing is known about the exceptional character of the
situation, it is assumed to be normal, and reasoning can be completed. Several au-
thors [13,33] have developed an approach for handling reasoning with default rules
based on postulates stating the characteristic properties of a non-monotonic conse-
quence relations. In this setting, two inferences are defined: a cautious one named
“preferential” and a more adventurous one named “rational closure inference”.

Pearl [4] provides an algorithm which gives a stratification of a set of default rules
in a way that reflects the specificity of the rules. Roughly speaking, the first stra-
tum contains the most specific rules, i.e., which do not admit exceptions (at least,
expressed in the considered default base), the second stratum has exceptions only
in the first stratum and so on.

Definition 8 (System Z stratification) A default rule a ~ b is tolerated by a
set of default rules A if it exists an interpretation w such that w = a Ab and Ya; ~
b € A, w = —a; V b;. This definition allows us to stratify A into (Ao, Aq,...,Ay)
such that Ag contains the set of rules of A tolerated by A, Ay contains the set of
rules of A\ Ag tolerated by A\ Ag and so on. The number Z(r) corresponds to the
rank of the stratum in which the rule r 1is.

It has been shown [32] that each default rule r = a ~ b of a default base A, can be

associated with a possibilistic formula (a — b, o), where o represents its specificity
Z(r)+1
n+2

level o0 = n being the index of the last stratum in the system Z stratification
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of A. Applying possibilistic inference to the possibilistic base associated with a
default base in this sense is equivalent to compute the rational closure inference
[13,33] of the original default base [32].

Annex C: proofs of Propositions 3, 7 and 8

Proof :[of Proposition 3]

Reflezivity: Since |~ p o is a rational entailment relation, a p  ra, hence using
Proposition 2, af~ po aa.

Left logical equivalence if - a < b then using Proposition 1 with a - b and b F a,
we get X = Xp. So, if - a < band afv poac (e, g U{a} b c) then 3 U {b} - ¢
(i b )

Right weakening: ¢~ o aa means X. U {c} F a, hence, if a - b then ¥, U {c} F b,
Le., cf~ poab 7

Cut: Using Proposition 1 with a A b F a, we get Y, C Xg, hence X, F Xy, If
af~ goab (e, g U{a} - b) then X, U {a} F g U{a A b}, s0 if a Abp popc
(i.e., Zarp U{a A b} F ) then aly g ac

Cautious monotony: Let us suppose that S, U {a} F b (H1) and that ¥, U {a} F ¢
(H2). Let us consider a formula a; — b; € X,. If it does not belong to ¥,,; then it
means that

(1) either a; Aa AbADb; is inconsistent, but due to (H1) it entails that ¥,U{a} F —a;,
then it means that a; — b; is not used to prove ¢ in (H2),

(2) or a;Aanb r.A i, then using Proposition 2, we get TanansU{ai AaAb} = —b;,
using Proposition 1 with a; AaAbF a, we get g, nanp € X hence ¥, U{a; AaAb}
—b;. Moreover, (H1) entails that ¥,U{aAa;} F b, it entails that ¥,U{aAa;} F —b;.
Since a; — b; € X4, it means that X, U {a A a;} is inconsistent which is impossible
since we are in the case ¥, U {a} ¥ —a;.

Hence, any formula a; — b; such that ¥, U {a} ¥ —a; is in ¥,.,. Now, since (H2)
Yo U{a} F cthen ¥, \ {a; — b; € £,,%, U{a} F —a;} U{a} F ¢, it means that
Yanp U{a} ¢ hence, ¥ U{a Ab} Fc.

Or: Using Proposition 1 with a - a V b, we get 3, C X, and X C Y,vp, hence
Yavb F Eq USp. If afv poac (e, XgU{a} b c) and b~ goac (e, Xp U {b} F ¢)
then Yoy U{a Vb} XU, U{aVb}c hence aVbp poac

Rational monotony: We reason in a similar way as for Cautious monotony, we first
suppose that ¥,U{a} F b (H1) and that ¥, U{a} ¥ —c (H2). We consider a formula
a; — b; € ¥,. If it does not belong to ¥, then it means that either (1)a; AaAcAb;
is inconsistent, but since (H1) it entails that X,U{a} F —a;, or (2) aiAaAch g A—b;,
then using Proposition 2, we get g, nane U {a; A a A ¢} F =b;, using Proposition 1
with a; Aa A ¢k a, we get X, U{a; A aAc} b —b;. Since a; — b; € ¥, it means
that ¥, U {a A ¢} F —a;. Hence, any formula a; — b; such that ¥, U {a} ¥ —a; and
Yo U{aAc} ¥ —a;is in ¥yae. Now, since (H2) ¥, U {a} b then ¥, U{aAc} b
and also X, \ ({a; — b; € 4,3, U{a} F —a; or ¥, U{aAc}F —a;})U{aActt e,
it means that Y .. U {a Ac} F b. O

Proof :[of Proposition 7]

Reflexivity: by monotony of -, VCR' C CR, {a} UDUCR' - a.

Left logical equivalence if - a < b then any subset of C'R maximal consistent with a
is also maximal consistent with b. Hence, if VCR, C CR, C R, maximal consistent
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with {a} UD, {a} UD UCR,+ c then VOCR, C CR, C R, maximal consistent with
{b}yUD, {a} UDUCRy I c. Since - a < b, we get the result.

Right weakening: if a - b and VCR. C CR, C R, maximal consistent with {c} U D,
{c} UDUCR.}* a then by transitivity of -, {¢} UDUCR.+ b.

Cut: Let us suppose that YC R, pp, where C R, pp is a maximal subset of C'R consistent
with {a Ab} U D, CRynp UD U{aAb} F c (H1) and that YCR,, where CR, is a
maximal subset of CR consistent with {a} U D, CR, U D U {a} F b (H2). Note
that (H2) means that if CR, is a maximal subset of C'R consistent with {a} U D,
then it is consistent with b. Hence it is a maximal subset of C'R consistent with
{aAb}UD. Hence by H1 we get that CR,U D U{aAb} - c. Moreover, (H2) implies
that CR,UD U {a} + CR,UD U {a Ab}. Hence, CR, U D U {a} I c.

Cautious monotony: Let us suppose that VC'R,, where C'R, is a maximal subset
of CR consistent with {a} U D, CR, UD U {a} + b (H1) and CR, U D U {a} +
¢ (H2). Suppose that it exists a subset of CR, C' R4, maximal consistent with
{a Ab} U D which is not maximal consistent with {a} U D, it means that it exists
a subset consistent with {a} U D that contains strictly CRgnp, let us consider the
maximal subset consistent with {a} U D containing strictly C'R,xp then using H1
it is consistent with b, which means that C'R,.; could not be maximal. So this
supposition was absurd and we get that C' R, should be maximal consistent with
a U D. Hence using H2, we get VC Rypp, where C' R, ap is @ maximal subset of CR
consistent with {a Ab} U D, CRnpy UD U{a Ab} I c.

Or:Let us suppose that VCR,, where C'R, is a maximal subset of CR consistent
with {a} UD, CR, U D U {a} F ¢ (H1) and that VCR;, where C'R;, is a maximal
subset of C'R consistent with {b} U D, CR, U D U {b} F ¢ (H2). Suppose that it
exists a subset of C R, C' R,y maximal consistent with {a\Vb}UD which is consistent
with {a V b} U D U {—c}. It means that it exists an interpretation w € € satisfying
CRavp U{a Vb}UDU{—c}. Either w = a, then CR,y is consistent with a, so
it is a maximal subset consistent with {a} U D. Using H1, CR,, U D U {a} F ¢,
hence w can not satisfy —c. Using a similar reasoning, we get that w | b is also
impossible. Hence the supposition was absurd, it means that for any subset of CR,
C R,y maximal consistent with {a V b} U D, CRyp U{aV b} UDF c.

Rational monotony: Let us show that if a v g0 and a [ gy —c then aAch jy 0. By
showing that if a |~ gy and aAc gy b then a v gy, —c. Let us suppose that VCR,,
where C'R, is a maximal subset of C'R consistent with {a} UD, CR,UDU{a} F b
(H1) and that it exists CRyp., where C'Rgac is a maximal subset of C'R consistent
with {a A ¢} U D, such that CRurc U D U {a A ¢} U {=b} is consistent (H2). If it
exists a subset of CR, CR, which is maximal consistent with {a} U D and such
that CRgne C C' Ry, it means that C'R, is not consistent with ¢ (else C'Rga. would
be not be maximal). It means that for all CR, maximal consistent with {a} U D,
CR,U{a}UD F —ec. If there is no such CR, (maximal consistent with {a} U D and
such that CRyne C CRy,), it means that C' Ry, is maximal consistent with a U D,
hence using H1, we get C Ry U D U {a} F b which is in contradiction with H2.
Hence the second case never happens. O

Proof :[of Proposition 8]

I~ cr.a is based on the use of classical entailment from the set .U {fc} in a given
context fc, meanwhile |~ py;, o uses classical entailment from the set DUCR' where
D is the set of rewritten rules from A and C'R’ is a maximal subset of completion

22



rules that is consistent with F'C'U D (see Definitions 4 and 6). Hence, in order to
compare the two entailments it is enough to compare the two sets Xy, and DUCR'.
Let us consider a given rule a; ~ b; of the initial default base A. Let E(a; ~ b;, D)
be its set of exceptions in D.
o if {a; Ab;} U FC is consistent then

— if {a;} U FCbéRyAﬂbi then a; — b; will be present in ¥;.. Moreover it
means that for any exception o’ of the initial rule, FC U {a;} I/ @’. Indeed assume
that FFC' U {a;} F o and o being an exception, we have {a’ A a;} UD + —b;.
This would imply that FC' U {a;} U D  =b;, which is in contradiction with our
starting hypothesis. Hence, finally, F'C' U {a;} is consistent with every completion
rule associated to a; ~ b;, so also consistent with the rewritten condition part of
this rule. Hence, the conclusion b; can also be drawn by method 3.

— else {a;} UFC |~ g Amb; s0 a; — b & T
Note that it implies that 3a’ € E(a; ~ b;, D) such that FCU{a;} F a' (by reasoning
in a similar way as above). Hence there is a completion rule, namely, a; — —d’,
belonging to the set of completion rules associated to a; ~ b; that is not consistent
with F'C. Hence the initial rule a; ~ b; whose condition part has been rewritten,
will not be fired in method 3, in this case.
e else {a; A b;} U FC is inconsistent. In this case, for method 2, a; — b; will not be
present in X po. For method 3, there are two cases

— either {A\ cp(4,p;,p) "2} U FC is inconsistent. It means that the explicit
rule a; A A\ e E(agbs,0) % — bi could not be used, leading to the same result as in
method 2.

—or A\,c E(ayb;,p) ¥ 15 consistent with [ C. It means that the rule a; A
Nz B(agbs,D) T = b; is inconsistent with F'C. Then the third method will face an
inconsistency in FC U D, hence, every proposition and its negation will belong to
the set of possible conclusions. a
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