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Introduction

In this talk we consider the oppositeness relations in a Tits
building of a finite group of Lie type from the point of view of
representation theory.



Groups with BN-pairs

I G = G(q) group with a split BN-pair (B = UH,N),
characteristic p, rank `

I I = {1, . . . , `}
I W , Weyl group euclidean reflection group in a real vector

space V
I root system R, positive roots R+, simple roots

S = {αi | i ∈ I}
I wi reflection in hyperplane perpendicular to αi

I W = 〈wi | i ∈ I〉 Coxeter group
I `(w), is the length of the shortest expression for w as a

word in the generators wi

I `(w) = the number of positive roots which w transforms to
negative roots.

I w0 unique longest element of W , sends all positive roots to
negative roots



Parabolic subgroups

I J ⊆ I
I WJ := 〈wi | i ∈ J〉 standard parabolic subgroup of W
I PJ = BWJB, standard parabolic subgroup of G



Types and objects of the building

I A type simply a subset of I its cotype is its complement.
I An object of cotype J is a right coset of PJ in G.



Opposite types

Definition
Two types J and K are opposite if

{−w0(αi) | i ∈ J} = {αj | j ∈ K},

or, equivalently, if

{w0wiw0 | i ∈ J} = {wi | i ∈ K}.

α1 α2 α3t t ti
α1 α2 α3t t ty



A3, skew lines in PG(3,q)
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D5, flags in oriflamme geometry
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Opposite objects

Let J and K be fixed opposite types.

Definition
An object PJg of cotype J is opposite an object PK h of cotype
K if PK hg−1PJ = PK w0PJ .
(⇐⇒ PK h ⊆ PJw0PK g ⇐⇒ PJg ⊆ PK w0PJh).



Example. Type A`, J=I \ {i}.

I G ∼= SL(V ), dim V = (`+ 1)

I Objects of cotype J are i-dimensional subspaces.
I Objects of the opposite cotype K = I \ {`+ 1− i} are
`+ 1− i-dimensional subspaces.

I A subspace of cotype J is opposite one of cotype K if their
intersection is the zero subspace.

I A familar special case is when ` = 3 and i = `+ 1− i = 2.
Thinking projectively, the objects are lines in space and the
oppositeness relation is skewness.



Example. Opposite Flags, type A`

I Object of cotype J = I \ {j1, . . . , jm} is a flag

Vj1 ⊂ Vj2 ⊂ · · · ⊂ Vjm

with dim Vij = ij
I If V ′k1

⊃ V ′k2
⊃ · · · ⊃ V ′km

is an object of the opposite cotype,
then the two flags are opposite iff Vij ∩ V ′kj

= {0}, for j = 1,
. . . , m.



Example: Classical modules

I G be of type B`, C`, or D` and J = I \ {1}.
I J is opposite to itself.
I In the B` case, objects of cotype J can be identified with

singular points (one-dimensional subspaces) with respect
to a nondegenerate quadratic form in a finite vector space
of dimension 2`+ 1. singular points are opposite if and
only if they are not orthogonal.

I For C` and D` the objects of cotype J can be viewed as
singular points of a 2`-dimensional vector space with
respect to a symplectic symplectic form or a split quadratic
form. Two points are opposite if and only if they do not lie
on a singular line.



The oppositeness matrix

I The oppositeness graph ΓJ,K is the bipartite graph whose
parts are the sets of objects of cotypes J and K
respectively, with two vertices adjacent when the objects
are opposite.

I Let A = A(J,K ) be the oppositeness matrix for objects of
cotypes J and K .

I Then the adjacency matrix of ΓJ,K is
[

0 A
A′ 0

]
, where A′ is

the transpose of A.

Theorem
(Brouwer, 2009) If G is defined over Fq, then the square of
every eigenvalue λ of A is a power of q.



Topics for today

I One can consider other invariants of the incidence matrix A
such as its Smith normal form or its p-rank. We’ll consider
the p-rank.

I We’ll show that the p-rank is the dimension of an
irreducible p-modular representation of G.

I This follows from a general theorem of Carter and Lusztig
(1976).

I Then we’ll describe the simple module in terms of its
highest weight and discuss methods for computing its
character.



Permutation modules on flags

I Let k be a field of characteristic p. Let FJ denote the space
of functions from the set PJ\G of objects of cotype J to k .
Then FJ is a left kG-module by the rule

(xf )(PJg) = f (PJgx), f ∈ FJ , g, x ∈ G.

Let δPJ g denote the characteristic function of the object
PJg ∈ PJ\G. Then FJ is generated as a kG-module by δPJ



The oppositeness homomorphism

I The relation of oppositeness defines a kG-homomorphism
η : FJ → FK given by

η(f )(PK h) =
∑

PJ g⊆PJ w0PK h

f (PJg). (1)

I We have
η(δPJ g) =

∑
PK h⊆PK w0PJg

δPK h.

so the characteristic function of an object of cotype J is
sent to the sum of the characteristic functions of all objects
opposite to it.



Simplicity of oppositeness modules

Theorem
The image of η is a simple module, uniquely characterized by
the property that its one-dimensional U-invariant subspace has
full stablizer equal to PJ , which acts trivially on it.
This result is essentially a corollary of a more general result of
Carter and Lusztig (1976) on the Iwahori-Hecke Algebra
EndkG(F∅). We next describe their result.



The Iwahori-Hecke Algebra

I F = F∅.
I For w ∈W define Tw ∈ Endk (F) by

Tw (f )(Bg) =
∑

Bg′⊆Bw−1Bg

f (Bg′).

I Then
Tw ∈ EndkG(F), for all w ∈W .

I One can show that

Tww ′ = TwTw ′ if `(ww ′) = `(w) + `(w ′).



I Let w ∈W have reduced expression

wjn · · ·wj1 .

I We consider the partial products wj1 , wj2wj1 , . . . wjn · · ·wj1 .
I Each partial product sends exactly one more positive root

to a negative root than its predecessors, namely
wj1 · · ·wji−1(rji ).

I Let J be a subset of I.
I VJ := subspace of V spanned by SJ = {αi | i ∈ J}.



II For any reduced expression

w0 = wjk · · ·wj1

define

Θji =

{
Twji

if wj1 · · ·wji−1(rji ) /∈ VJ

I + Twji
if wj1 · · ·wji−1(rji ) ∈ VJ

(2)

and set
ΘJ

w0
= Θjk Θjk−1 · · ·Θjk .

I The definition depends on the choice of reduced
expression but it can be seen that different expressions
give the same endomorphism up to a nonzero scalar
multiple.



Theorem
(Carter,Lusztig) The image ΘJ

w0
(F) is a simple kG-module. The

full stablizer of the one-dimensional subspace of U-fixed points
in this module is PJ and the action of PJ on this
one-dimensional subspace is trivial.



Deduction of Theorem

I the first step is to choose a special expression for w0 to
define ΘJ

w0
(F).

I RJ = R ∩ VJ is a root system in VJ with simple system SJ
and Weyl group WJ .

I wJ be the longest element in WJ .
I Let

wJ = wim · · ·wi2wi1 (3)

be a reduced expression for wJ . The above expression can
be extended to a reduced expresion

w0 = wik · · ·wim+1wim · · ·wi1 (4)

of w0. Thus m = |R+
J | and k = |R+|.

Then
w∗ = wik · · ·wim+1 . (5)

is a reduced expression for w∗.
I Use above expression for w0 to define ΘJ

w0
.



I Since wJ sends all positive roots in VJ to negative roots
and w0 sends all roots to positive roots, it is clear that for
the first m partial products the new positive root sent to a
negative root belongs to VJ , and that the new positive roots
for the remaining partial products are the elements of
R+ \ R+

J , so do not belong to VJ . Thus we have

ΘJ
w0

= Tw∗(1 + Tim ) · · · (1 + Ti1), (6)

I Since `(w∗w) = `(w∗) + `(w) for all w ∈WJ , we see that
ΘJ

w0
is a sum of endomorphisms of the form Tw∗w , for

certain elements w ∈WJ , with exactly one term of this
sum equal to Tw∗ .



The projections πJ and πK

I Let πJ : F → FJ be defined by

(πJ(f ))(PJg) =
∑

Bh⊆PJ g

f (Bh)

and πK defined similarly. It is easily checked that πJ and
πK are kG-module homomorphisms and they are surjective
since πJ(δB) = δPJ .



I The main step is to compare ηπJ with πK Tw∗w for w ∈WJ .
For f ∈ F , we compute

[η(πJ(f ))] (PK g) =
∑

PJ h⊆PJ w∗−1PK g

∑
Bx⊆PJ h

f (Bx)

=
∑

Bx⊆PJ w∗−1PK g

f (Bx).
(7)

and

[πK (Tw∗w (f ))] (PK h) =
∑

Bg⊆PK h

(Tw∗w f )(Bg)

=
∑

Bg⊆PK h

∑
Bx⊆B(w∗w)−1Bg

f (Bx)

=
∑

Bg⊆PK h

∑
Bg⊆B(w∗w)Bx

f (Bx)

= q`(w)
∑

Bx⊆PJ w∗−1PK g

f (Bx).

(8)



I Thus, we have for each w ∈WJ a commutative diagram

FJ
q`(w)η // FK

FS

πJ

OO

Tww∗ // FS,

πK

OO (9)

I If w 6= 1 we have πK Tww∗ = 0.
I Hence πΘJ

w0
= πTw∗ = ηπ.

I Therefore, since ΘJ
w0

(F) is simple ηπ(FJ) 6= 0, we see that
ηπ(FJ) ∼= ΘJ

w0
(F).

I Since π is surjective, we have η(FJ) ∼= ΘJ
w0

(F).



Highest weights of oppositeness modules

I G = G(q) is a Chevalley group of universal type or a
twisted subgroup.

I Simple modules are restrictions of certain simple rational
modules L(λ) of the ambient algebraic group, so we want
to identify the highest weight λopp of the oppositeness
modules.



Highest weights of oppositeness modules

I If G is an untwisted group, then the fundamental weights ωi
for the ambient algebraic group are indexed by I.

I λopp =
∑

i∈I\J(q − 1)ωi .



Highest weights of oppositeness modules

I There are two cases when G is a twisted group,
I Suppose that all roots of G∗ have the same length (2A`,

2D`, 3D4, 2E6). Then G arises from a symmetry ρ of the
Dynkin diagram of G∗ = G∗(qe), where e is the order of ρ.
Let I∗ = {1, . . . , `∗} index the fundamental roots of G∗. The
index set I for G labels the ρ-orbits on I∗. Let ωi , i ∈ I∗ be
the fundamental weights of the ambient algebraic group.
For J ⊆ I, let J∗ ⊂ I∗ be the union of the orbits in J.

I λopp =
∑

i∈I∗\J∗(q − 1)ωi .
I If G is a Suzuki or Ree group, then the untwisted group

G∗(q) has two root lengths. Then the set I for G indexes
the subset of fundamental weights of the ambient algebraic
group which are orthogonal to the long simple roots. and
for J ⊂ I.

I λopp =
∑

i∈I\J(q − 1)ωi .



Extreme cases

I λopp = (q − 1)ω̃, with ω̃ a sum of fundamental weights.
I We can consider the extreme cases. If J = K = ∅, then

L(λopp) ∼= k . If J = K = I, L(λopp) is the Steinberg module,
of dimension equal to the p-part of |G|.



Reduction to prime fields

I If q = pt , then by Steinberg’s Tensor Product Theorem,

L((q−1)ω̃) ∼= L((p−1)ω̃)⊗L((p−1)ω̃)(p)⊗· · ·⊗L((p−1)ω̃)(pt−1)

(10)
(Superscripts indicate twisting by powers of Frobenius.)



Reduction to prime fields

Proposition
Let the root system R and opposite types J and K be given and
let A(q) = A(q)J,K denote the oppositeness incidence matrix
for objects of cotypes J and K in the building over F (q), where
q = pt . Then rankp A(q) = (rankp A(p))t .



This reduction of the to the prime case is significant because
Weyl modules with highest weight (p − 1)ω̃ are much less
complex in structure than those of highest weight (q − 1)ω̃, say.



Jantzen Sum Formula

The Weyl module V (λ) has a descending filtration, of
submodules V (λ)i , i > 0, such that

V (λ)1 = rad V (λ), so V (λ)/V (λ)1 ∼= L(λ).

and∑
i>0

Ch(V (λ)i) = −
∑
α>0

∑
{m:0<mp<〈λ+ρ,α∨〉}

vp(mp)χ(λ−mpα)



Notation key

I V (λ), Weyl module of highest weight λ,
I L(λ), its simple quotient.
I ρ is the half-sum of the positive roots
I vp(m) p-adic valuation of m.
I χ(µ), Weyl character; there is a unique weight fo the form
µ′ = w(µ+ ρ)− ρ in the region
{ν : 〈ν + ρ, α∨〉 ≥ 0,∀α ∈ R+}, where w ∈W . Then χ(µ) is
the sign(w) Ch V (µ′) if µ′ is dominant, and zero otherwise.



I The usefulness of the sum formula comes from the fact
that the characters of the Weyl modules themselves are
given by Weyl’s Character Formula, so that the right hand
side can be computed from p, R and λ.

I The Jantzen sum gives an upper estimate on the
composition multiplicities in the radical of the Weyl module
V (λ) in terms of the composition factors of Weyl modules
which have lower highest weights.

I Sometimes, for weights of a special form, it may be that the
highest weights of the Weyl characters χ(µ) in the Jantzen
sum are very few in number or all have a similar form. In
such cases, it is possible to deduce the character of
L((p − 1)ω̃).



Subspaces: Type A`, J = I \ {i}

I In this case, the simple modules L((p − 1)ωi) can be found
without reference to Weyl modules.

I S(i(p− 1)) := degree i(p− 1) homogeneous component of
the truncated polynomial ring k [x0, . . . , x`]/(xp

i ; 0 ≤ i ≤ `)
I S(i(p − 1)) is a simple kG-module.
I By highest weights, S(i(p − 1)) ∼= L((p − 1)ω`+1−i), for

i = 1,. . . , `.
I There is also work (Chandler-PS-Xiang (2006), Brouwer

(2010), Ducey-PS (2010)) on some cases of the Smith
normal form.



Classical modules: Types B`, C` D`, J = I \ {1}

I p-ranks have been computed by Arslan-PS (2009) using
Weyl modules.

I The Weyl modules in question are V ((p − 1)ω1).
I For type C` they are simple.
I For B` and D`, use sum formula.
I Method extends to clasical modules of non-split orthogonal

groups (type 2D`) unitary groups (type 2A`).
I In the twisted cases the relevant Weyl module is

V ((p − 1)(ω1 + ω`)).



An E6 Example

I G = E6(q), group of isometries of a certain 3-form on a
27-dimensional vector space V . The geometry of this
space has been studied in great detail. (Dickson,
Aschbacher, Buekenhout-Cohen, Cooperstein, Pasini.)

I Consider the objects of type 1 and the opposite type 6. We
can view these, respectively, as the singular points and
singular (in a dual sense) hyperplanes of V . A singular
point 〈v〉 is opposite a singular hyperplane H if and only
v /∈ H.
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Point-hyperplane oppositeness for E6(q)

I rankpA = dim L((q − 1)ω1)) = dim L((p − 1)ω1))t , where
q = pt . (Steinberg’s tensor product theorem)

I Work out dim L((p − 1)ω1)) using Weyl modules, Weyl
Character formula, Jantzen sum formula).



Repeated use of Jantzen Sum Formula yields an exact
sequence

0→ V ((p − 11)ω1 + 2ω2)→ V ((p − 10)ω1 + ω2 + ω5)

→ V ((p − 9)ω1 + ω3 + ω6)→ V ((p − 8)ω1 + ω4 + 2ω6)

→ V ((p − 7)ω1 + 3ω6)→ V ((p − 1)ω1)→ L((p − 1)ω1)→ 0

The dimensions of the V (µ) are given by Weyl’s formula. Hence

dim L((p − 1)ω1) =
1

27.3.5.11
p(p + 1)(p + 3)

× (3p8 − 12p7 + 39p6 + 320p5

− 550p4 + 1240p3 + 2080p2 − 1920p + 1440)



2, 27
3, 351
5, 19305
7, 439439
11, 45822672
13, 274187550
17, 5030354043
19, 16937278357
23, 137112098409
29, 1744146121068
31, 3628038332724
37, 25349391871621
41, 78345931447980
43, 132256396016732
47, 351675426454470
53, 1317968719988571
59, 4286665842359706
61, 6185074367788952
67, 17356733399472663
71, 32843689463427543
73, 44580694495895104
79, 106281498207828698
83, 182978611275724173
89, 394284508288312914
97, 1016219651834875565



Concluding Remarks

I The oppositeness relations of the building of a finite group
of Lie type give rise to simple modules.

I We have considered some basic examples of
oppositeness relations and described their associated
modules, but the general case remains open.

I The p-rank problem for oppositeness relations has been
reduced to groups over the prime field and equivalent to
the dimension problem for simple modules for the algebraic
group whose highest weights have coefficients (p − 1) and
0.

I When p = 2 every restricted highest weight is of this form.



I Thank you for your attention!
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