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Series Preface

The long-term aim of the Commission on Crystallographic Teaching in
establishing this pamphlet programme is to produce a large collection of
short statements each dealing with a specific topic at a specific level. The
emphasis is on a particular teaching approach and there may well, in time,
be pamphlets giving alternative teaching approaches to the same topic. It
is not the function of the Commission to decide on the ‘best’ approach but
to make all available so that teachers can make their own selection. Similarly,
in due course, we hope that the same topics will be covered at more than
one level.

The first set of ten pamphlets, published in 1981, and this second set of
nine represent a sample of the various levels and approaches and it is hoped
that they will stimulate many more people to contribute to this scheme. It
does not take very long to write a short pamphlet, but its value to someone
teaching a topic for the first time can be very great.

Each pamphlet is prefaced by a statement of aims, level, necessary
background, etc.

C. A. Taylor
Editor for the Commission

The financial assistance of UNESCO, ICSU and of thé International Union of Crystallogra-
phy in publishing the pamphlets is gratefully acknowledged.



Teaching Aims

To present numerous views of cubic crystals as an aid to the understanding
of the relations between symmetry and morphology in three dimensions.

Level
This would be suitable early in an undergraduate study of crystallography
or mineralogy.
Background
Elementary knowledge of symmetry operations: (centre of symmetry, axes
of rotational symmetry and mirror planes): and of the unit cell is assumed.
Practical Resources

Models (made of cardboard, wood or plaster) of the simpler shapes would
be helpful.

Time Required for Teaching

This could form two or three lectures in an introductory course, together
with time to study the diagrams (and to make models).



Projections of Cubic Crystals

Ian O. Angell and Moreton Moore

Royal Holloway College, University of London, Egham,
Surrey, TW20 0EX, England

1. Introduction

Crystals are three-dimensional objects and are represented on paper by
suitable projections. The use to which the resulting picture is to be put
determines the choice of projection. Clinographic, orthographic and per-
spective projections are briefly described here, with examples taken from
the cubic crystal system.

2. Clinographic, Orthographic and Perspective Projections

Imagine one wishes to represent a cube on paper. There are six square
faces but one cannot see them all at once (unless the cube is transparent!).
The hidden edges may be included in the drawing to indicate their positions
as if they were visible.

Only one face will be seen if the cube is viewed centrally and perpendicular
to this face: not a very informative view if one wishes to obtain an overall
impression of the object (which in this case might be a square prism). It is
usual to arrange the viewpoint so that as many faces as possible are visible,
or equivalently the object is turned so that this is the case.

In the clinographic projection the cube is turned through an angle (4)
about a vertical axis, making both the front and right hand faces visible.
The cube is then projected on to a vertical plane by parallel straight lines,
which are inclined to the horizontal so that the top face is brought into
view, (Fig. ia).

The orthographic projection is also a parallel one, but here the projection
lines meet the (vertical) plane at right angles. The cube is tilted forwards
through an angle ¢ before projection to show the top face, (Fig. ib). If the
angle of tilt ¢ equals the angle that the projection lines make with the
horizontal in the clinographic projection, then these clinographic and ortho-
graphic views are closely similar, (Fig. ii), but differ as follows. The vertical
dimensions in the clinographic projection are magnified by the factor sec ¢
compared with the orthographic: or in other words, the height h of the
crystal will be preserved in the clinographic projection, whereas in this
orthographic projection it will appear as k cos ¢.

In the standard setting of the crystal, ¢ is usually chosen to be 9°28 so
that its tangent is 2, for ease of drawing. sec ¢ is then (v/37)/6 = 1.0138, and



(a) CLINOGRAPHIC T\B\
\

(b) ORTHOGRAPHIC
hcosé¢

(c) PERSPECTIVE

Picture
plane

Fig. i.

cos ¢ =0.9864. The fact that these figures are very close to unity shows that
these two views will be nearly the same. (In early books on mineralogy,
tan ¢ was taken to be 3.) The angle 8 about the vertical is usually chosen
to be 18°26" so that tan 6 =1. An orthographic projection which is closely
similar to this clinographic standard is one projected along the direction
which (in the cubic crystal system) has zone-axis symbol [621], (and appear-
ing in the diagrams as 6.0 2.0 1.0: these are the components, referred to the
cube, of a vector in this direction).
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Clinographic and orthographic projections are used widely in crystal-
lography because parallel lines in the crystal project to parallel lines in the
projections, and thus zonal relationships are preserved visually. The eye
however sees things differently. A perspective view is a conical projection,
with the apex of the cone at the eye. The picture plane is placed between
the observer and the object; and parallel lines in space project to lines
which converge to vanishing points on the picture plane.' The size of the
picture will be determined not only by the size of the object but also by
the relative distances of eye to picture plane and eye to object. Rear faces
of the crystal will appear smaller than front faces because they are further
away. In Fig. iic the viewpoint has coordinates (36, 12, 6) on an arbitrary
scale, that is, the components are in the ratio 6:2:1, and so one is looking
along the same direction as the [621] orthographic view. Perspective projec-
tions with slightly differing viewpoints, corresponding to the left and the
right eye, may be used to construct stereoscopic pairs.

3. Cubic Crystals

The variety of crystal shapes is so great that only crystals built up from
cubes are considered in this pamphlet: other structural units have been
omitted. Three mutually perpendicular crystallographic axes may be chosen
parallel to the edges of the cubic unit cells. These are the familiar Cartesian
axes Ox, Oy and Oz of coordinate geometry, where O is the origin. Their
directions are represented by [100], [010] and [001]. Directions related by
symmetry, such as these three, are written for brevity as (100). Other
directions in the crystal may be referred to these axes; as in the earlier
remark that the [621] direction has components in the ratios 6:2:1 along
these three axes respectively.

A set of crystal faces, related to one another by symmetry, is called a
form; the symmetry being more obvious in specimens in which the faces
are equally developed. For example, the cube, in the most symmetrical
class, has three tetrad axes coinciding with the Ox, Oy and Oz axes, and
three mirror planes perpendicular to these axes; four triad axes coinciding
with the body diagonals (111); six diad axes parallel to the face diagonals

Fig. iii. Rhombic dodecahedron made from cubes.
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(110), and six mirror planes (making nine in all) perpendicular to these diad
axes. The cube has a centre of symmetry. The underlying symmetry of
crystals is much less obvious in specimens for which the faces of individual
forms are unequally developed; but may still be deduced by considering
the perpendiculars drawn to the faces from a point within the crystal, and
their distribution in space. This is best done using a stereographic projection:
the subject of another pamphlet®.

In the cubic crystal system there are five distinct classes or point groups:
that is, five different combinations of symmetry elements, but all have in
common the presence of four triad axes of symmetry. These are listed in
Table 1. An axis of symmetry X perpendicular to a mirror plane m is written

X 5 ; ;
o (or X/m). The maximum symmetry of a cube, as described above, is

4 _2 =
represented by the point group symbol —3— (or 4/m33/m, often
abbreviated to m 3 m). m.m

The orientation of a plane in crystallography is described in terms of its
Miller indices, These are the reciprocals of the relative intercepts, in terms
of unit cell edges, that the plane makes with the three crystallographic axes,
expressed in whole numbers. In general, if the intercepts are a/h, b/k, ¢/I,
where a, b and ¢ are the cell edges, then the Miller indices of the plane are
h, k, 1, usually written (hki). In the cubic crystal system, the unit cells are
cubes, so a=b=c. (In the drawings here a= 1.) The face of the cube,
perpendicular to the [100] direction (i.e. to the Ox Cartesian axis) has Miller
indices (100), since the intercepts on the three axes are a/l, a/0, a/0: the
latter two intercepts (on Oy and Oz), being at infinity. (For cubic crystals,

Table 1. Cubic crystal classes or point groups

Symmetry elements along the directions
Full  Abbreviated

symbol symba] {100} {11ty (110)
4 _2 4-fold axes 3-fold rotation- 2-fold axes
T 3 = m3m perpendicular to inversion axes perpendicular to
mirror planes mirrer planes
432 43 4-fold axes 3-fold axes 2-fold axes
43m 43m  4-fold rotation- 3-fold axes mirror planes
inversion axes perpendicular
to these directions
-2-3 m3 2-fold axes 3-fold rotation- —
m perpendicular inversion axes
to mirror planes
23 23 2-fold axes 3-fold axes —




the [hki] direction is perpendicular to the (hki) plane, but this is not so for
crystals of other crystal systems.) The faces of an octahedron make equal
intercepts, positive and negative, on all three axes and therefore have Miller
indices (111), (T11), (1T1), (11T), (1T1), (1TT), (T1T) and (1T1). The minus
signs are written above the symbols for compactness. All eight symmetrically
related faces of the form are written as {111}.

4. The Diagrams

.

In each computer drawn diagram, the Miller indices of the face(s) defining
the form(s) are shown under the letters H, K, L (printed by the computer
as capital letters). The distance of this face from the centre, on an arbitrary
scale, is shown under D. The point group symmetry (shown at the top of
each diagram under the word CUBIC) then operates on the specified face
(or faces) to give the complete solid. For example, m 3 m symmetry generates
all six faces of the cube from the single face (100). For the solids thus
generated from a single face, four orthographic views are given with hidden
edges omitted: a ‘general’ view along the [621] axis, closely similar to a
standard clinographic projection: and views along the [100],[110] and [111]
directions. For each cubic crystal viewed along the [111] direction the
three-fold symmetry is evident. There are three other equivalent three-fold
axes along [111), [111] and [TT1]. One can also see immediately whether
the crystal possesses a four-fold axis along [100], a diad axis along [110],
or mirror planes bisecting any of the projections along [100],[110],and [111].

As far as possible, similarly shaped solids are placed together in the pages
which follow. In some cases two different settings (‘positive’ and ‘negative’)
are given for the same crystal: (3 & 4,9 & 10, 15 & 16, 19 & 20, 25 & 26); and
some crystals are mirror images (enantiomorphs) of one another: (22 & 23,
27 & 28).

Table 2 lists the names of the crystal forms and table 3 shows their
distribution amongst the five cubic point groups, or crystal classes.

The cube (no. 1) appears in all five columns because any one of the cubic
point group symmetries operating on the (100) plane will generate all six
faces of the cube. The rhombic dodecahedron (5) also appears five times
for the same reason; whilst the octahedron (2) appears three times, and the
tetrahedron (3) twice. {210}, {310} and {320} are particular examples of
{hk 0}; {211} and {311} of {hll} with h>I; and {221} is an example of
{hh1} with h>1 {321} is a particular case of the general form {hkl} in
which all the indices are different and non-zero. In table 3, it will be seen
for example, that the same crystal form (15) will be generated either by
43 m or by 23 operating on (211).

Very often crystals exhibit faces of more than one form together. Some
examples of combinations of two forms are shown here. The overall shape

6



Table 2. Cubic crystal forms: key to the figure numbers

(Maximum}) No. of
Fig. No. Form Symmetry Name faces
| {100} m3im Cube 6
2 {111} m3m Octahedron 8
3 {111} 43m Tetrahedron (positive) 4
4 {11t} 43 m Tetrahedron (negative) 4
5 {110} m3im Rhombic dodecahedron 12
6 {210}
7 {310} m3im Tetrahexahedra 24
g {320}
9 {210}
:‘IJ gfg; m3 Pentagonal dodecahedra (or pyritohedra) 12
12 {320}
13 {211} m3m Icositetrahedra (or trapezohedra) 24
14 3i1} m3im
15 {211} B
16 {211} i3m Tristetrahedra 12
17 {311}
18 {221} m3m Trisoctahedron 24
19 {221} 43m Deltoid dodecahedron (or deltohedron) 12
20 {231) 43m
21 {321} m3m Hexoctahedron 48
22 {321} 43 Pentagonal icositetrahedra (or gyroids)
23 {312} 43 24
24 {321} 43m Hexatetrahedron 24
25 {321} m3 Didodecahedron (or diploid)
26 {312} m3 24
27 {321} 23 Tetrahedral pentagonal dodecahedra
28 {312} 23 {or tetartoids) 12

(The figures continue unnumbered for the combinations of forms.)

Table 3. Distribution of crystal forms amongst the five cubic classes

The numbers are figure numbers. See Table 2 for the names of the forms

m3m 43 43 m m3 23

{100} 1 1 1 I i
{110} 5 5 5 s 5
{111} 2 2 3 2 3
{hkO} 6 6 6 9 9
{hil} k> | 13 13 15 13 15
{hhl} h> 1 18 18 19 18 19
{hkl} 21 22 24 25 27
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Fig. 6
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Fig. 16

Fig. 15

W }.000

ceeic

~ayn

@ 1.000

E e

e

#1000

tomic
=ain

- E

47114
-a3m

B:  |.8C0

tusic
439

ORIHOLRERH]C

80 2.3 10

(1114

-a3m

—aim

Tusic

B 1.000

cumic
B L

15



Fig. 17

Fig. I8

cumic R 1.000 | ({5 1H R 1.300
-43m nim

OR T HOCRRRN IC DR tHIZRARNIC

60 2.0 1.3 .3 2.8 1.0

L S L [

Y1 00 L ]

|

I cole B }.000 Cusic A: | .000
BrELl nis

ORTHECRAPW L OR ImaCEan | L

1.0 0.8 0.0 L6 3.0 o

oL L ]

I 1od o LI B

Cusic #x  }.000 ({1 B 1000
“ean ny=

ORTHMOCRARHIC Of:eOCRAPE |

e e 0.0 -3 1.0 0.3

oEL ® hEL oD

It otee T3 lae

cuslc As .000 cumic 8  1.000
=430 min

ORTROGREPN (T DRTROCRAPHIC

1.0 1.8 1.0 [ ]

"KL D

100 e

16




Fig. 19 Fig. 20
| tusic A 1000 ot m 1,000
-4 m s LY
QR TMICRIFHIL BRIRDIRARRIC
5.0 2.0 1.0 8- 2.0 1.0
[ - "R L 2
220 100 @ -1 1wte ?; ;
L3 LY
cueic Be  1.008 i cuBlt 8 1.000
adym ~43n
24
CATADCRSPS S DRTNDGHARNLE
V.e 9.0 8.€ f. 0.0 0.0
n K a W OR o
221 100 ® 22 1 100 @
a LY
T 5 1.000 cusit #s 1.000
et =ade
GRIRBCARRNIC 08T HDGRAPNIC
1.0 t.0 0.¢ 1.0 Lo B8
om L] "k L D
220 e @ 2 1 100 ? ; ‘E\
L3 L3
cusic R 1.000 sl »: 1.003
=4y =430
DR TMDCRA"S T oRl 1
1.8 10 10 eoe 1.8
W R L O noe L B
20 Lo @ -2 1 1.00 : Z‘E:
o LS

17




Fig. 21 Fig. 22
Cesic Cumte 1003
=n 43
ERIRICRIPN R =LItAPN
e 1.3 & R
" [
o T
AT ue 1.000
~n
NTHICREPA L CCRRP- |
e o.¢ t.0 0.0 ©.
LN v 3
T o0 to1.00
=1 1H ug 1.e08
A=
OR SuBoRarn]{ AN ImOCARPR(C
2 reee M. | | tew T v
L )
R I -]
fumie 1200
=n
INTRICRERNLL QA T CRRrH] T
0 .8 1.8 1.2 10
= =
1 (- ]




Fig. 23

Fig. 24
(¥ 18 R: 1000 Wi B 1000
. o
BRIAISRARHIE O TmMOCRERN] T
6L 2.0 1.0 80 2.6 10
L LI T
PR ™ 320 e @
Cueis w1003 e a:  ).003
ar L A
| .
E LR T ] e
i8 0.0 €0 1.0 ¢0 0.3
wokw 6 moeoL
3L oF .00 31 .00
-
I
i 1 2 1.0C0 Custec R 1000
(3] ~ajn
N InDCARPAIL o ImECRARN] D
18 1.0 £.0 1.0 1.0 3.0
=8 L 0 #« 1 L 0
: ' LA R
i?“ A 1.ceo A 1.000
CRIrQIAEPRIL
16 1.0 1
LY 1]
E I - f

19
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Fig. 27
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of a crystal is very much determined by the relative distances from the
centre of the two kinds of face: one dominant form perhaps being only
slightly modified by another. The drawings are still of ideal crystals, in
which all faces of each form have the same size and shape. Real crystals
seldom have the faces of forms so uniformly developed.
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