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Abstract In this paper, we cast the idea of antithetic sampling, widely used in stan-
dard Monte Carlo simulation, into the framework of sequential Monte Carlo methods.
We propose a version of the standard auxiliary particle filter where the particles are
mutated blockwise in such a way that all particles within each block are, first, off-
spring of a common ancestor and, second, negatively correlated conditionally on this
ancestor. By deriving and examining the weak limit of a central limit theorem describ-
ing the convergence of the algorithm, we conclude that the asymptotic variance of
the produced Monte Carlo estimates can be straightforwardly decreased by means of
antithetic techniques when the particle filter is close to fully adapted, which involves
approximation of the so-called optimal proposal kernel. As an illustration, we apply
the method to optimal filtering in state-space models.
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1026 S. Bizjajeva, J. Olsson

1 Introduction

Sequential Monte Carlo (SMC) methods—alternatively termed particle filters—refer
to a collection of algorithms which approximate recursively a sequence of target mea-
sures (referred typically to as the Feynman–Kac flow) by a sequence of empirical
distributions associated with properly weighted samples of particles. These methods
have received a lot of attention during the last decades and are at present applied within
awide range of scientific disciplines; seeKünch (2013), Fearnhead (1998), andDoucet
et al. (2001) for introductions. Doucet and Johansen (2011) provide a survey of recent
developments of the SMC methodology and comprehensive treatments of theoretical
aspects of SMC algorithms are given by Del Moral (2004) and Cappé et al. (2005).

In standard SMC methods, two main operations are alternated: in the mutation
step, the particles are propagated according to a Markovian kernel and associated
with importance sampling weights proportional to the Radon–Nikodym derivative of
the target measure with respect to the instrumental distribution of the particles. In
the subsequent selection step, the particle sample is transformed by selecting new
particles from the current (mutated) ones using the normalised importance weights
as probabilities of selection. This step serves to eliminate or duplicate particles with
small or large weights, respectively.

In this paper, we propose a modification of the auxiliary particle filter (APF) (intro-
duced originally byPitt andShephard 1999) that relies on the classical idea of antithetic
sampling used in standardMonteCarlo estimation.When estimating some expectation

I ( f ) �
∫
R

f (x)p(x) dx,

where p is a probability density function and f is some given real-valued target
function, the unbiased estimator

Î N ( f ) � 1

2N

N∑
i=1

[
f (ξi ) + f (ξ ′

i )
]

of I ( f ), where both {ξi }Ni=1 and {ξ ′
i }Ni=1 are samples from p, is more efficient (has

lower variance) than the standard Monte Carlo estimator based on a sample of 2N
independent and identically distributed draws if each pair of variables f (ξi ) and f (ξ ′

i )

are negatively correlated for all i ∈ {1, . . . , N }. In this setting, the variables f (ξi )
and f (ξ ′

i ) are referred to as antithetic variables. Antithetically coupled variables can
be generated in different ways, and in Sect. 2, we discuss how this can be achieved
by means of the well-known permuted displacement method (Arvidsen and Johnsson
1982). To allow for antithetic acceleration within the SMC framework, we introduce
(in Sect. 2) a version of the standard APF where the particles are mutated blockwise
in such a way that all particles within each block are, first, offspring of a common
ancestor and, second, statistically dependent conditionally on this ancestor. Moreover,
in Sect. 3, we establish convergence results for our proposed method in the sense of
convergence in probability and weak convergence. By examining the weak limit of the
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Antithetic sampling for sequential Monte Carlo methods 1027

obtained central limit theorem (CLT) in Corollary 2, we conclude that the asymptotic
variance of the producedMonte Carlo estimates is decreased when the particle filter is
close to fully adapted (in which case close to uniform importance weights are obtained
by means of approximation of the so-called optimal kernel; see Pitt and Shephard
1999) and the inherent correlation structure of each block is negative. Finally, in the
implementation part, Sect. 4, we apply our algorithm to optimal filtering in state-
space models and benchmark its performance on a nosily observed ARCH model
as well as a univariate growth model. The outcome of the simulations indicates that
introducing antithetically coupled particles provides, for these models and compared
to the standard APF, a significant gain of accuracy at a lowered computational cost.

1.1 Notation and definitions

To state precisely our results and keep the presentation streamlined, we preface the
description of the algorithm with some measure-theoretic notation. In the follow-
ing, we assume that all random variables are defined on a common probability space
(�,F , P). A state space � is called general if it is equipped with a countably gen-
erated σ -field B(�), and we denote by M(�) and F(�) the sets of measures on
(�,B(�)) and real-valued B(�)-measurable functions, respectively. For any mea-
sureμ ∈ M(�) and function f ∈ F(�) satisfying

∫
� | f (ξ)| μ(dξ) < ∞, we denote

μ( f ) �
∫
� f (ξ) μ(dξ). A transition kernel K from (�,B(�)) to some other state

space (�̃,B(�̃)) is called finite if K (ξ, �̃) < ∞ for all ξ ∈ � and Markovian if,
in addition, K (ξ, �̃) = 1 for all ξ ∈ �. A finite transition kernel K induces two
operators, the first transforming a B(�) ⊗ B(�̃)-measurable function f satisfying∫
�̃ | f (ξ, ξ̃ )| K (ξ, dξ̃ ) < ∞ into the function

K (·, f ) : � � ξ �→
∫

�̃

f (ξ, ξ̃ ) K (ξ, dξ̃ ) (1)

in F(�) (here B(�) ⊗ B(�̃) denotes the product σ -field); the other transforms any
measure ν ∈ M(�) into the measure

νK (·) : B(�̃) � A �→
∫

�

K (ξ, A) ν(dξ) (2)

in M(�̃). Finally, to describe lucidly joint distributions associated with Markovian
transitions, we define the outer product, denoted by K ⊗ T , of a kernel K from
(�,B(�)) to (�̃,B(�̃)) and a kernel T from (� × �̃,B(�) ⊗B(�̃)) to some other
state space (�̄,B(�̄)) as the kernel

K ⊗ T (ξ, A) �
∫∫

�̃×�̄

1A(ξ̃ , ξ̄ ) K (ξ, dξ̃ ) T (ξ, ξ̃ , dξ̄ ),

ξ ∈ �, A ∈ B(�̃) ⊗ B(�̄), (3)

from (�,B(�)) to the product space (�̃ × �̄,B(�̃) ⊗ B(�̄)).
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1028 S. Bizjajeva, J. Olsson

1.2 List of notation

Notation Definition

α Block size
AN Asymptotically normal
APF Auxiliary particle filter
Cm,n (14)
EA Extreme antithesis
FN ,� (7)
F(�) The space of measurable functions on �

�k (9)
φn (26)
gn (25)
γ̄ [�] (20)
γ̃ (16)
K (·, f ) (1)
L (5)
L (11)
Mm,n (13)
μ (5)
νK (2)
⊗ (3)
πn (37)
PNA Pairwise negatively associated
ψN ,i Adjustment multiplier (see Algorithm 2)
Q (25)
Rk (6)
Rm,k (10)
�N (4)
ω̃N ,α( j−1)+k (8)
σ̄ 2[�] (19)
σ̃ 2 (17)
(�,B(�)) General state space

2 Auxiliary particle filter with blockwise correlated mutation

In the following, we say that a collection of random variables (particles) {ξN ,i }MN
i=1,

taking values in some state space �, and associated nonnegative weights {ωN ,i }MN
i=1

targets a probability measure ν ∈ M(�) if

�−1
N

MN∑
i=1

ωN ,i f (ξN ,i ) � ν( f ),

with

�N �
MN∑
i=1

ωN ,i , (4)
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Antithetic sampling for sequential Monte Carlo methods 1029

for all functions f in some specified subset of F(�). Here {MN }∞N=0 is an increasing

sequence of integers. The set {(ξN ,i , ωN ,i )}MN
i=1 is referred to as a weighted sam-

ple on �. In this paper, we study the problem of transforming a weighted sample
{(ξN ,i , ωN ,i )}MN

i=1 targeting ν ∈ M(�) into a weighted sample {(ξ̃N ,i , ω̃N ,i )}αMN
i=1 ,

α ∈ N
∗, targeting the probability measure

μ(A) = νL(A)

νL(�̃)
, A ∈ B(�̃), (5)

where L is some (possibly unnormalised) finite transition kernel from (�,B(�)) to
(�̃,B(�̃)). Feynman–Kac transitions of type (5) occur within a variety of fields (see
Del Moral 2004, for examples in, e.g. quantum physics and biology) and in Sect. 4 we
show in detail how the flow of posterior distributions of the noisily observed Markov
chain (state signal) of a state-space model can be generated according to (5). The
transformation is carried out by, first, drawing particle positions {ξ̃N ,i }αMN

i=1 according
to, for j ∈ {1, . . . , MN }, k ∈ {1, . . . , α}, and A ∈ B(�̃),

P

(
ξ̃N ,α( j−1)+k ∈ A | FN ,α( j−1)+k−1

)

= Rk

(
ξN , j , ξ̃N ,α( j−1)+1, . . . , ξ̃N ,α( j−1)+k−1, A

)
, (6)

where we have defined the σ -fields

FN ,� � σ
(
{(ξN ,i , ωN ,i )}MN

i=1, {ξ̃N , j }�j=1

)
, � ∈ {0, . . . , αMN }, (7)

and each Rk is aMarkoviankernel from (�×�̃
k−1

,B(�)⊗B(�̃)⊗(k−1)) to (�̃,B(�̃))

such that L(ξ, ·) 
 Rk(ξ, ·) for all ξ ∈ �. Hence, using the kernel outer product
notation ⊗ defined in (3), the joint distribution, conditional on FN ,α( j−1), of each
block {ξ̃N ,α( j−1)+k}αk=1 can be expressed as ⊗α

k=1Rk(ξN , j , ·). Second, these particles
are associated with the weights

ω̃N ,α( j−1)+k = ωN , j�k(ξN , j , ξ̃N ,α( j−1)+k) (8)

with

�k(ξ, ξ̃ ) � dL(ξ, ·)
dR0,k(ξ, ·) (ξ̃ ), (ξ, ξ̃ ) ∈ � × �̃, (9)

and, for integers 0 ≤ m < k and A ∈ B(�̃),

Rm,k(ξ, ξ̃1:m, A) � ⊗k
i=m+1Ri (ξ, ξ̃1:m, �̃

k−m−1 × A)

=
∫

�̃

· · ·
∫

�̃

Rk(ξ, ξ̃1:k−1, A)

k−1∏
�=m+1

R�(ξ, ξ̃1:�−1, dξ̃�), (10)
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1030 S. Bizjajeva, J. Olsson

Algorithm 1 Blockwise correlated mutation

Require: {(ξN ,i , ωN ,i )}MN
i=1 targets ν.

1: for j ← 1, . . . , MN do
2: draw {ξ̃N ,α( j−1)+k }αk=1 ∼ ⊗α

k=1 Rk (ξN , j , ·),
3: set, for k ∈ {1, . . . α},

ω̃N ,α( j−1)+k ← ωN , j�k (ξN , j , ξ̃N ,α( j−1)+k ),

4: end for
5: let {(ξ̃N ,i , ω̃N ,i )}αMN

i=1 approximate μ.

Algorithm 2 APF with blockwise correlated mutation

Require: {(ξN ,i , ωN ,i )}MN
i=1 targets ν.

1: draw {IN , j }M̃N
j=1 ∼ Mult(M̃N , {ωN ,iψN ,i /

∑MN
�=1 ωN ,�ψN ,�}MN

i=1 ),

2: for j ← 1, . . . , M̃N do
3: draw {ξ̃N ,α( j−1)+k }αk=1 ∼ ⊗α

k=1Rk (ξN ,IN , j , ·),
4: set, for k ∈ {1, . . . α},

ω̃N ,α( j−1)+k ← ψ−1
N ,IN , j

�k (ξN ,IN , j , ξ̃N ,α( j−1)+k ),

5: end for

6: let {(ξ̃N ,i , ω̃N ,i )}αM̃N
i=1 approximate μ.

wherewehave introducedvector notationam:n � (am, am+1, . . . , an)with the conven-
tion am:n = ∅ if m > n. ThusRm,k(ξN , j , ξ̃N ,α( j−1)+1:α( j−1)+m, ·) is the distribution
of ξ̃N ,α( j−1)+k conditionally on FN ,α( j−1)+m . Finally, we take {(ξ̃N ,i , ω̃N ,i )}αMN

i=1 as
an approximation of μ. This blockwise mutation operation, which extends, since it
allows for statistically dependent particles within each block, the blockwise mutation
operation suggested by Douc and Moulines (2008), is summarised in Algorithm 1.

2.1 Blockwise correlated mutation with resampling

In the sequential context, where the problem consists in estimating a sequence of
measures generated recursively according to mappings of form (5) (see Sect. 4), it
is, in order to avoid weight degeneracy (see, e.g. Cappé et al. 2005, Section 7.3.1,
for a discussion), essential to combine the correlated blockwise mutation operation
described inAlgorithm 1with a prefatory resampling operationwhere particles having
small weights are eliminated and those having large ones are duplicated. As observed
by Pitt and Shephard (1999) (see also Douc et al. 2008 for a theoretical study), the
variance of the produced SMC estimates can be reduced efficiently by introducing, as
in the APF, a set {ψN ,i }MN

i=1 of adjustment multiplier weights and selecting the particles

with probabilities proportional to {ωN ,iψN ,i }MN
i=1. This gives us the scheme described

in Algorithm 2, where Mult denotes the multinomial distribution.
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Antithetic sampling for sequential Monte Carlo methods 1031

2.2 Antithetic blockwise mutation with resampling

Themainmotivation of Pitt and Shephard (1999) for introducing the adjustmentmulti-
plier weights was the possibility of designing these in such a manner that the resulting

(second stage) particle weights {ω̃N ,i }αM̃N
i=1 become close to uniform; in this case, in

which the APF is referred to as fully adapted, the instrumental and target distributions
of the APF coincide. Adapting fully the APF involves typically some approximation
of the so-called optimal proposal kernel L(ξ, ·)/L(ξ, �̃). Indeed, let L be a kernel
from (�,B(�)) to (�̃,B(�̃)) such that

L(ξ, A) ≈ L(ξ, A), (ξ, A) ∈ � × B(�̃); (11)

then Algorithm 2 with ψN ,i = L(ξN ,i , �̃) and R0,k(ξ, ·) = L(ξ, ·)/L(ξ, �̃) for all
i ∈ {1, . . . , MN } and k ∈ {1, . . . , α} returns a close to uniformly weighted particle
sample, since with this parametrisation,

ω̃N ,α( j−1)+k = L−1(ξN ,IN , j , �̃)
dL(ξN ,IN , j , ·)

dR0,k(ξN ,IN , j , ·)
(ξ̃N ,α( j−1)+k)

= dL(ξN ,IN , j , ·)
dL(ξN ,IN , j , ·)

(ξ̃N ,α( j−1)+k)

≈ 1.

Considering optimal filtering in state-space models, full adaptation can be achieved
in the case where the observation equation is linear/Gaussian and the state equation is
possibly nonlinearwith additiveGaussian noise (seeCappé et al. 2005, Section 7.2.2.2,
for details).Moreover, as shown inSect. 4, full adaptation is straightforward for particle
approximation of the so-called predictor distributions in state-space models, as the
fully adapted algorithm corresponds to the standard bootstrap particle filter in this
case. In the general case, methods for approximating the optimal kernel have been
proposed by several authors; see e.g. Pitt and Shephard (1999) and Doucet et al.
(2000), and Cornebise et al. (2014).

For our purposes, putting the APF in a close to fully adapted mode is attractive
from another point of view: the close to uniform weights render efficient antithetic
acceleration of the standard APF possible, which might reduce significantly the vari-
ance of the produced SMC estimates. Hence, the aim of this paper is to justify, in
theory as well as in simulations, Algorithm 3, describing a particular parametrisation
of Algorithm 2 in which L and f denote a given approximation of L and some given
objective function, respectively.

Step (7) in Algorithm 3 can be carried out in several different ways, and we refer to
Sect. 4 for practical implementations. The simplest way to introduce negative corre-
lation between two real-valued random variables is to use a pair (U,U ′) of uniforms,
where U = r , U ′ = 1 − r , and r ∼ U(0, 1) is uniformly distributed (on (0, 1)).
Such a coupling has the extreme antithesis (EA) property: if F is an arbitrary distri-
bution function on R, then the correlation between ξ = F←(U ) and ξ ′ = F←(U ′),
F← denoting the inverse of F , achieves the minimal possible value subject to the
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Algorithm 3 APF with antithetic blockwise mutation

Require: {(ξN ,i , ωN ,i )}MN
i=1 targets ν.

1: for i ← 1, . . . , MN do
2: compute an approximation L(ξN ,i , ·) of L(ξN ,i , ·) satisfying L(ξN ,i , ·) 
 L(ξN ,i , ·),
3: set ψN ,i ← L(ξN ,i , �̃),
4: end for

5: draw {IN , j }M̃N
j=1 ∼ Mult(M̃N , {ωN ,iψN ,i /

∑MN
�=1 ωN ,�ψN ,�}MN

i=1 ),

6: for j ← 1, . . . , M̃N do
7: simulate, using an appropriate family of kernels {Rk }αk=1,

{ξ̃N ,α( j−1)+k }αk=1 ∼ ⊗α
k=1Rk (ξN ,IN , j , ·)

in such a manner that R0,k (ξN ,IN , j , ·) = L(ξN ,IN , j , ·)/L(ξN ,IN , j , �̃) and the real-valued

variables { f (ξ̃N ,α( j−1)+k )}αk=1 are, conditionally on ξN ,IN , j , mutually negatively correlated,
8: for k ← 1, . . . , α do

ω̃N ,α( j−1)+k ←
dL(ξN ,IN , j , ·)
dL(ξN ,IN , j , ·)

(ξ̃N ,α( j−1)+k )

9: end for
10: end for

11: let {(ξ̃N ,i , ω̃N ,i )}αM̃N
i=1 approximate μ.

constraint that both ξ and ξ ′ are distributed according to F . Since (U,U ′) achieves
EA simultaneously for all F , this implies immediately that the strategy achieves EA
also for variates g(ξ) and g(ξ ′), where g : R → R is any monotone function such
that

∫
g2(ξ) F(dξ) < ∞. This remarkable observation is related to the fact that the

construction (U,U ′) satisfies the stronger property of negative association, which
requires that the negative correlation is preserved by monotone transformations. The
following definition, adopted form Craiu and Meng (2005), extends this property to
an arbitrary number of variates.

Definition 1 (pairwise negative association) The random variables {ξi }ni=1 are said to
be pairwise negatively associated (PNA) if, for any nondecreasing (or non-increasing)
functions f1, f2 and (i, j) ∈ {1, . . . , n}2 such that i �= j ,

Cov[ f1(ξi ), f2(ξ j )] ≤ 0

whenever this covariance is well defined.

In the light of the previous it is appealing to mutate, in Step (7) in Algorithm 3, the
particles in such a way that the α offspring particles of a certain block are conditionally
EA given the common ancestor. A rather generic way to achieve this goes via the
permuted displacement method (developed byArvidsen and Johnsson 1982) presented
below,whereSα denotes the set of all possible permutations of the numbers {1, . . . , α}.

In this setting, Craiu and Meng (2005, Theorem 3) showed that the uniformly
distributed variates {Ui }αi=1 produced in Algorithm 4 are PNA for α ≤ 3. For α ≥ 4,
one has not at present been able to neither prove nor refute a similar result. Thus, Step
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Algorithm 4 Permuted displacement method
1: draw r1 ∼ U(0, 1),
2: for k ← 2, . . . , α − 1 do
3: set rk ← 〈2k−2r1 + 1/2〉,
4: end for
5: set rα ← 1 − 〈2α−2r1〉,
6: pick a random σ ∈ Sα ,
7: for k ← 1, . . . , α do
8: set Uk � rσ(k),
9: end for

(7) in Algorithm 3 can be carried out by producing, using Algorithm 4, PNA uniforms
{Uk}αk=1 and letting, for k ∈ {1, . . . , α} and j ∈ {1, . . . , MN },

f (ξ̃N ,α( j−1)+k) = F←
ξN , j

[ f ](Uk),

where Fξ [ f ](x) � L(ξ, { f (ξ̃ ) ≤ x})/L(ξ, �̃), with x ∈ R and ξ ∈ �, denotes the
conditional distribution function of the f (ξ̃N ,α( j−1)+k)s given ξN , j = ξ . Since each
function F←

ξ [ f ] is monotone, it follows that { f (ξ̃N ,α( j−1)+k)}αk=1 are conditionally

EA. In the case �̃ ⊆ R, a less target function-specific formulation of Algorithm 3 is
possible: generating, using the permuteddisplacementmethod, PNAuniforms {Uk}αk=1
and letting ξ̃N ,α( j−1)+k = F←

ξN , j
[id�̃](Uk) for all k ∈ {1, . . . , α}, with id�̃ denoting

the identity function on �̃, yields conditionally EA variates { f (ξ̃N ,α( j−1)+k)}αk=1 for
the whole class of monotone functions f ; this will be illustrated in Sect. 4. The case
where �̃ ⊆ R

d and the target functions depend only on a single component of ξ̃ can be
treated analogously. Of course, the method described above is applicable only when
Fξ [ f ] is easy to invert; this is however not always the case and in Sect. 4 we present
some alternative techniques for introducing negative correlation between the offspring
particles.

3 Theoretical results

In this section, we justify theoretically Algorithm 3 using results on triangular arrays
obtained by Douc and Moulines (2008). The arguments rely on results describing the
weak convergence of Algorithm 1 and Algorithm 2 in a rather general setting.

3.1 Some notation and definitions

From now on the quality of a weighted sample will be described in terms of the
following asymptotic properties, adopted from Douc and Moulines (2008), where a
set C of real-valued functions on � is said to be proper if the following conditions
hold: (i) C is a linear space; (ii) if g ∈ C and f is measurable with | f | ≤ |g|, then
| f | ∈ C; (iii) for all c ∈ R, the constant function f ≡ c belongs to C.
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1034 S. Bizjajeva, J. Olsson

Definition 2 (consistency) A weighted sample {(ξN ,i , ωN ,i )}MN
i=1 on � is said to be

consistent for the probability measure μ and the proper set C if, for any f ∈ C, as
N → ∞,

�−1
N

MN∑
i=1

ωN ,i f (ξN ,i )
P−→ μ( f ),

�−1
N max

1≤i≤MN
ωN ,i

P−→ 0.

Definition 3 (asymptotic normality) A weighted sample {(ξN ,i , ωN ,i )}MN
i=1 on � is

calledasymptotically normal (AN) for (μ, A, W, σ, γ, {aN }∞N=1) ifA andW are proper
and, as N → ∞,

aN�−1
N

MN∑
i=1

ωN ,i [ f (ξN ,i ) − μ( f )] D−→ N[0, σ 2( f )] for any f ∈ A,

a2N�−1
N

MN∑
i=1

(ωN ,i )
2 f (ξN ,i )

P−→ γ ( f ) for any f ∈ W,

aN�−1
N max

1≤i≤MN
ωN ,i

P−→ 0.

(Here N(μ, σ 2) denotes the normal distribution with mean μ and variance σ 2).

We impose the following assumptions.

(A1) The initial sample {(ξN ,i , ωN ,i )}MN
i=1 is consistent for (ν, C).

(A2) The initial sample {(ξN ,i , ωN ,i )}MN
i=1 is AN for (ν, A, W, σ, γ, {aN }∞N=1).

Under (A1) and (A2), we define

C̃ � { f ∈ L1(�̃, μ) : L(·, | f |) ∈ C},
Ã � { f : L(·, | f |) ∈ A,R0,k(·,�2

k f
2) ∈ W; k ∈ {1, . . . , α}},

W̃ � { f : R0,k(·,�2
k | f |) ∈ W; k ∈ {1, . . . , α}}. (12)

Moreover, let, for f ∈ Ã and ξ ∈ �, assuming that m ≤ n,

Mm,n(ξ, f ) =
∫

�̃

· · ·
∫

�̃

Rm,n(ξ, ξ̃1:m,�n(ξ, ·) f )�m(ξ, ξ̃m) f (ξ̃m)

⊗m
�=1R�(ξ, dξ̃1 × · · · × dξ̃m). (13)

Straightforwardly, by definition, Mm,n(ξ, f ) is the conditional expectation of
�m(ξN , j , ξ̃N ,α( j−1)+m)�n(ξN , j , ξ̃N ,α( j−1)+n) f (ξ̃N ,α( j−1)+m) f (ξ̃N ,α( j−1)+n) given
ξN , j = ξ , and we introduce the conditional covariances
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Antithetic sampling for sequential Monte Carlo methods 1035

Cm,n(ξ, f ) � Cov
[
�m(ξN , j , ξ̃N ,α( j−1)+m) f (ξ̃N ,α( j−1)+m),

× �n(ξN , j , ξ̃N ,α( j−1)+n) f (ξ̃N ,α( j−1)+n) | ξN , j = ξ
]

= Mm,n(ξ, f ) − L2(ξ, f ), ( f, ξ) ∈ Ã × �. (14)

3.2 Theoretical properties of Algorithm 1 and Algorithm 2

Under the assumptions above, we have the following convergence results, whose
proofs are found in Appendix 1.

Theorem 1 Assume (A1) and suppose that L(·, �̃) ∈ C. Then the set C̃ defined in
(12) is proper and the weighted sample {(ξ̃N ,i , ω̃N ,i )}αMN

i=1 produced by Algorithm 1

is consistent for (μ, C̃).

Theorem 2 Let the assumptions of Theorem 1 hold. In addition, assume (A2) and
suppose that all functions R0,k(·,�2

k), k ∈ {1, . . . , α}, belong to W. Moreover,

assume that L(·, �̃) belongs to A. Then the sets Ã and W̃ defined in (12) are
proper and the weighted sample {(ξ̃N ,i , ω̃N ,i )}αMN

i=1 produced by Algorithm 1 is AN for

(μ, Ã, W̃, σ̃ , γ̃ , {aN }∞N=1), where, for f ∈ Ã,

σ̃ 2( f ) � σ 2{L[ f −μ( f )]}/[νL(�̃)]2+
∑

(m,n)∈{1,...,α}2
γ Cm,n[ f −μ( f )]/[ανL(�̃)]2,

(15)
and, for f ∈ W̃,

γ̃ ( f ) �
α∑

k=1

γR0,k

(
�2

k f
)

/[ανL(�̃)]2. (16)

Remark 1 In the case where Rk(ξ, ξ̃i :k−1, ·) = R(ξ, ·) and �k = � = dL/dR, that
is, the particles within a block are mutated independently of each other, we have that
Cm,n = 0 for all m �= n. This yields an asymptotic variance (15) of form

σ̃ 2( f ) = σ 2{L[ f − μ( f )]}/[νL(�̃)]2 +
α∑

m=1

γ Cm,m[ f − μ( f )]/[ανL(�̃)]2

= σ 2{L[ f − μ( f )]}/[νL(�̃)]2 + α−1{γ R(�2[ f − μ( f )]2)
− γ L2[ f − μ( f )]}/[νL(�̃)]2, (17)

which is exactly the expression obtained by Douc and Moulines (2008, Theorem 2).

We move on to the convergence of Algorithm 2. Throughout the rest of this paper
assume, entirely in linewithAlgorithm3, that the adjustmentmultiplierweights satisfy
the following assumption.

(A3) There exists a function � : � → R
+ such that ψN ,i = �(ξN ,i ) and � ∈

C ∩ L1(�, ν).
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Define

C̄ � { f ∈ L1(μ, �̃) : L(·, | f |) ∈ C ∩ L1(ν, �̃)},
Ā �

{
�−1L2(·, | f |) ∈ C ∩ L1(ν,�), L(·, | f |) ∈ A, L2(·, | f |) ∈ W,

�−1R0,k(·,�2
k f

2) ∈ C ∩ L1(ν,�); k ∈ {1, . . . , α}},
W̄ �

{
�−1R0,k(·,�2

k | f |) ∈ C ∩ L1(ν,�); k ∈ {1, . . . , α}}. (18)

Now, by combining Theorem 2with results obtained byDouc et al. (2008)we establish
the convergence of Algorithm 2. This is the contents of the following corollaries whose
proofs, which are obtained along the lines of Douc et al. (2008, Theorem 3.1), are
omitted for brevity.

Corollary 1 Let the assumptions of Theorem 1 hold and assume (A3). Then the set

C̄ defined in (18) is proper and the weighted sample {(ξ̃N ,i , ω̃N ,i )}αM̃N
i=1 obtained in

Algorithm 2 is consistent for (μ, C̄).

Corollary 2 Let the assumptions of Theorem 1 hold and assume (A2)with a2N /MN →
β, β ∈ [0,∞). In addition, suppose that � ∈ A, �2 ∈ W and that all functions
�−1R0,k(·,�2

k), k ∈ {1, . . . , α}, belong to C ∩ L1(ν, �̃). Moreover, assume that
�−1L2(·, �̃) ∈ C ∩ L1(ν, �̃), L(·, �̃) ∈ A, and L2(·, �̃) ∈ W. Then the sets Ā and

W̄ defined in (18) are proper and the weighted sample {(ξ̃N ,i , ω̃N ,i )}αM̃N
i=1 obtained by

Algorithm 2 with M̃N/MN → �, � ∈ [0,∞], is AN for (μ, Ā, W̄, σ̄ , γ̄ , {aN }∞N=1),
where, for f ∈ Ā,

σ̄ 2[�]( f ) � σ 2{L[·, f − μ( f )]}/[νL(�̃)]2
+β�−1ν(�)

∑
(m,n)∈{1,...,α}2

ν(�Mm,n{·, �−1[ f − μ( f )]})/[ανL(�̃)]2 (19)

and, for f ∈ W̄,

γ̄ [�]( f ) � β�−1ν(�)

α∑
k=1

ν[�−1R0,k(·,�2
k f )]/[ανL(�̃)]2. (20)

Remark 2 Note that as Algorithm 3 is only a special parametrisation of Algorithm
2, Corollary 1 and Corollary 2 imply also the consistency and AN of Algorithm 3,
respectively.

Remark 3 The resampling operation in Step (5) inAlgorithm2 can, of course, be based
on resampling techniques different from multinomial resampling, such as residual
resampling or Bernoulli branching. The convergence results stated in Corollary 1 and
Corollary 2 as well as the methodology developed above can be extended straightfor-
wardly to these selection schemes, since their asymptotic behaviour iswell investigated
(see Chopin 2004; Douc and Moulines 2008).
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3.3 Theoretical justification of Algorithm 3

To justify Algorithm 3, we examine the asymptotic variance (19), and check that
successful antithetic coupling of the offspring particles of each block yields, in cases
where the particle algorithm is close to fully adapted, indeed a reduction of asymptotic
variance.

Antithetic mutation vs. independent mutation

Wefirst study how the covariance structurewithin each block influences the asymptotic
variance. Since the first term of (19) is not at all effected by the way the particles are
mutated, we may focus entirely on the second term and write, using (14),

β�−1ν(�)
∑

(m,n)∈{1,...,α}2
ν(�Mm,n{·, �−1[ f − μ( f )]})/[ανL(�̃)]2

= β�−1ν(�)ν(�L2{·, �−1[ f − μ( f )]})/[νL(�̃)]2
+β�−1ν(�)

∑
(m,n)∈{1,...,α}2

ν(�Cm,n{·, �−1[ f − μ( f )]})/[ανL(�̃)]2, (21)

where the first term on the RHS is again independent of the correlation structure of
the mutation step. Compared to the case where the particles within each block are
mutated conditionally independently (which implies that Cm,n = 0 for all m �= n),
the variancewill be smaller if the covariancesCm,n{·, �−1[ f −μ( f )]} are negative for
allm �= n; however, when the algorithm is close to fully adapted, the product�−1� is
close to unity, which implies that Cm,n{ξ,�−1[ f −μ( f )]} is close to the conditional
covariance of f (ξ̃N ,α( j−1)+m) and f (ξ̃N ,α( j−1)+n) given ξN , j = ξ . Consequently, in
the close to fully adapted case, we may expect that introducing, as in Algorithm 3,
negative dependence between the { f (ξ̃N ,α( j−1)+k)}αk=1 conditionally on ξN , j leads to
a significant decrease of variance compared to when the particles of each block are
mutated independently.

Algorithm 3 vs. the standard APF

More interesting and relevant is to relate the performance of the antithetic SMCscheme
in Algorithm 3 (with α > 1) to that of the standard APF (for which α = 1). More
specifically, we wish to compare the following two updating procedures:

(1) {(ξN ,i , ωN ,i )}MN
i=1

sel.−→ {(ξN ,IN ,i , 1)}MN
i=1

mut. (α=1)−−−−−−→ {(ξ̃N ,i , ω̃N ,i )}MN
i=1,

(2) {(ξN ,i , ωN ,i )}MN
i=1

sel.−→ {(ξN ,IN ,i , 1)}�MN /α�
i=1

mut. (α>1)−−−−−−→ {(ξ̃N ,i , ω̃N ,i )}MN
i=1,

where Procedure (1) corresponds to a full update of a close to fully adapted standard
APF and Procedure (2) corresponds to an update of Algorithm 3. Note that Proce-
dure (2) is expected to be computationally more efficient than (1), as (2) resamples
only a fraction M̃N = �MN/α� of the original particle sample of size MN at the
selection step (in order to output a particle sample of the same size MN as the input
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sample). The asymptotic variance of the standard APF (1) is provided by Corollary 2
with α = 1 and � = 1:

σ 2
(1)( f ) = σ̄ 2[�]( f )

∣∣∣
�=α=1

= σ 2{L[·, f − μ( f )]}/[νL(�̃)]2

+βν(�)ν(�M1,1{·, �−1[ f − μ( f )]})/[νL(�̃)]2. (22)

We repeat again that Algorithm 3 is, as emphasised in Remark 2, a special parametrisa-
tion of Algorithm 2; thus, the asymptotic variance of Procedure (2), which we denote
by σ 2

(2), is provided by Corollary 2 with � = 1/α:

σ 2
(2)( f ) = σ̄ 2[�]( f )

∣∣∣
�=1/α

= σ 2{L[·, f − μ( f )]}/[νL(�̃)]2

+βαν(�)
∑

(m,n)∈{1,...,α}2
ν(�Mm,n{·, �−1[ f − μ( f )]})/[ανL(�̃)]2. (23)

Using these expressions, we aim at establishing some criterion (depending on the
model as well as the objective function f under consideration) guaranteeing that
Procedure (2) yields indeed amore accurate (in terms of asymptotic variance) estimator
than the standard APF (1). However, comparing directly σ 2

(1)( f ) and σ 2
(2)( f ) under

the assumption that the inherent covariance structure of each block is uniform yields
the following criterion.

Corollary 3 Assume that Mm,n = M
∗ for all (m, n) ∈ {1, . . . , α}2 such that m �= n.

Then

σ 2
(2)( f ) ≤ σ 2

(1)( f )

⇔
ν(�C

∗{·, �−1[ f − μ( f )]}) ≤ −ν(�L2{·, �−1[ f − μ( f )]}), (24)

where σ 2
(1) and σ 2

(2), defined in (22) and (23), respectively, are the asymptotic variances
associated with the Procedures (1) and (2) above, respectively.

The message provided by the criterion (24) is clear: by reducing the number of
selected particles to the benefit of an increased number of antithetically coupled
mutated offspring, Algorithm 3 can improve over a standard APF in a close to fully
adaptive setting onlywhen the conditional correlation between themutated particles of
each block is, on average under the�-modulatedmeasure ν〈�〉 : A �→ ν(�1A)/ν(�)

(which can be shown to be the target distribution of the selection operation; see Douc
et al. 2008 for details), lower than the second moment of L{·, �−1[ f − μ( f )]} under
ν〈�〉 with negative sign.
Remark 4 From the criterion (24), it is evident that imposing a nonnegative corre-
lation structure among the particles in each block (that is, letting C

∗ ≥ 0) will, not
surprisingly, increase the asymptotic variance vis-à-vis the standard APF. Moreover,
since the correlation tends to zero with α, we conclude that there is a critical block
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size above which (24) will not hold even if the offspring particles of a block have the
EA property conditionally on their ancestor.

4 Application to state-space models

In state-space models, a time series Y � {Yn}∞n=0, taking values in some state space
(Y,B(Y)), is modelled as noisy observation of an unobservable (possibly time-
inhomogenous) Markov chain X � {Xn}∞n=0. The Markov chain, also referred to
as the state sequence, is assumed to take values in some state space (X,B(X)). In the
examples discussed below, we will exclusively let X ≡ R. The observed values are
assumed to be conditionally independent given the latent process X in such a way that
the distribution of each observation Yn depends on the corresponding state Xn only.
For a model of this type, any inference concerning the hidden states has to be carried
through on the basis of the observations only.

Denote by {Qn}∞n=0 and ν0 the Markov transition kernel and initial distribution of
the hidden chain, respectively. In addition, suppose that the conditional distribution of
Yn given Xn admits a density gn on Y with respect to some reference measure η, that
is,

P(Yn ∈ A | Xn) =
∫

A
gn(Xn, y) η(dy), A ∈ B(Y).

This gives us a the following complete description of a state-space model:

X0 ∼ ν0,

Xn+1 | Xn ∼ Qn(Xn, ·),
Yn | Xn ∼ gn(Xn, ·). (25)

4.1 Optimal filtering

In the setting of (25), the optimal filtering problem consists in computing, recursively
in time as new observations become available, the filter posterior distributions

φn(A) � P(Xn ∈ A | Y0:n), A ∈ B(X), n ≥ 0. (26)

One may establish (see, e.g. Cappé et al. 2005, Proposition 3.2.5) the recursion

φ0(A) =
∫

A g0(x,Y0) ν0(dx)∫
X g0(x,Y0) ν0(dx)

, A ∈ B(X),

φn+1(A) =
∫

X

∫
A gn+1(x ′,Yn+1) Qn(x, dx ′) φn(dx)∫∫

X2 gn+1(x ′,Yn+1) Qn(x, dx ′) φn(dx)
, A ∈ B(X), (27)

referred to as the filtering recursion. Since closed-form solutions to the filtering recur-
sion are obtainable only in the case of a linear/Gaussian model or when the state space
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X is finite, we follow Gordon et al. (1993) and apply the SMCmethodology described
in the previous; indeed, having defined, for A ∈ B(X) and x ∈ X, the unnormalised
transition kernels

Ln(x, A) =
∫

A
gn+1(x

′,Yn+1) Qn(x, dx
′), (28)

yielding the equivalent Feynman–Kac representation

φn+1(A) = φnLn(A)

φnLn(X)
, A ∈ B(X),

of (38), we conclude that the optimal filtering problem can be perfectly cast into the
framework of Sect. 2 with � = �̃ = X, ν = φn , L = Ln , and μ = φn+1.

Example 1 (ARCH model) As a first example, we consider the classical Gaussian
autoregressive conditional heteroscedasticity (ARCH) model observed in noise
(Bollerslev et al. 1994) given by

Xn+1 = Wn+1

√
β0 + β1X2

n,

Yn = Xn + σVn,

where {Wn}∞n=1 and {Vn}∞n=0 aremutually independent sequences of standard normally
distributed variables such that Wn is independent of {(Xk,Yk)}nk=0 and Vn is indepen-
dent of {(Xk,Yk)}n−1

k=0 and Xn . In this case, the optimal kernel Ln(x, ·)/Ln(x, X),
x ∈ R, which in the state-space model setting is the conditional distribution of the
state Xn+1 given Xn = x and the observation Yn+1, is Gaussian with meanmn(x) and
variance σ̂ 2

n (x), where

mn(x) = β0 + β1x2

β0 + β1x2 + σ 2 Yn+1, σ̂ 2
n (x) = β0 + β1x2

β0 + β1x2 + σ 2 σ 2.

Thus, the optimal adjustment multiplier weight function �n(x) = Ln(x, X) can be
expressed in a closed form as

�n(x) = N(Yn+1; 0, β0 + β1x
2 + σ 2), (29)

where N(x;μ, σ 2) � exp[−(x −μ)2/(2σ 2)]/√2πσ 2 denotes (with a slight abuse of
notation) the univariate Gaussian density function, yielding exactly uniform impor-
tance weights ω̃N ,i ≡ 1, i ∈ {1, . . . , αMN }.

In this setting, we used SMC to estimate posterior filter means {φn(idX)}30n=0, where
idX denotes the identitymapping idX(x) = x onX. Initially, to forman idea of the effect
of the antithetic couplingwe compared the auxiliary particle filter inAlgorithm2, using
α ∈ {2, 3} conditionally independent offspring of each particle ξN ,i , i ∈ {1, . . . , MN },
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in the mutation step, to the filter in Algorithm 3 using equally many antithetically
coupled offspring. In the case α = 2, we used the standard coupling

ξ̃
(n+1)
N ,α(i−1)+1 = mn(ξ

(n)
N ,i ) + σ̂n(ξ

(n)
N ,i )ε

(n)
i ,

ξ̃
(n+1)
N ,α(i−1)+2 = 2mn(ξ

(n)
N ,i ) − ξ̃

(n+1)
N ,α(i−1)+1, (30)

where {ε(n)
i }MN

i=1 is a sequence ofmutually independent standardGaussian randomvari-
ables being independent of everything else. This coupling yields largest possible nega-
tive correlation (that is, isEA) conditionally on ξ

(n)
N ,i , i.e.Corr(ξ̃

(n+1)
N ,α(i−1)+1, ξ̃

(n+1)
N ,α(i−1)+2 |

ξ
(n)
N ,i ) = −1, and in the kernel language of Sect. 2 it holds that R1(ξ, A) =∫
A N(ξ̃ ;mn(ξ), σ̂ 2

n (ξ)) dξ̃ and R2(ξ, ξ̃1, A) = δ2mn(ξ)−ξ̃1
(A) for any Borel set A ⊆ R.

A similar coupling was used in the case where α = 3; here we set

ξ̃
(n+1)
N ,α(i−1)+1 = mn(ξ

(n)
N ,i ) + σ̂n(ξ

(n)
N ,i )ε

(n)
i,1 ,

ξ̃
(n+1)
N ,α(i−1)+2 = 1

2

(
3mn(ξ

(n)
N ,i ) − ξ̃

(n+1)
N ,α(i−1)+1 + √

3σ̂n(ξ
(n)
N ,i )ε

(n)
i,2

)
,

ξ̃
(n+1)
N ,α(i−1)+3 = 3mn(ξ

(n)
N ,i ) − ξ̃

(n+1)
N ,α(i−1)+1 − ξ̃

(n+1)
N ,α(i−1)+2, (31)

where the independent sequences {ε(n)
i,1 }MN

i=1 and {ε(n)
i,2 }MN

i=1 are as above. The coupling

(31) yields Corr(ξ̃ (n+1)
N ,α(i−1)+m, ξ̃

(n+1)
N ,α(i−1)+m′ | ξ

(n)
N ,i ) = −1/2, for (m,m′) ∈ {1, 2, 3}

and m �= m′.
The comparison was done for two different data sets obtained by simulation

of ARCH models parametrised by (β0, β1, σ ) = (0.9, 0.6, 1) and (β0, β1, σ ) =
(0.9, 0.6, 10), corresponding to informative and non-informative observations, respec-
tively. The mean squared errors (MSEs) for 400 runs of each filter with MN = 6000/α
are, for the different values of α, displayed in Fig. 1a (the informative case) and Fig. 1b
(the non-informative case). TheMSEs are based on reference posterior filter mean val-
ues obtained by means of the standard APF (for which α = � = 1) using as many as
500,000 particles. From both figures, it is evident that letting the particles of a block
be antithetically coupled instead of conditionally independent decreases significantly
the variance. Moreover, the improvement is especially noticeable in the informative
case.

More relevant is to compare the performance of Algorithm 3, again with α ∈ {2, 3}
and MN = 6000/α, to that of the standard fully adapted APF using 6000 particles
without any block structure. In this setting, both antithetic filters are clearly more
computationally efficient since, first, only a half and a third of the particles are selected
at each resampling operation, and, second, a half and a third of the random moves at
each mutation step are replaced by simple assignments (matrix manipulations) in the
two cases α = 2 and α = 3, respectively. The outcome is displayed in Fig. 2 from
which it is clear that performances of the antithetic filters are, despite being less costly,
superior, especially in the case of informative observations (see Fig. 2a); indeed, the
improvement is over 20 decibel at some time steps. Moreover, it is evident that the
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Fig. 1 Plot of MSEs (in decibel) of filters being implementations of Algorithm 3 with α = 2 antithetically
coupled (open square) and conditionally independent (open circle) offspring for the ARCH model with
informative (a) and non-informative (b) observations. The MSE values are based on 400 runs of each
algorithm with MN = 3000
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Fig. 2 Plot of MSEs (in decibel) of the standard optimal APF (asterisk) with 6000 particles and antithetic
filters with α = 2 (open square) and α = 3 (open triangle) for the ARCH model with informative (a) and
non-informative (b) observations. αMN = 6000 for both antithetic filters and the MSE values are based on
400 runs of each algorithm

computational gain of using α = 3 instead of α = 2 offspring in each block is at the
expense of a slight decrease of precision.

Remark 5 The noisily observed ARCH model discussed above belongs to the larger
class of nonlinear/Gaussian state-space models of form

Xn+1 = an(Xn) + bn(Xn)Wn+1,

Yn = bXn + sVn,

where {Wn}∞n=1 and {Vn}∞n=0 are as in Example 1 and {an}n≥0, {bn}n≥0 and b, s
are sequences of matrix-valued functions and matrices, respectively, of appropriate
dimensions.Asmentioned above, the optimal kernel and adjustmentmultiplierweights
can be evaluated on closed form for models of this sort, and we refer again to Cappé
et al. (2005, Section 7.2.2.2) for details.

123



Antithetic sampling for sequential Monte Carlo methods 1043

Example 2 (Growth model) The univariate growth model given by, for n ≥ 0,

Xn+1 = an(Xn) + σwWn+1,

Yn = bX2
n + σvVn, (32)

where

an(x) = α0x + α1
x

1 + x2
+ α2 cos(1.2n), x ∈ R,

and the sequences {Wn}∞n=1 and {Vn}∞n=0 are as in the previous example, was discussed
byKitagawa (1987) and has served as a benchmark for state-space filtering techniques
during the last decades. We will follow the lines of Cappé et al. (2005) and consider
the parameter vector (α0, α1, α2, b, σ 2

v ) = (0.5, 25, 8, 0.05, 1) and σ 2
w ∈ {1, 10},

the values of the latter parameter corresponding to non-informative and informative
observations, respectively. The initial state is set deterministically to X0 = 0.1. For a
given observation Yn in R, the local likelihood for the state at time n is given by the
function

R � x �→ g(x,Yn) = N(Yn; bx2, σ 2
v ), (33)

which is symmetric around zero for any observation Yn . Interestingly, functions (33)
associated with negative observations Yn ≤ 0 are unimodal, while those associated
with positive observations Yn > 0 are bimodal with modes located at ±√

Yn/b. This
bimodality is challenging from a filtering point of view and puts heavy demands on
the applied SMC method.

Unlike the ARCHmodel in the previous section, direct simulation from the optimal
kernel is infeasible in this case since themeasurement Eq. (32) is nonlinear in the state.
Thus, in order tomimic efficiently the optimal kernel and adjustmentmultiplierweights
we take a novel approach and approximate the local likelihood (33) by a mixture

G(x,Yn) � N(x;μ1(Yn), ς
2(Yn))/2 + N(x;μ2(Yn), ς

2(Yn))/2, x ∈ R,

of two Gaussian densities, where

(μ1(Yn), μ2(Yn), ς
2(Yn)) �

{
(0, 0,−σ 2

v /(2bYn)) for Yn ≤ 0,

(−√
Yn/b,

√
Yn/b, σ 2

v /(4bYn)) for Yn > 0.

Consequently, we let the means and standard deviations of the two strata be the loca-
tions (which coincide when Yn ≤ 0) and (common) inverted log curvature (with
negative sign) of the modes of the local likelihood, respectively; more specifically,
ς2(Yn) = −1/(d2 log g(x,Yn)/dx2)|x=μ1(Yn). From now on, we omit for brevity the
dependence on the observation from the notation of the quantities above and write
(μ1, μ2, ς

2) instead of (μ1(Yn), μ2(Yn), ς2(Yn)). Plugging the approximation G into
the expression (28) of the unnormalised optimal kernel yields straightforwardly the
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mixture

Ln(x, A) �
∫

A
G(x ′,Yn+1) Qn(x, dx

′)

= β(1)
n (x)G(1)

n (x, A) + β(2)
n (x)G(2)

n (x, A), x ∈ X, A ∈ B(X),

where each Gaussian stratum

G(d)
n (x, A) �

∫
A

N
(
x ′; τ (d)

n (x), η2n
)
dx ′, d ∈ {1, 2},

with means and variance (recall that μd , d ∈ {1, 2}, and ς2 depend on Yn+1)

τ (d)
n (x) � σ 2

wμd + ς2an(x)

σ 2
w + ς2 ,

η2n � σ 2
wς2

σ 2
w + ς2 ,

is weighted by

β(d)
n (x) � N(μd; an(x), σ 2

w + ς2), d ∈ {1, 2}.

By normalising, we obtain the approximation

Ln(x, A)/Ln(x, X) = β̄n(x)G
(1)
n (x, A)+(1−β̄n(x))G

(2)
n (x, A), x ∈ X, A ∈ B(X),

(34)
of the optimal kernel, where we have defined the normalised weight

β̄n(x) � β
(1)
n (x)

β
(1)
n (x) + β

(2)
n (x)

, x ∈ X.

Moreover, in this setting, the approximate optimal adjustment multiplier weights are
given by

�n(x) = Ln(x, X) = β(1)
n (x) + β(2)

n (x), x ∈ X.

Using (34) as proposal, the experiment of the previous example (in which we
estimated filter posterior means {φn(idX)}30n=0) was repeated with focus set on the case
α = 2. To impose a conditionally negative correlation structure, we let each pair of
offspring particles evolve according to

ξ̃
(n+1)
N ,α(i−1)+1 = τ (1)

n (ξ
(n)
N ,i )1{U (n)

i <β̄n(ξ
(n)
N ,i )} + τ (2)

n (ξ
(n)
N ,i )1{U (n)

i ≥β̄n(ξ
(n)
N ,i )} + ηnε

(n)
i ,

ξ̃
(n+1)
N ,α(i−1)+2 = τ (1)

n (ξ
(n)
N ,i )1{1−U (n)

i <β̄n(ξ
(n)
N ,i )} + τ (2)

n (ξ
(n)
N ,i )1{1−U (n)

i ≥β̄n(ξ
(n)
N ,i )} − ηnε

(n)
i ,

(35)
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Fig. 3 Plot of MSEs (in decibel) of the plain bootstrap filter (open circle) using 5000 particles, the standard
optimal APF (asterisk) using 5000 particles, and the antithetic filter (open square) with α = 2 and αMN =
5000 for the growth model with informative (a) and non-informative (b) observations. The MSE values are
based on 400 runs of each algorithm

where {U (n)
i }MN

i=1 and {ε(n)
i }MN

i=1 are independent sequences of mutually independent
uniformly distributed (on [0, 1]) and standardGaussian randomvariables, respectively,
such that each pair (U (n)

i , ε
(n)
i ) is independent of all other random variables. It is

established easily that each of the offspring particles ξ̃
(n+1)
N ,α(i−1)+1 and ξ̃

(n+1)
N ,α(i−1)+2 of

the copuling (35) is distributedmarginally according to the approximate optimal kernel
(34). In addition, one can show that (see Sect. 1 for details) the correlation between
the offspring of a block is given by, for ξ ∈ X,

Corr
[
ξ̃
(n+1)
N ,α(i−1)+1, ξ̃

(n+1)
N ,α(i−1)+2 | ξ

(n)
N ,i = ξ

]

= −
(τ

(1)
n (ξ) − τ

(2)
n (ξ))2

[
β̄2
n (ξ)1{β̄n(ξ) ≤ 1/2} + (β̄2

n (ξ) − 1)21{β̄n(ξ) > 1/2}
]

+ η2n

(τ
(1)
n (ξ) − τ

(2)
n (ξ))2β̄n(ξ)(1 − β̄n(ξ)) + η2n

,

(36)

which is always negative and simplifies to −1 in the unimodal case (as τ
(1)
n (ξ) =

τ
(2)
n (ξ) for all ξ ∈ X when Yn+1 < 0). Figure 3 displays MSE (in decibel) compar-
isons between the antitheticAPFwithα = 2 andαMN = 5000, a close to fully adapted
APF, based on the proposal kernel (34) and 5000 particles, and the plain bootstrap
filter using 5000 particles. Like in the ARCH example, we let the filters approximate
filter posterior means φn(idX) for observation records of length 30, and since the initial
value is known deterministically the logMSE is null at time zero. The comparison was
made for informative (σ 2

w = 10, Fig. 3a) as well as non-informative (σ 2
w = 1, Fig. 3b)

observations and the MSEs, measured with respect to reference values obtained with
the close to fully adapted APF using 500,000 particles, were based on 400 runs of each
algorithm. Also for this demanding model the variance reduction introduced by the
antithetic coupling is significant; indeed, despite being clearly less computationally
costly (see the discussion in the previous example), the antithetic filter improves the
MSE performances of the APF and the bootstrap filter by more than 10 decibels at
several time points for both observation records. Moreover, from the figures, it is evi-
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dent that proposing particles according to the approximate optimal kernel (34) instead
of the prior kernel yields, as expected, generally more precise posterior filter mean
estimates, since the APF outperforms the bootstrap particle filter at most time steps.

4.2 Approximation of the predictor distribution flow

In many applications, the objects of interest are the predictor distributions

πn(A) � P(Xn ∈ A | Y0:n−1), A ∈ B(X), n ≥ 0, (37)

rather than the filter distributions. This is, e.g. the case when approximating the log-
likelihood function

�n(Y0:n) =
n∑

k=0

logπk(gk)

(with the convention π0 = ν0) of the observed data Y0:n . As for the filter distributions,
one may derive a recursion

π0 = ν0,

πn+1(A) =
∫

X gn(x,Yn) Qn(x, A) πn(dx)∫
X gn(x,Yn) πn(dx)

, A ∈ B(X), (38)

for thesemeasures, which can, just like in the filtering case, can be cast into our general
framework (5) by defining

L̃n(x, A) = gn(x,Yn)Qn(x, A), (x, A) ∈ X × B(X),

and letting � = �̃ = X, ν = πn , L = L̃n , and μ = πn+1. In this case, perfectly
full adaptation is straightforward as L̃n(x, X) = gn(x,Yn) and L̃n(x, ·)/L̃n(x, X) =
Qn(x, ·), x ∈ X, and the antithetic strategy proposed by us can be implemented easily
for many models of interest. In fact, when considering a recursion for the predictor
distributions, the fully adapted algorithm in the setting of Sect. 2.2 corresponds to the
standard bootstrap particle filter, which mutates the particles according to the prior
dynamics of the state sequence and weighs the same using the local likelihood.

5 Conclusion

The present paper casts antithetic acceleration into the framework of SMC methods
by introducing, in the mutation operation of the SMC algorithm, negative dependence
between blocks of particles. In a scenario of full adaptation, i.e. when the so-called
optimal kernel L(ξ, ·)/L(ξ, �̃) and the optimal adjustment weight function L(ξ, �̃)

can, at least approximately and pointwise for all ξ ∈ �, be sampled from and com-
puted, respectively, we have shown theoretically that introducing sufficiently strong
correlation between the particles of each block lowers indeed the asymptotic variance
added at each step of the SMC algorithm. These theoretical results were confirmed
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Antithetic sampling for sequential Monte Carlo methods 1047

by a simulation study within the framework of optimal filtering in state-space models,
which reported improvements of up to an order of magnitude for some models under
consideration.

The fact that our approach requires the optimal kernel and adjustment multiplier
weights to be known on closed form or to be well approximated may be viewed as
drawback. Nevertheless, such approximation is in fact possible for a wide range of
models, e.g. the nonlinear/Gaussian models of the type described in Remark 5 or
the important case of approximation of the predictor distribution flow in state-space
models.

A natural future research project aims at accelerate further the algorithm by extend-
ing the antithetic coupling to the selection operation.

A Proofs

A.1 Proof of Theorem 1

The result follows straightforwardly from Slutsky’s theorem and results obtained by
Douc and Moulines (2008) in the case of independently mutated particles. Indeed,
by Douc and Moulines (2008, Equation (36)) we have, for any k ∈ {1, . . . , α}, as
N → ∞,

�−1
N

MN∑
j=1

ω̃N ,α( j−1)+k f (ξ̃N ,α( j−1)+k)
P−→ νL( f ),

yielding immediately

(α�N )−1
αMN∑
i=1

ω̃N ,i f (ξ̃N ,i )

= α−1
α∑

k=1

�−1
N

MN∑
j=1

ω̃N ,α( j−1)+k f (ξ̃N ,α( j−1)+k)
P−→ νL( f ). (39)

By applying (39) for this limit for f ≡ 1 (recall that L(·, �̃) ∈ C by assumption,
implying that the constant function belongs to C̃) we obtain, using again Slutsky’s
theorem,

�̃−1
N

αMN∑
i=1

ω̃N ,i f (ξ̃N ,i )
P−→ νL( f )/νL(�̃) = μ( f ).
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1048 S. Bizjajeva, J. Olsson

To prove the second property in Definition 2, write

(α�N )−1 max
1≤i≤αMN

ω̃N ,i ≤ α−1
α∑

k=1

�−1
N max

1≤ j≤MN
ω̃N ,α( j−1)+k; (40)

however, by inspecting the proof of Douc and Moulines (2008, Theorem 1) we
conclude that each term on the RHS of (40) tends to zero in probability, which in
combination with (39) implies that

�̃−1
N max

1≤i≤αMN
ω̃N ,i = (α�N/�̃N )(α�N )−1 max

1≤i≤αMN
ω̃N ,i

P−→ 0.

This completes the proof. �

A.2 Proof of Theorem 2

Let f ∈ Ã and assumewithout loss of generality thatμ( f ) = 0. Then write, following
the lines of the proof of Douc and Moulines (2008, Theorem 2)

aN �̃−1
N

αMN∑
i=1

ω̃N ,i f (ξ̃N ,i ) = α�N �̃−1
N (AN + BN ),

where

AN �
MN∑
j=1

E
[
UN , j | FN ,α( j−1)

]
, BN �

MN∑
j=1

{
UN , j − E

[
UN , j | FN ,α( j−1)

]}
,

and UN , j � aN (α�N )−1 ∑α
k=1 ω̃N ,α( j−1)+k f (ξ̃N ,α( j−1)+k). Since, by (39), �̃N/

(α�N )
P−→ νL(�̃), as N → ∞, it is enough to prove that

AN + BN
D−→ N{0, σ 2[L(·, f )] + η2( f )}, (41)

where

η2( f ) � α−2
∑

(m,n)∈{1,...,α}2
γ Cm,n( f ).

For AN it holds, since the weighted sample {(ξN ,i , ωN ,i )}MN
i=1 is AN for (μ, A, W,

σ, γ, {aN }∞N=1) by assumption and L(·, f ) ∈ A, that

AN = aN (α�N )−1
MN∑
j=1

α∑
k=1

E

[
ω̃N ,α( j−1)+k f (ξ̃N ,α( j−1)+k) | FN ,α( j−1)

]
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= aN�−1
N

MN∑
j=1

ωN , j L(ξN , j , f )
D−→ N{0, σ 2[L(·, f )]}.

We now consider BN and establish that, for any u ∈ R,

E
[
exp(iuBN )|FN ,0

] P−→ exp(−u2η2( f )/2), (42)

from which the result of the theorem follows. The proof of (42) consists in showing
that the two conditions of Theorem 13 in Douc and Moulines (2008) are satisfied for
the triangular array {(UN , j ,FN ,α j )}MN

j=1.
For establishing condition (i) of the theorem in question, write

MN∑
j=1

E

[
U 2

N , j | FN ,α( j−1)

]

= a2N (α�N )−2
MN∑
j=1

∑
(k,m)∈{1,...,α}2

E

[
ω̃N ,α( j−1)+k f (ξ̃N ,α( j−1)+k)

× ω̃N ,α( j−1)+m f (ξ̃N ,α( j−1)+m)
∣∣FN ,α( j−1)

]

= α−2
∑

(k,m)∈{1,...,α}2
a2N�−2

N

MN∑
j=1

ω2
N , jMk,m(ξN , j , f ). (43)

However, for all (k,m) ∈ {1, . . . , α}2,Mk,m(·, f ) ≤ R0,k(·,�2
k f

2)+R0,m(·,�2
m f 2)

∈ W; since W is proper, this implies (under (A2)) the limit

α−2
∑

(k,m)∈{1,...,α}2
a2N�−2

N

MN∑
j=1

ω2
N , jMk,m(ξN , j , f )

P−→ α−2
∑

(k,m)∈{1,...,α}2
γ Mk,m( f ).

(44)
Now consider

MN∑
j=1

E
2 [

UN , j | FN ,α( j−1)
]

= a2N (α�N )−2
MN∑
j=1

ω2
N , jE

2

⎡
⎣ α∑
k=1

�k(ξN , j , ξ̃N ,α( j−1)+k) f (ξ̃N ,α( j−1)+k)
∣∣FN ,α( j−1)

⎤
⎦

= a2N�−2
N

MN∑
j=1

ω2
N , j L

2(ξN , j , f ); (45)
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1050 S. Bizjajeva, J. Olsson

here, for any k ∈ {1, . . . , α}, L2(·, f ) = R2
0,k(·,�k f ) ≤ R0,k(·,�2

k f
2) ∈ W, and

reusing the asymptotic normality of {(ξN ,i , ωN ,i )}MN
i=1 yields

a2N�−2
N

MN∑
j=1

ω2
N , j L

2(ξN , j , f )
P−→ γ L2( f ). (46)

Finally, by combining Eqs. (43)–(46) we conclude that

MN∑
j=1

{
E

[
U 2

N , j | FN ,α( j−1)

]
− E

2 [
UN , j | FN ,α( j−1)

]}

P−→ α−2
∑

(k,m)∈{1,...,α}2
γ Mk,m( f ) − γ L2( f ) = η2( f ),

which establishes condition (i).
It remains to check condition (ii), that is, for any ε > 0,

CN �
MN∑
j=1

E
[
UN , j1{|UN , j |≥ε} | FN ,α( j−1)

] P−→ 0.

Thus, argue along the lines of the proof of Douc and Moulines (2008, Theorem 2) and
write, for any C > 0,

CN ≤ a2N (α�N )−2
MN∑
j=1

ω2
N , j

∑
(k,m)∈{1,...,α}2

Mk,m

(
ξN , j , f 1{| ∑α

k=1 �k f |≥C}
)

+1{aN (α�N )−1 maxi ωN ,i≥εC−1}
MN∑
j=1

E

[
U 2

N , j

∣∣FN ,α( j−1)

]
. (47)

Under (A2) the indicator function of the second term on the RHS of (47) tends to zero
in probability and since, for all (k,m) ∈ {1, . . . , α}2, Mk,m(·, f 1{| ∑α

k=1 �k f |≥C}) ≤
R0,k(·,�2

k f
2) + R0,m(·,�2

m f 2) ∈ W we obtain

a2N (α�N )−2
MN∑
j=1

ω2
N , j

∑
(k,m)∈{1,...,α}2

Mk,m

(
ξN , j , f 1{| ∑α

k=1 �k f |≥C}
)

P−→ α−2
∑

(k,m)∈{1,...,α}2
γ Mk,m

(
f 1{| ∑α

k=1 �k f |≥C}
)
. (48)

By dominated convergence, the RHS of (48) can bemade arbitrarily small by takingC
sufficiently large. Therefore, also condition (ii) is satisfied, implying the convergence
(42). This establishes (41).
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We turn to the second property of Definition 3 and show that, for any f ∈ W̃,

a2N �̃−2
N

αMN∑
i=1

ω̃2
N ,i f (ξ̃N ,i )

P−→ γ̃ ( f ). (49)

However, sinceR0,k(·,�2
k f ) ≤ 1{· :| f (·)|>1}R0,k(·,�2

k f
2)+1{· :| f (·)|≤1}R0,k(·,�2

k) ∈
W, a direct application of Douc and Moulines (2008, Equation (39)) yields that, for
any k ∈ {1, . . . , α},

a2N�−2
N

MN∑
j=1

ω̃2
N ,α( j−1)+k f (ξ̃N ,α( j−1)+k)

P−→ γR0,k(�
2
k f ).

Combining (49) with the limit �̃N/(α�N )
P−→ νL(�̃) [see (39)] we obtain, using

Slutsky’s theorem,

a2N �̃−2
N

αMN∑
i=1

ω̃2
N ,i f (ξ̃N ,i ) = (α�N /�̃N )2α−2

α∑
k=1

a2N�−2
N

MN∑
j=1

ω̃2
N ,α( j−1)+k f (ξ̃N ,α( j−1)+k)

P−→ α−2
α∑

k=1

γR0,k(�
2
k f )/[νL(�̃)]2 = γ̃ ( f ).

Finally, we establish the last property of Definition 3, that is,

aN �̃−1
N max

1≤i≤αMN
ω̃N ,i

P−→ 0. (50)

However, since, as shown byDouc andMoulines (2008, p. 30), for any k ∈ {1, . . . , α},

a2N (α�N )−2 max
1≤ j≤MN

ω̃2
N ,α( j−1)+k

P−→ 0,

we immediately obtain

a2N �̃−2
N max

1≤i≤αMN
ω̃2
N ,i ≤ (α�N/�̃N )2

α∑
k=1

a2N (α�N )−2 max
1≤ j≤MN

ω̃2
N ,α( j−1)+k

P−→ 0,

from which (50) follows.
It remains to show that the sets Ã and W̃ are proper. Since, by assumption, L(·, �̃) ∈

A and R0,k(·,�2
k) ∈ W, k ∈ {1, . . . , α}, we conclude immediately that all constant

functions f ≡ c belong to Ã. Now, let | f | ≤ |g|, where g belongs to Ã. Then
L(·, | f |) ≤ L(·, |g|) ∈ A and R0,k(·,�2

k f
2) ≤ R0,k(·,�2

kg
2) ∈ W, k ∈ {1, . . . , α},

implying, by property (ii) in the definition of a proper set, that f ∈ Ã. Finally, let f and
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g be any two functions in Ã. Then, for any constants (a, b) ∈ R
2, L(·, |a f + bg|) ≤

|a|L(·, | f |) + |b|L(·, |g|) ∈ A; moreover, for all k ∈ {1, . . . , α},

R0,k(·,�2
k[a f + bg]2) ≤ (a2 + |a|)R0,k(·,�2

k f
2) + (b2 + |b|)R0,k(·,�2

kg
2) ∈ W,

implying that a f + bg ∈ Ã. The properness of W̃ is established in a similar manner.
This completes the proof. �

A.3 Demonstration of (36)

Since U (n)
i and ε

(n)
i are independent, it holds that

Cov
[
ξ̃

(n+1)
N ,α(i−1)+1, ξ̃

(n+1)
N ,α(i−1)+2 | ξ

(n)
N ,i = ξ

]

=
[
(τ (1)

n (ξ))2 + (τ (2)
n (ξ))2

]
Cov

[
1{U (n)

i <β̄n(ξ)},1{1−U (n)
i <β̄n(ξ)} | ξ

(n)
N ,i = ξ

]

+ 2τ (1)
n (ξ)τ (2)

n (ξ)Cov
[
1{U (n)

i <β̄n(ξ)},1{1−U (n)
i ≥β̄n(ξ)} | ξ

(n)
N ,i = ξ

]
− η2n . (51)

In addition, as U (n)
i is independent of ξ

(n)
N ,i we obtain

Cov
[
1{U (n)

i <β̄n(ξ)},1{1−U (n)
i <β̄n(ξ)} | ξ

(n)
N ,i = ξ

]

= P

(
1 − β̄n(ξ) < U (n)

i < β̄n(ξ) | ξ
(n)
N ,i = ξ

)
− β̄2

n (ξ)

= 1{β̄n(ξ)>1/2}(2β̄n(ξ) − 1) − β̄2
n (ξ) (52)

and, analogously,

Cov
[
1{U (n)

i <β̄n(ξ)},1{1−U (n)
i ≥β̄n(ξ)} | ξ

(n)
N ,i = ξ

]

= P

(
U (n)
i ≤ min{β̄n(ξ), 1 − β̄n(ξ)} | ξ

(n)
N ,i = ξ

)
− β̄n(ξ)(1 − β̄n(ξ))

= 1{β̄n(ξ)≤1/2}β̄n(ξ) + 1{β̄n(ξ)>1/2}(1 − β̄n(ξ)) − β̄n(ξ)(1 − β̄n(ξ)). (53)

Now, assume that β̄n(ξ) > 1/2; then, using (51)–(53),

Cov
[
ξ̃

(n+1)
N ,α(i−1)+1, ξ̃

(n+1)
N ,α(i−1)+2 | ξ

(n)
N ,i = ξ

]

= −
[
(τ (1)

n (ξ))2 + (τ (2)
n (ξ))2

]
(1 − β̄n(ξ))2 + 2τ (1)

n (ξ)τ (2)
n (ξ)(1 − β̄n(ξ))2 − η2n

= −
(
τ (1)
n (ξ) − τ (2)

n (ξ)
)2

(1 − β̄n(ξ))2 − η2n .

Moreover, assuming that β̄n(ξ) ≤ 1/2 yields similarly

Cov
[
ξ̃

(n+1)
N ,α(i−1)+1, ξ̃

(n+1)
N ,α(i−1)+2 | ξ

(n)
N ,i = ξ

]
= −

(
τ (1)
n (ξ) − τ (2)

n (ξ)
)2

β̄2
n (ξ) − η2n .
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Finally, since ξ̃
(n+1)
N ,α(i−1)+1 and ξ̃

(n+1)
N ,α(i−1)+2 have, conditionally on ξ

(n)
N ,i , the same mar-

ginal distributions, and

Var
[
ξ̃
(n+1)
N ,α(i−1)+1 | ξ

(n)
N ,i = ξ

]
=

(
τ
(1)
n (ξ) − τ

(2)
n (ξ)

)2
Var

[
1{U (n)

i <β̄n(ξ)} | ξ
(n)
N ,i = ξ

]
+ η2n

=
(
τ
(1)
n (ξ) − τ

(2)
n (ξ)

)2
β̄n(ξ)(1 − β̄n(ξ)) + η2n,

the identity (36) follows. �
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