Dispersion Relations: Applications to meson interactions

Emilie Passemar
Indiana University/Jefferson Laboratory

Future Directions in Spectroscopy Analysis
Thomas Jefferson Accelerator Facility,
Newport News, November 18, 2014

Outline

1. Introduction and Motivation
2. Dispersion Relations: the method
3. Applications

- Two body: $\pi \pi$ and $K \pi$ form factors
- Three body: $\eta \rightarrow 3 \pi, K_{14}$ decays

Talk by I. Danilkin, P. Guo
4. Conclusion and Outlook

1. Introduction and Motivation

1.1 Hadronic Physics

- Hadronic Physics: Interactions of quarks at low energy
- Precise tests of the Standard Model:
\Rightarrow Extraction of $\mathrm{V}_{\mathrm{us}}, \alpha_{\mathrm{S}}$, light quark masses...
- Look for physics beyond the Standard Model: High precision at low energy as a key to new physics?
- Look for exotics, new hadronic states

1.2 Tools

- Hadronic Physics: Interactions of quarks at low energy
- Low energy ($\mathrm{Q}<\sim 1 \mathrm{GeV}$), long distance: α_{S} becomes large!
\Rightarrow Non-perturbative QCD
- A perturbative expansion in the usual sense fails
- Use of alternative approaches, expansions...: e.g.
- Effective field theory Ex: ChPT for light quarks
- Dispersion relations
- Numerical simulations on the lattice

1.3 On the interest of using Dispersion Relations

- If $\mathrm{E}>1 \mathrm{GeV}$: ChPT not valid anymore to describe dynamics of the process
\square Resonances appear:
- For $\pi \pi: I=1: \rho(770), \rho(1450), \rho(1700), \ldots, I=0: " \sigma(\sim 500) ", f_{0}(980), \ldots$
- For $\mathrm{K} \pi: I=1: \mathrm{K}^{*}(892), \mathrm{K}^{*}(1410), \mathrm{K}^{*}(1680), \ldots, I=0:$ "K(~800)", \ldots
- Two-body case: form factor: $\boldsymbol{H}_{\mu}=\langle\boldsymbol{P P}|\left(V_{\mu}-A_{\mu}\right) \mathrm{e}^{i_{\text {eco }}}|\mathbf{0}\rangle=(\text { Lorentz struct. })_{\mu}^{i} F_{i}(s)$

Ex: $K \pi$ form factors:
$-\tau \rightarrow \mathrm{K} \pi \nu_{\tau}$:

$$
\begin{gathered}
s=q^{2}=\left(p_{K}+p_{\pi}\right)^{2} \\
\bar{f}_{0,+}(t)=\frac{f_{0,+}(t)}{f_{+}(0)}
\end{gathered}
$$

$-\mathrm{K}_{13}$ decays $\left(\boldsymbol{K} \rightarrow \pi \ell \bar{v}_{\ell}\right):$

$$
\left\langle\pi\left(p_{\pi}\right)\right| \overline{\mathbf{s}} \gamma_{\mu} \mathbf{u}\left|K\left(\mathbf{p}_{K}\right)\right\rangle=\left[\left(p_{K}+p_{\pi}\right)_{\mu}-\frac{\Delta_{K \pi}}{t}\left(p_{K}-p_{\pi}\right)_{\mu}\right] f_{+}(t)+\frac{\Delta_{K \pi}}{t}\left(p_{K}-p_{\pi}\right)_{\mu} f_{0}(t)
$$

1.3 On the interest of using Dispersion Relations

$K \pi$ vector form factor:
$\mid \bar{f}_{+}(\sqrt{s})$
Dominance of K*(892) resonance

$\mathrm{K} \pi$ scalar form factor:
No obvious dominance of a resonance

- With Dispersion Relations:
- no need for making assumptions of a dominance of resonances
\square directly given by the parametrization, phase shifts taken as inputs
- Parametrization valid in a large range of energy: analyse several processes simultanously where the same quantity: FFs, amplitude appear

1.3 On the interest of using Dispersion Relations

- Allow to take into account large final state interactions

Ex: $\eta \rightarrow 3 \pi$
Slow convergence of the chiral series:

LO: Osborn, Wallace'70
NLO: Gasser \& Leutwyler' 85
NNLO: Bijnens \& Ghorbani'07
\longmapsto Large $\pi \pi$ final state interactions

- Need to use Dispersion Relations to improve on the convergence of ChPT!

1.4 Strategy

- Build a parametrization to analyse the data relying on:
- Physical properties of the amplitude:
- Analyticity
- Unitarity

Dispersion Relations

- Crossing symmetry
- Statisfies Chiral constraints at low energy
- Statisfies the asymptotic behaviour dictated by perturbative QCD
- Aim: have the best physically motivated and the more model independent parametrization for the hadronic part of the process under study: amplitude or form factor to analyse the data accurately
\longmapsto More precise extraction of form factors or amplitude

2. Dispersion Relations: the method

2.1 Unitarity

- Two-body case: form factor: $\boldsymbol{H}_{\mu}=\langle\boldsymbol{P P}|\left(V_{\mu}-A_{\mu}\right) \mathrm{e}^{i L_{\varrho c o}}|\mathbf{0}\rangle=(\text { Lorentz struct. })_{\mu}^{i} F_{i}(s)$
- Unitarity \square the discontinuity of the form factor is known

$$
s=\left(p_{P_{1}}+p_{P_{2}}\right)^{2}
$$

$$
\frac{1}{2 i} \operatorname{disc} F_{P P}(s)=\operatorname{Im} F_{P P}(s)=\sum_{n} F_{P P \rightarrow n}\left(\mathrm{~T}_{n \rightarrow P P}\right)^{*}
$$

2.1 Unitarity

- Two-body case: form factor: $\boldsymbol{H}_{\mu}=\langle\boldsymbol{P P}|\left(V_{\mu}-A_{\mu}\right) \mathrm{e}^{i L_{\varrho c o}}|\mathbf{0}\rangle=(\text { Lorentz struct. })_{\mu}^{i} F_{i}(s)$
- Unitarity \square the discontinuity of the form factor is known

$$
s=\left(p_{P_{1}}+p_{P_{2}}\right)^{2}
$$

$$
\frac{1}{2 i} \operatorname{disc} F_{P P}(s)=\operatorname{Im} F_{P P}(s)=\sum_{n} F_{P P \rightarrow n}\left(\mathrm{~T}_{n \rightarrow P P}\right)^{*}
$$

2.1 Unitarity

- Two-body case: form factor: $\boldsymbol{H}_{\mu}=\langle\boldsymbol{P P}|\left(V_{\mu}-A_{\mu}\right) \mathrm{e}^{i L_{\varrho c o}}|\mathbf{0}\rangle=(\text { Lorentz struct. })_{\mu}^{i} F_{i}(s)$
- Unitarity \square the discontinuity of the form factor is known

$$
s=\left(p_{P_{1}}+p_{P_{2}}\right)^{2}
$$

$$
\frac{1}{2 i} \operatorname{disc} F_{P P}(s)=\operatorname{Im} F_{P P}(s)=\sum_{n} F_{P P \rightarrow n}\left(\mathrm{~T}_{n \rightarrow P P}\right)^{*}
$$

2.1 Unitarity

- Two-body case: form factor: $\boldsymbol{H}_{\mu}=\langle\boldsymbol{P P}|\left(V_{\mu}-A_{\mu}\right) \mathrm{e}^{i L_{\varrho c o}}|\mathbf{0}\rangle=(\text { Lorentz struct. })_{\mu}^{i} F_{i}(s)$
- Unitarity \square the discontinuity of the form factor is known

$$
s=\left(p_{P_{1}}+p_{P_{2}}\right)^{2}
$$

$$
\frac{1}{2 i} \operatorname{disc} F_{P P}(s)=\operatorname{Im} F_{P P}(s)=\sum_{n} F_{P P \rightarrow n}\left(\mathrm{~T}_{n \rightarrow P P}\right)^{*}
$$

2.1 Unitarity

- Two-body case: form factor:

$$
\begin{aligned}
\boldsymbol{H}_{\mu}=\langle\boldsymbol{P P}|\left(V_{\mu}-A_{\mu}\right) \mathrm{e}^{i I_{\text {eco }}}|\mathbf{0}\rangle=(\text { Lorentz struct. })_{\mu}^{i} F_{i}(s) \\
s=\left(p_{P_{1}}+p_{P_{2}}\right)^{2}
\end{aligned}
$$

- Unitarity \square the discontinuity of the form factor is known

$$
\frac{1}{2 i} \operatorname{disc} F_{P P}(s)=\operatorname{Im} F_{P P}(s)=\sum_{n} F_{P P \rightarrow n}\left(\mathrm{~T}_{n \rightarrow P P}\right)^{2}
$$

- Only one channel $n=P P$ (elastic region)

$$
\frac{1}{2 i} \operatorname{disc} F_{I}(s)=\operatorname{Im} F_{I}(s)=F_{I}(s) \sin \delta_{I}(s) e^{-i \delta_{I}(s)}
$$

2.2 Analyticity: Dispersion Relations

- Knowing the discontinuity of $\boldsymbol{F} \Rightarrow$ write a dispersion relation for it
- Cauchy Theorem and Schwarz reflection principle

$$
F(s)=\frac{1}{\pi} \oint \frac{F\left(s^{\prime}\right)}{s^{\prime}-s} d s^{\prime} \Rightarrow \frac{1}{2 i \pi} \int_{M_{P P}^{2}}^{\infty} \frac{\operatorname{disc}\left[F\left(s^{\prime}\right)\right]}{s^{\prime}-s-i \varepsilon} d s^{\prime}
$$

- If \boldsymbol{F} does not drop off fast enough for $|\boldsymbol{s}| \rightarrow \infty$ subtract the DR

$$
F(s)=P_{n-1}(s)+\frac{s^{n}}{\pi} \int_{M_{P P}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime} n} \frac{\operatorname{Im}\left[F\left(s^{\prime}\right)\right]}{\left(s^{\prime}-s-i \varepsilon\right)}
$$

$P_{n-1}(s)$ polynomial

2.2 Analyticity: Dispersion Relations

- Solution: Use analyticity to reconstruct the form factor in the entire space
\square Omnès representation : $F_{I}(s)=P_{I}(s) \Omega_{I}(s)$

- Omnès function : $\Omega_{I_{I}(s)=\exp \left[\frac{s}{\pi} \int_{s_{I_{H}}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}-s-i \varepsilon}\right]}^{1}$
- Polynomial: $\mathrm{P}_{\mathrm{I}}(\mathrm{s})$ not known but determined from a matching to experiment or to ChPT at low energy

2.3 Assumptions

- Form factor:

$$
F_{I}(s)=\exp \left[\frac{s}{\pi} \int_{s_{t h}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\phi_{I}\left(s^{\prime}\right)}{s^{\prime}-s-i \varepsilon}\right]
$$

- Up to the first inelastic threshold ($\mathrm{s}<\mathrm{s}_{\text {in }}$):
$\phi_{I}(s)=\delta_{I}(s)$ elastic phase, known
- In the inelastic region ($\mathrm{s} \geq \mathrm{s}_{\mathrm{in}}$) phase not known except asymptotic behaviour

$$
\phi_{+, 0}(s) \rightarrow \phi_{+, 0 a s}(s)=\pi \quad\left(\bar{f}_{+, 0}(s) \rightarrow 1 / s\right) \quad \text { [Brodsky\&Lepage] }
$$

- Different strategies:
- Subtract the dispersive integrals to weaken the high-energy contribution not known \square subtraction constants to fit to the data
- Build a model for the phase and fit to the data: done for the Kpi and pipi vector form factors \square Data from Belle and BaBar on $\tau \rightarrow K \pi \nu_{\tau}$ or $\tau \rightarrow \pi \pi \nu_{\tau}$
- Conformal mapping to include inelasticities, see talk by I. Danilkin
- Perform a coupled channel analysis

3. Applications

3.1 Application 1: $\pi \pi$ form factors and probing New physics with Tau LFV

- Constrain new physics operators from low energy decays: ex: $\tau \rightarrow \mu \pi \pi$
- Effective Lagrangian: $\mathcal{L}=\mathcal{L}_{S M}+\frac{\boldsymbol{C}^{(5)}}{\Lambda} \boldsymbol{O}^{(5)}+\sum_{i}^{\boldsymbol{C}^{(6)}} \boldsymbol{\Lambda}_{i}^{(6)}+\ldots$
- Each UV model generates a specific pattern of $D=6$ operators: $\tau \rightarrow \mu \pi \pi$ very interesting probe to discriminate them \square For these need to know the FFs!
- 4 form factors :

3.1 Application 1: $\pi \pi$ form factors and probing New physics with Tau LFV

- Constrain new physics operators from low energy decays: ex: $\tau \rightarrow \mu \pi \pi$
- Effective Lagrangian: $\mathcal{L}=\mathcal{L}_{S M}+\frac{C^{(5)}}{\Lambda} \boldsymbol{O}^{(5)}+\sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \boldsymbol{O}_{i}^{(6)}+\ldots$
- Each UV model generates a specific pattern of $D=6$ operators: $\tau \rightarrow \mu \pi \pi$ very interesting probe to discriminate them \square For these need to know the FFs!
- 4 form factors :

$$
\begin{aligned}
& \left\langle\pi^{+} \pi^{-}\right| m_{u} \bar{u} u+m_{d} \bar{d} d|0\rangle \equiv \Gamma_{\pi}(s) \quad\left\langle\pi^{+} \pi^{-}\right| \theta_{\mu}^{\mu}|0\rangle \equiv \theta_{\pi}(s) \\
& \left\langle\pi^{+} \pi^{-}\right| m_{s} \bar{s} s|0\rangle \equiv \Delta_{\pi}(s)
\end{aligned}
$$

Determination of $\mathrm{F}_{\mathrm{V}}(\mathrm{s})$

- Vector form factor
> Precisely known from experimental measurements

$$
\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \pi^{+} \pi^{-} \text {and } \tau^{-} \rightarrow \pi^{0} \pi^{-} \boldsymbol{v}_{\tau} \text { (isospin rotation) }
$$

$>$ Theoretically: Dispersive parametrization for $\mathrm{F}_{\mathrm{V}}(\mathrm{s})$
Guerrero, Pich'98, Pich, Portolés'08

$$
F_{V}(s)=\exp \left[\lambda_{V}^{\prime} \frac{s}{m_{\pi}^{2}}+\frac{1}{2}\left(\lambda_{V}^{\prime \prime}-\lambda_{V}^{\prime 2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2}+\frac{s^{3}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 3}} \frac{\phi_{V}\left(s^{\prime}\right)}{\left(s^{\prime} \mathcal{F}-i \varepsilon\right)}\right]
$$

Extracted from a model including 3 resonances $\rho(770), \rho^{\prime}(1465)$ and $\rho "(1700)$ fitted to the data
$>$ Subtraction polynomial + phase determined from a fit to the Belle data $\boldsymbol{\tau}^{-} \rightarrow \pi^{0} \boldsymbol{\pi}^{-} \boldsymbol{\nu}_{\boldsymbol{\tau}}$

Determination of $\mathrm{F}_{\mathrm{V}}(\mathrm{s})$

Determination of $\mathrm{F}_{\mathrm{V}}(\mathrm{s})$ thanks to precise measurements from Belle!

Determination of the $K \pi$ FFs: Dispersive representation

- Model for $\phi_{\mathrm{V}}(\mathrm{s})$:

Guerrero, Pich'98, Pich, Portolés'08 Gomez, Roig'13

$$
\tilde{F}_{V}(s)=\frac{\tilde{M}_{\rho}^{2}+\left(\alpha^{\prime} e^{i \phi^{\prime}}+\alpha^{\prime \prime} e^{i \phi^{\prime \prime}}\right) s}{\tilde{M}_{\rho}^{2}-s+\kappa_{\rho} \operatorname{Re}\left[A_{\pi}(s)+\frac{1}{2} A_{K}(s)\right]-i \tilde{M}_{\rho} \tilde{\Gamma}_{\rho}(s)}-\frac{\alpha^{\prime} e^{i \phi^{\prime}} s}{D\left(\tilde{M}_{\rho^{\prime}}, \tilde{\Gamma}_{\rho^{\prime}}\right)}-\frac{\alpha^{\prime \prime} e^{i \phi^{\prime \prime}} s}{D\left(\tilde{M}_{\rho^{\prime \prime}}, \tilde{\Gamma}_{\rho^{\prime \prime}}\right)}
$$

with

$$
D\left(\tilde{M}_{R}, \tilde{\Gamma}_{R}\right)=\tilde{M}_{R}-s+\kappa_{R} \operatorname{Re} A_{\pi}(s)-i \tilde{M}_{R} \tilde{\Gamma}_{R}(s)
$$

$$
\tan \phi_{V} \equiv \tan \delta_{\pi \pi}^{P}=\frac{\operatorname{Im} \tilde{F}_{V}(s)}{\operatorname{Re} \tilde{F}_{V}(s)}
$$

- Determine the resonance parameters by finding the poles in the complex plane

Determination of the form factors : $\Gamma_{\pi}(\mathrm{s}), \Delta_{\pi}(\mathrm{s}), \theta_{\pi}(\mathrm{s})$

- No experimental data for the other FFs up to $\sqrt{ }$ s $\sim 1.4 \mathrm{GeV}$ Inputs: I=0, S-wave $\pi \pi$ and KK data
\square Coupled channel analysis

Donoghue, Gasser, Leutwyler'90
Moussallam'99
Daub et al'13

- Unitarity:

$$
\square \quad \operatorname{Im} F_{n}(s)=\sum_{m=1}^{2} T_{n m}^{*}(s) \sigma_{m}(s) F_{m}(s) \quad \boldsymbol{n}=\boldsymbol{\pi} \boldsymbol{\pi}, \boldsymbol{K} \overline{\boldsymbol{K}}
$$

Determination of the form factors : $\Gamma_{\pi}(\mathrm{s}), \Delta_{\pi}(\mathrm{s}), \theta_{\pi}(\mathrm{s})$

- Inputs : $\pi \pi \rightarrow \pi \pi, \mathrm{KK}$

- A large number of theoretical analyses Descotes-Genon et al'01, Kaminsky et al'01, Buttiker et al'03, Garcia-Martin et al'09, Colangelo et al.'11 and all agree
- 3 inputs: $\delta_{\pi}(\mathrm{s}), \delta_{\mathrm{K}}(\mathrm{s}), \eta$ from B. Moussallam \square reconstruct T matrix

Determination of the form factors : $\Gamma_{\pi}(\mathrm{s}), \Delta_{\pi}(\mathrm{s}), \theta_{\pi}(\mathrm{s})$

Celis, Cirigliano, E.P.'14

- General solution:
$\binom{F_{\pi}(s)}{\frac{2}{\sqrt{3}} F_{K}(s)}=\left(\begin{array}{cc}C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s)\end{array}\right)\binom{P_{F}(s)}{Q_{F}(s)}$

Canonical solution

Polynomial determined from a matching to ChPT + lattice

- Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions

$$
X(s)=C(s), D(s)
$$

Dispersion relations: Model-independent method, based on first principles that extrapolates ChPT based on data
$\mathrm{s}\left[\mathrm{GeV}^{2}\right]$

Discriminating power of $\tau \rightarrow \mu(\mathrm{e}) \pi \pi$ decays

Discriminating power of $\tau \rightarrow \mu(\mathrm{e}) \pi \pi$ decays

Discriminating power of $\tau \rightarrow \mu(\mathrm{e}) \pi \pi$ decays

3.2 Application 2: $\eta \longrightarrow 3 \pi$ and light quark masses

- $\eta \rightarrow 3 \pi$: decay forbiden by isospin symmetry
\Rightarrow Clean access to $\left(m_{u}-m_{d}\right)$

- Dispersion relations and 3 body final state rescattering

$$
\left(Q^{2} \equiv \frac{m_{s}^{2}-\hat{m}^{2}}{m_{d}^{2}-m_{u}^{2}}\right)
$$

$$
A(s, t, u)=-\frac{1}{Q^{2}} \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{3 \sqrt{3} F_{\pi}^{2}} M(s, t, u) \quad \square \Gamma_{\eta \rightarrow 3 \pi} \propto \int|A(s, t, u)|^{2} \propto Q^{-4}
$$

- Compute the normalized amplitude $M(s, t, u)$ with the best accuracy

The Method

- Decomposition of the amplitude as a function of $\pi \pi$ isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93

$>\boldsymbol{M}_{I}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to $\operatorname{NNLO}\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
> Main two body rescattering corrections inside M_{1}

- Unitary relation for $\mathrm{M}_{\mathrm{l}}(\mathrm{s})$:

$$
\underbrace{\operatorname{disc} M_{I}(s)=2 i\left(M_{I}(s)+\hat{M}_{I}(s)\right) \sin \delta_{I}(s) e^{-i \delta_{I}(s)} \theta\left(s-4 M_{\pi}^{2}\right)}_{\text {right-hand cut }}
$$

- Unitary relation for $\mathrm{M}_{\mathrm{l}}(\mathrm{s})$:

$$
\begin{aligned}
& \operatorname{disc} M_{I}(s)=2 i\left(M_{I}(s)+\quad\right) \sin \delta_{I}(s) e^{-i \delta_{I}(s)} \theta\left(s-4 M_{\pi}^{2}\right) \\
& \text { right-hand cut }
\end{aligned}
$$

- Right-hand cut only \Rightarrow Omnès problem

$$
M_{I}(s)=P_{I}(s) \Omega_{I}(s) \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

- Unitary relation for $\mathrm{M}_{\mathrm{l}}(\mathrm{s})$:

$$
\operatorname{disc} M_{I}(s)=2 i\left(M_{I}(s)+\hat{M}_{I}(s)\right) \sin \delta_{I}(s) e^{-i \delta_{I}(s)} \theta\left(s-4 M_{\pi}^{2}\right)
$$

right-hand cut left-hand cut

- Dispersion relation for the M,'s

$$
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime \prime}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)
$$

$$
\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

Omnès function

- $\hat{M}_{I}(s)$ singularities in the t and u channels, depend on the other $\boldsymbol{M}_{I}(s)$ subtract $M_{I}(s)$ from the partial wave projection of $M(s, t, u)$
\square Angular averages of the other functions \square Coupled equations

Determination of the Amplitude

- Dispersion relation for the M,'s

$$
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2^{2}}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right) \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

Omnès function

- Solve by iterative procedure: Inputs needed: S and P-wave phase shifts of $\pi \pi$ scattering

Determination of the Amplitude

- Dispersion relation for the M,'s

$$
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\left|\Omega_{I}\left(s^{\prime}\right)\right|\left(s^{\prime}-s-i \varepsilon\right)}\right) \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

Omnès function

- Solve by iterative procedure: Inputs needed: S and P-wave phase shifts of $\pi \pi$ scattering
- Solution depends on subtraction constants only
\Rightarrow fitted from experimental results
- Normalisation from matching to ChPT

Experimental measurements : Charged channel

- Charged channel measurements with high statistics from KLOE and WASA e.g. KLOE: $\sim 1.3 \times 10^{6} \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ events from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \varphi \rightarrow \eta \gamma$

$$
\left.A_{c}(s, t, u)\right|^{2}=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}\right)
$$

KLOE'08

$$
Y=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1
$$

$$
X=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t)
$$

Experimental measurements : Neutral channel

- Neutral channel measurements with high statistics from MAMI-B, MAMI-C and WASA e.g. MAMI-C: $\sim 3 \times 10^{6} \eta \rightarrow 3 \pi^{0}$ events from $\gamma p \rightarrow \eta p$

$$
\left.A_{n}(s, t, u)\right|^{2}=N\left(1+2 \alpha Z+6 \beta Y\left(X^{2}-\frac{Y^{2}}{3}\right)+2 \gamma Z^{2}\right)
$$

\Rightarrow Extraction of the slope:

MAMI-C'09

$$
\begin{array}{r}
Z=\frac{2}{3} \sum_{i=1}^{3}\left(\frac{3 T_{i}}{Q_{n}}-1\right)^{2}=X^{2}+Y^{2} \\
Q_{n} \equiv M_{\eta}-3 M_{\pi^{0}}
\end{array}
$$

$$
X=\frac{\sqrt{3}\left(T_{+}-T_{-}\right)}{Q_{c}}=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t)
$$

$$
Y=\frac{3 T_{0}}{Q_{c}}-1=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1
$$

Qualitative results of our analysis

- Determination of Q from the dispersive approach :

$$
\begin{aligned}
& \Gamma_{\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}}=\frac{1}{Q^{4}} \frac{M_{K}^{4}}{M_{\pi}^{4}} \frac{\left(M_{K}^{2}-M_{\pi}^{2}\right)^{2}}{6912 \pi^{3} F_{\pi}^{4} M_{\eta}^{3}} \int_{s_{\min }}^{s_{\max }} d s \int_{u_{-}(s)}^{u_{+}(s)} d u|M(s, t, u)|^{2} \\
& \Gamma_{\eta \rightarrow 3 \pi}=300 \pm \mathbf{1 2} \mathbf{e V} \quad P D G^{\prime} 14 \\
& \left(Q^{2} \equiv \frac{\boldsymbol{m}_{s}^{2}-\hat{\boldsymbol{m}}^{2}}{\boldsymbol{m}_{d}^{2}-\boldsymbol{m}_{u}^{2}}\right)
\end{aligned}
$$

- Determination of α

$$
A_{n}(s, t, u)^{2}=N(1+2 \alpha Z)
$$

Qualitative results of our analysis

- Plot of Q versus α :

NB: Isospin breaking has not been accounted for

From kaon mass spliting :
$Q=20.7 \pm 1.2$
Kastner \& Neufeld'08

- All the data give consistent results. The preliminary outcome for Q is intermediate between the lattice result and the one of Kastner and Neufeld.

Qualitative results of our analysis

- Plot of Q versus α :

- All our preliminary results give a negative value for α. In particular the result using KLOE data for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ is in perfect agreement with the PDG value!

Comparison of results for \mathbf{Q}

G. Colangelo, S. Lanz, H. Leutwyler, E.P.

Comparison of results for α

G. Colangelo, S. Lanz,

H. Leutwyler , E.P.

Preliminary
dispersive, fit to KLOE
$\begin{array}{lllllll}-0.06 & -0.04 & -0.02 & 0.00 & 0.02 & 0.04 & 0.06\end{array}$
α

Light quark masses

H. Leutwyler

- Smaller values for $\mathrm{Q} \Rightarrow$ smaller values for $\mathrm{ms} / \mathrm{md}$ and $\mathrm{mu} / \mathrm{md}$ than LO ChPT

4. Conclusion and outlook

4.1 Conclusion

- Look for exotics, new hadronic states: \square need to know the hadronic background
- In this talk 2 examples:
- Two body: $\pi \pi$ form factors
- Three body: $\eta \rightarrow 3 \pi$ decays
- Use dispersion relations
- Dispersion relations rely on analyticity, unitarity and crossing symmetry \square Rigorous treatment of two and three hadronic final state

4.2 Outlook

- For reaching a high level of precision, theoretical challenges : in the dispersion relation
> include inelasticities
$>$ Take isospin breaking and electromagnetic corrections into account
\Rightarrow Work in this direction in JPAC

```
Talk by L. Dai, I. Danilkin, P. Guo, V. Mathieu
```

- Collaboration with experimentalists to analyse the data efficiently:
$>$ find the best parametrization to analyse the data
> take into account systematics etc...
- Apply dispersion relations to other processes:
$>$ baryons: nucleons, etc
$>$ heavy mesons: J/Ч, D, B decays

5. Back-up

Determination of the $K \pi$ FFs: Dispersive representation

- Model for $\phi_{\mathrm{V}}(\mathrm{s})$:

$$
\tilde{F}_{V}(s)=\frac{\tilde{M}_{\rho}^{2}+\left(\alpha^{\prime} e^{i \phi^{\prime}}+\alpha^{\prime \prime} e^{i \phi^{\prime \prime}}\right) s}{\tilde{M}_{\rho}^{2}-s+\kappa_{\rho} \operatorname{Re}\left[A_{\pi}(s)+\frac{1}{2} A_{K}(s)\right]-i \tilde{M}_{\rho} \tilde{\Gamma}_{\rho}(s)}-\frac{\alpha^{\prime} e^{i \phi^{\prime}} s}{D\left(\tilde{M}_{\rho^{\prime}}, \tilde{\Gamma}_{\rho^{\prime}}\right)}-\frac{\alpha^{\prime \prime} e^{i \phi^{\prime \prime}} s}{D\left(\tilde{M}_{\rho^{\prime \prime}}, \tilde{\Gamma}_{\rho^{\prime \prime}}\right)}
$$

with

$$
D\left(\tilde{M}_{R}, \tilde{\Gamma}_{R}\right)=\tilde{M}_{R}-s+\kappa_{R} \operatorname{Re} A_{\pi}(s)-i \tilde{M}_{R} \tilde{\Gamma}_{R}(s)
$$

$$
\Rightarrow \quad \tan \phi_{+} \equiv \tan \delta_{\pi \pi}^{p}=\frac{\operatorname{Im} \tilde{f}_{+}(s)}{\operatorname{Re} \tilde{f}_{+}(s)}
$$

3.1 Application 3: $\eta \rightarrow 3 \pi$ and light quark masses

- Unitary relation for $\mathrm{M}_{\mathrm{l}}(\mathrm{s})$:

$$
\underbrace{\operatorname{disc} M_{I}(s)=2 i\left(M_{I}(s)+\hat{M}_{I}(s)\right) \sin \delta_{I}(s) e^{-i \delta_{I}(s)} \theta\left(s-4 M_{\pi}^{2}\right)}_{\text {right-hand cut }}
$$

- Dispersion relation for the M,'s

$$
\begin{aligned}
& M_{I}(s)=\Omega_{\Omega_{I}}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)
\end{aligned} \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

- Inputs needed : S and P-wave phase shifts of $\pi \pi$ scattering

3.1 Application 3: $\eta \rightarrow 3 \pi$ and light quark masses

- Unitary relation for $\mathrm{M}_{\mathrm{l}}(\mathrm{s})$:

$$
\begin{aligned}
& M_{I}(s)=\Omega_{\Omega_{I}}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)
\end{aligned} \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

- Solution depends on subtraction constants only \Rightarrow solve by iterative procedure + match with experiment

3.1 Dalitz plot distribution of $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude squared along the line $t=u$:

$$
\left[M_{\pi}^{2}\right]
$$

- Good agreement between theory and experiment
- The theoretical error bars are large \Rightarrow fit the subtraction constants to the data to reduce the uncertainties

3.2 Z distribution for $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays

- If one wants to fit the data, at this level of precision the e.m. corrections matter \Rightarrow use the one loop e.m. calculations from Ditsche, Kubis and Meissner'09

1.1 Hadronic Physics

- Hadronic Physics: Interactions of quarks at low energy
- Precise tests of the Standard Model:
\Rightarrow Extraction of $\mathrm{V}_{\mathrm{us}}, \alpha_{\mathrm{s}}$, light quark masses...
- Look for physics beyond the Standard Model: High precision at low energy as a key to new physics?

SUSY loops
Z', Charged Higgs, Right-Handed Currents,....

- Look for exotics, new hadronic states

3.1 Application 1: $\pi \pi$ form factors and probing New physics with Tau LFV

- Constrain new physics operators from low energy decays: ex: $\tau \rightarrow \mu \pi \pi$
- Effective Lagrangian: $\mathcal{L}=\mathcal{L}_{S M}+\frac{\boldsymbol{C}^{(5)}}{\Lambda} \boldsymbol{O}^{(5)}+\sum_{i}^{\boldsymbol{C}^{(6)}} \boldsymbol{O}_{i}^{(6)}+\ldots$
- Summary table:

	$\tau \rightarrow 3 \mu$	$\tau \rightarrow \mu \gamma$	$\tau \rightarrow \mu \pi^{+} \pi^{-}$	$\tau \rightarrow \mu K \bar{K}$	$\tau \rightarrow \mu \pi$	$\tau \rightarrow \mu \eta^{(\prime)}$
$\mathrm{O}_{\mathrm{S}, \mathrm{V}}^{4 \ell}$	\checkmark	-	-	-	-	-
O_{D}	\checkmark	\checkmark	\checkmark	\checkmark	-	-
$\mathrm{O}_{\mathrm{V}}^{\mathrm{q}}$	-	-	$\checkmark(\mathrm{I}=1)$	$\checkmark(\mathrm{I}=0,1)$	-	-
$\mathrm{O}_{\mathrm{S}}^{\mathrm{q}}$	-	-	$\checkmark(\mathrm{I}=0)$	$\checkmark(\mathrm{I}=0,1)$	-	-
O_{GG}	-	-	\checkmark	\checkmark	-	-
$\mathrm{O}_{\mathrm{A}}^{\mathrm{q}}$	-	-	-	-	$\checkmark(\mathrm{I}=1)$	$\checkmark(\mathrm{I}=0)$
$\mathrm{O}_{\mathrm{P}}^{\mathrm{q}}$	-	-	-	-	$\checkmark(\mathrm{I}=1)$	$\checkmark(\mathrm{I}=0)$
$\mathrm{O}_{\mathrm{G} \widetilde{\mathrm{G}}}$	-	-	-	-	-	\checkmark

- Each UV model generates a specific pattern of $D=6$ operators: $\tau \rightarrow \mu \pi \pi$ very interesting probe to discriminate them \square For these need to know the FFs!

$\tau \rightarrow \mu(\mathrm{e}) \pi \pi$ decays

- $\quad \tau \rightarrow \mu(\mathrm{e}) \pi \pi$ differential decay rate:

$$
\begin{aligned}
\frac{d \Gamma\left(\tau \rightarrow \mu \pi^{+} \pi^{-}\right)}{d s}= & \frac{\left(s-4 m_{\pi}^{2}\right)^{1 / 2}\left(m_{\tau}^{2}-s\right)^{2}}{1536 \pi^{3} \Lambda^{4} m_{\tau} s^{5 / 2}} \\
& \times\left\{3 s^{2} G_{F}^{2}\left|\mathrm{Q}_{\mathrm{L}}(s)\right|^{2}-4\left(4 m_{\pi}^{2}-s\right)\left|F_{V}(s)\right|^{2}\left[4 \pi \alpha_{\mathrm{em}}\left(2 m_{\tau}^{2}+s\right)\left|\mathrm{C}_{\mathrm{DL}}\right|^{2}\right.\right. \\
& \left.+s\left(\mathrm{C}_{\mathrm{VL}}^{\mathrm{d}}-\mathrm{C}_{\mathrm{VL}}^{u}\right)\left(12 \sqrt{\pi \alpha_{\mathrm{em}}} \mathrm{C}_{\mathrm{DL}}+\frac{\left(m_{\tau}^{2}+2 s\right)}{m_{\tau}^{2}}\left(\mathrm{C}_{\mathrm{VL}}^{\mathrm{d}}-\mathrm{C}_{\mathrm{VL}}^{u}\right)\right)\right] \\
& +(\mathrm{L} \rightarrow \mathrm{R})\} . \quad \mathrm{Q}_{\mathrm{L}}(s)=\left(\theta_{\pi}(s)-\Gamma_{\pi}(s)-\Delta_{\pi}(s)\right) \mathrm{C}_{\mathrm{GL}}+\Delta_{\pi}(s) \mathrm{C}_{\mathrm{sL}}^{\mathrm{s}}+\Gamma_{\pi}(s)\left(\mathrm{C}_{\mathrm{SL}}^{u}+\mathrm{C}_{\mathrm{SL}}^{d}\right)
\end{aligned}
$$

- 4 form factors to be determined:
- Vector: $\left\langle\pi^{+}\left(p_{\pi^{+}}\right) \pi^{-}\left(p_{\pi^{-}}\right)\right| \frac{1}{2}\left(\bar{u} \gamma^{\alpha} u-\bar{d} \gamma^{\alpha} d\right)|0\rangle \equiv F_{V}(s)\left(p_{\pi^{+}}-p_{\pi^{-}}\right)^{\alpha}$
- Scalars: $\left\langle\pi^{+} \pi^{-}\right| m_{u} \bar{u} u+m_{d} \bar{d} d|0\rangle \equiv \Gamma_{\pi}(s),\left\langle\pi^{+} \pi^{-}\right| m_{s} \bar{s} s|0\rangle \equiv \Delta_{\pi}(s)$
- Gluonic: $\left\langle\pi^{+} \pi^{-}\right| \theta_{\mu}^{\mu}|0\rangle \equiv \theta_{\pi}(s)$ with $\theta_{\mu}^{\mu}=-9 \frac{\alpha_{s}}{8 \pi} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\sum_{q=u, d, s} m_{q} \bar{q} q$
- Recent progress in the determination of the form factors using dispersive techniques

1.3 On the interest of using Dispersion Relations

- If $\mathrm{E}>1 \mathrm{GeV}$: ChPT not valid anymore to describe dynamics of the process
\square Resonances appear:
- For $\pi \pi$: $I=1: \rho(770), \rho(1450), \rho(1700), \ldots, I=0$: " $\sigma(\sim 500) ", f_{0}(980), \ldots$
- For $\mathrm{K} \pi: I=1: \mathrm{K}^{*}(892), \mathrm{K}^{*}(1410), \mathrm{K}^{*}(1680), \ldots, I=0:$ "K(~800)", \ldots
$\mathrm{K} \pi$ vector form factor:

$K \pi$ scalar form factor:
No obvious dominance of a resonance

1.3 On the interest of using Dispersion Relations

- If $\mathrm{E}>1 \mathrm{GeV}$: ChPT not valid anymore to describe dynamics of the process

Resonances appear:

- For $\pi \pi$: $I=1: \rho(770), \rho(1450), \rho(1700), \ldots, I=0: " \sigma(\sim 500) ", f_{0}(980), \ldots$
- For $\mathrm{K} \pi: I=1: \mathrm{K}^{*}(892), \mathrm{K}^{*}(1410), \mathrm{K}^{*}(1680), \ldots, \mathrm{I}=0$: "K(~800)", \ldots
- With Dispersion Relation:
- no need for making assumptions of a dominance of resonances
 directly given by the parametrization, phase shifts taken as inputs
- Parametrization valid in a large range of energy:
\square analyse several processes simultanously where the same quantity: FFs, amplitude appear: Ex: K_{13} decays, $\tau \rightarrow K \pi \nu_{\tau}$
$\mathrm{K} \pi$ scalar form factor:
No obvious dominance of a resonance

Extraction of \mathbf{V}_{us}

- Decay rate master formula

$$
f_{+}(0)=0.9661(32)
$$

$$
f_{+}(0)\left|V_{u s}\right|=0.2141 \pm 0.0014_{I_{K}} \pm 0.0021_{\exp }
$$

$$
\left|V_{u s}\right|=0.2216 \pm 0.0027
$$

- Preliminary results :

	$\tau \rightarrow K \pi \nu_{\tau} \& K_{\ell 3}$ Belle	$\tau \rightarrow K \pi \nu_{\tau} \& K_{\ell 3}$ SuperB
$\ln C$	0.20193 ± 0.00892	0.20034 ± 0.00557
$\lambda_{0}^{\prime} \times 10^{3}$	13.139 ± 0.965	13.851 ± 0.592
$m_{K^{*}}[\mathrm{MeV}]$	892.09 ± 0.22	892.01 ± 0.21
$\Gamma_{K^{*}}[\mathrm{MeV}]$	46.287 ± 0.417	46.494 ± 0.436
$m_{K^{*}}[\mathrm{MeV}]$	1292.5 ± 47.2	1259.8 ± 27.2
$\Gamma_{K^{*^{\prime}}}[\mathrm{MeV}]$	171.64 ± 234.65	205.41 ± 10.27
β	-0.0204 ± 0.0289	-0.0350 ± 0.0229
$\lambda_{+}^{\prime} \times 10^{3}$	25.714 ± 0.332	25.655 ± 0.268
$\lambda_{+}^{\prime \prime} \times 10^{3}$	1.1988 ± 0.0313	1.2176 ± 0.0089
$\chi^{2} /$ d.o.f	$59.7 / 67$	$566.5 / 67$
I_{K}^{τ}	0.7655 ± 0.0416	0.7857 ± 0.0105
$f_{+}(0) V_{\text {us }}$	0.2134 ± 0.0061	0.21103 ± 0.0037

Very accurate determination of $K^{*}(892)$!

3.1 Application 1: $K \pi$ form factors and $V_{u s}$

- Master formula for $\tau \rightarrow \mathrm{K} \pi \nu_{\tau}$:

$$
\begin{array}{|c}
\hline \Gamma\left(\tau \rightarrow \bar{K} \pi \nu_{\tau}[\gamma]\right)=\frac{\boldsymbol{G}_{F}^{2} \boldsymbol{m}_{\tau}^{5}}{\mathbf{9 6} \boldsymbol{\pi}^{3}} C_{K}^{2} S_{E W}^{\tau}\left|V_{u s}\right|^{2}\left|f_{+}^{K^{0} \pi^{-}}(0)\right|_{K_{K}}^{2} I^{\tau}\left(\mathbf{1}+\delta_{\mathrm{EM}}^{K \tau}+\tilde{\delta}_{\mathrm{SU}(2)}^{K \pi}\right)^{2} \\
I_{K}^{\tau}=\int d s F\left(s, \bar{f}_{+}(s), \bar{f}_{0}(s)\right)
\end{array}
$$

Hadronic matrix element: Crossed channel from $\mathrm{K} \rightarrow \pi \mathrm{I} \mathrm{V}_{\mathrm{I}}$

$$
\begin{aligned}
& \left.\langle\mathrm{K} \pi| \overline{\mathbf{s}} \gamma_{\mu} \mathrm{u}|\mathbf{0}\rangle=\left[\left(p_{K}-p_{\pi}\right)_{\mu}+\frac{\Delta_{K \pi}}{s}\left(p_{K}+p_{\pi}\right)_{\mu}\right]\right]_{+} f_{+}(s)-\frac{\Delta_{K \pi}}{s}\left(p_{K}+p_{\pi}\right)_{\mu} f_{0}(s) \\
& \text { with } s=q^{2}=\left(p_{K}+p_{\pi}\right)^{2}, \bar{f}_{0,+}(t)=\frac{f_{0,+}(t)}{f_{+}(\mathbf{0})}
\end{aligned}
$$

Determination of the $K \pi$ FFs: Dispersive representation

Bernard, Boito, E.P.'11

- $\overline{\boldsymbol{f}}_{\mathbf{0}}(\boldsymbol{s})$: dispersion relation with 3 subtractions: 2 in $\mathrm{s}=0$ and 1 in $\mathrm{s}=\left(\mathrm{m}_{\mathrm{K}}+\mathrm{m}_{\pi}\right)^{2}$

Callan-Treiman

$$
\bar{f}_{0}(s)=\exp \left[\frac{s}{\Delta_{K \pi}}\left(\ln C+\left(s-\Delta_{K \pi}\right)\left(\frac{\ln C}{\Delta_{K \pi}}-\frac{\lambda_{0}^{\prime}}{m_{\pi}^{2}}\right)+\frac{\Delta_{K \pi} s\left(s-\Delta_{K \pi}\right)}{\pi} \int_{\left(m_{K}+m_{\pi}\right)^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 2}} \frac{\phi_{0}\left(s^{\prime}\right)}{\left(s^{\prime}-\Delta_{K \pi}\right)\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

- $\overline{\boldsymbol{f}}_{+}(\boldsymbol{s})$: dispersion relation with 3 subtractions in $\mathrm{s}=0$ Boito, Escribano, Jamin'09,'10

$$
\bar{f}_{+}(s)=\exp \left[\lambda_{+}^{\prime} \frac{s}{m_{\pi}^{2}}+\frac{1}{2}\left(\lambda_{+}^{\prime \prime}-\lambda_{+}^{\prime 2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2}+\frac{s^{3}}{\pi} \int_{\left(m_{K}+m_{\pi}\right)^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 3}} \frac{\phi_{+}\left(s^{\prime}\right)}{\left(s^{\prime} f s-i \varepsilon\right)}\right]
$$

Extracted from a model including 2 resonances $K^{*}(892)$ and $K^{*}(1414)$ Jamin, Pich, Portolés'08

Fit to the $\tau \rightarrow \mathbf{K} \pi V_{\tau}$ decay data $+\mathbb{K}_{13}$ constraints

Bernard, Boito, E.P.'11

QCHSXI, September 11, 2014

Determination of the $K \pi$ FFs: Dispersive representation

- Model for $\phi_{+}(\mathrm{s})$:

$$
\begin{array}{|c}
\tilde{f}_{+}(s)=\left[\frac{m_{K^{*}}^{2}-\kappa_{K^{*}}\left(\operatorname{Re} \tilde{H}_{K \pi}(0)+\operatorname{Re} \tilde{H}_{K_{\eta}}(0)\right)+\beta s}{D\left(m_{K^{*}}, \Gamma_{K^{*}}\right)}-\frac{\beta s}{D\left(m_{K^{*}}, \Gamma_{K^{*}}\right)}\right] \\
K^{*}(892)
\end{array}
$$

with $D\left(m_{n}, \Gamma_{n}\right)=m_{n}^{2}-s-\kappa_{n} \sum \operatorname{Re} \tilde{H}-i m_{n} \Gamma_{n}(s)$

$$
\leadsto \quad \tan \phi_{+} \equiv \tan \delta_{K \pi}^{P, 1 / 2}=\frac{\operatorname{Im} \tilde{f}_{+}(s)}{\operatorname{Re} \tilde{f}_{+}(s)}
$$

- Preliminary results :

	$\tau \rightarrow K \pi \nu_{\tau} \& K_{\ell 3}$ Belle	$\tau \rightarrow K \pi \nu_{\tau} \& K_{\ell 3}$ SuperB
$\ln C$	0.20193 ± 0.00892	0.20034 ± 0.00557
$\lambda_{0}^{\prime} \times 10^{3}$	13.139 ± 0.965	13.851 ± 0.592
$m_{K^{*}}[\mathrm{MeV}]$	892.09 ± 0.22	892.01 ± 0.21
$\Gamma_{K^{*}}[\mathrm{MeV}]$	46.287 ± 0.417	46.494 ± 0.436
$m_{K^{*}}[\mathrm{MeV}]$	1292.5 ± 47.2	1259.8 ± 27.2
$\Gamma_{K^{*^{\prime}}}[\mathrm{MeV}]$	171.64 ± 234.65	205.41 ± 10.27
β	-0.0204 ± 0.0289	-0.0350 ± 0.0229
$\lambda_{+}^{\prime} \times 10^{3}$	25.714 ± 0.332	25.655 ± 0.268
$\lambda_{+}^{\prime \prime} \times 10^{3}$	1.1988 ± 0.0313	1.2176 ± 0.0089
$\chi^{2} /$ d.o.f	$59.7 / 67$	$566.5 / 67$
I_{K}^{τ}	0.7655 ± 0.0416	0.7857 ± 0.0105
$f_{+}(0) V_{\text {us }}$	0.2134 ± 0.0061	0.21103 ± 0.0037

Very accurate determination of $K^{*}(892)$!

Extraction of \mathbf{V}_{us}

- Decay rate master formula

$$
\Gamma\left(\tau \rightarrow \bar{K} \pi v_{\tau}[\gamma]\right)=\frac{\boldsymbol{G}_{F}^{2} \boldsymbol{m}_{\tau}^{5}}{\mathbf{9 6} \pi^{3}} C_{K}^{2} S_{E W}^{\tau}\left|V_{u S}\right|^{2}\left|f_{+}^{K^{0} \pi^{-}}(0)\right|^{2} I_{K}^{\tau}\left(1+\delta_{\mathrm{EM}}^{K \tau}+\tilde{\delta}^{K \pi} /(2)\right)^{2}
$$

$$
f_{+}(\mathbf{0})=\mathbf{0 . 9 6 6 1}(\mathbf{3 2}) \quad F L A G^{\prime} 13
$$

$$
f_{+}(0)\left|V_{u s}\right|=0.2141 \pm 0.0014_{I_{K}} \pm 0.0021_{\exp }
$$

$$
\left|V_{u s}\right|=0.2216 \pm 0.0027
$$

- Result of fit to $\mathrm{K}_{13}+\tau \rightarrow \mathrm{K} \pi \nu_{\tau}$ and $\mathrm{K} \pi$ scattering data including inelasticities in the dispersive FFs
\qquad

$$
f_{+}(0)\left|V_{u s}\right|=0.2163 \pm 0.0014
$$

1.1 Definitions

- η decay: $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

$$
\left\langle\pi^{+} \pi^{-} \pi_{\text {out }}^{0} \mid \eta\right\rangle=i(2 \pi)^{4} \delta^{4}\left(p_{\eta}-p_{\pi^{+}}-p_{\pi^{-}}-p_{\pi^{0}}\right) A(s, t, u)
$$

- Mandelstam variables $s=\left(p_{\pi^{+}}+p_{\pi^{-}}\right)^{2}, t=\left(p_{\pi^{-}}+p_{\pi^{0}}\right)^{2}, u=\left(p_{\pi^{0}}+p_{\pi^{+}}\right)^{2}$ $\boldsymbol{s}+\boldsymbol{t}+\boldsymbol{u}=\boldsymbol{M}_{\eta}^{2}+\boldsymbol{M}_{\boldsymbol{\pi}^{0}}^{2}+\mathbf{2} \boldsymbol{M}_{\boldsymbol{\pi}^{+}}^{2} \equiv \mathbf{3} s_{\mathbf{0}} \quad \square$ only two independent variables
- Neutral channel: $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$:

$$
\bar{A}(s, t, u)=A(s, t, u)+A(t, u, s)+A(u, s, t)
$$

2.5 Subtraction constants

- As we have seen, only Dalitz plots are measured, unknown normalization!

$$
A(s, t, u)=-\frac{1}{Q^{2}} \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{3 \sqrt{3} F_{\pi}^{2}} M(s, t, u)
$$

To determine Q , one needs to know the normalization
\Rightarrow For the normalization one needs to use ChPT

- The subtraction constants are

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

2.5 Subtraction constants

- As we have seen, only Dalitz plots are measured, unknown normalization!

$$
A(s, t, u)=-\frac{1}{Q^{2}} \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{3 \sqrt{3} F_{\pi}^{2}} M(s, t, u)
$$

To determine Q, one needs to know the normalization
\Rightarrow For the normalization one needs to use ChPT

- The subtraction constants are

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

Only 6 coefficients are of physical relevance

2.5 Subtraction constants

- The subtraction constants are

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

Only 6 coefficients are of physical relevance

- They are determined from
- Matching to one loop ChPT $\Rightarrow \delta_{0}=\gamma_{1}=0$
- Combine ChPT with fit to the data $\Rightarrow \boldsymbol{\delta}_{0}$ and $\boldsymbol{\gamma}_{1}$ are determined from the data
- Matching to one loop ChPT : Taylor expand the dispersive M, Subtraction constants \Leftrightarrow Taylor coefficients
- Important : Adler zero should be reproduced! \Rightarrow Can be used to constrain the fit

Results for the fit of the $\pi \pi$ vector form factor

$\lambda_{V}^{\prime} \times 10^{3}$	36.7 ± 0.2
$\lambda_{V}^{\prime \prime} \times 10^{3}$	3.12 ± 0.04
$\tilde{M}_{\rho}[\mathrm{MeV}]$	833.9 ± 0.6
$\tilde{\Gamma}_{\rho}[\mathrm{MeV}]$	198 ± 1
$\tilde{M}_{\rho^{\prime}}[\mathrm{MeV}]$	1497 ± 7
$\tilde{\Gamma}_{\rho^{\prime}}[\mathrm{MeV}]$	785 ± 51
$\tilde{M}_{\rho^{\prime \prime}}[\mathrm{MeV}]$	1685 ± 30
$\tilde{\Gamma}_{\rho^{\prime \prime}}[\mathrm{MeV}]$	800 ± 31
α^{\prime}	0.173 ± 0.009
ϕ^{\prime}	-0.98 ± 0.11
$\alpha^{\prime \prime}$	0.23 ± 0.01
$\phi^{\prime \prime}$	2.20 ± 0.05
$\chi^{2} /$ d.o.f	$38 / 52$

Details on the parametrization of the phase

- Model for the phase:

$$
\tan \phi_{V}=\frac{\operatorname{Im} \tilde{F}_{V}(s)}{\operatorname{Re} \tilde{F}_{V}(s)}
$$

Guerrero, Pich'98, Pich, Portolés'08

$$
\begin{aligned}
& \tilde{F}_{V}(s)=\frac{\tilde{M}_{\rho}^{2}+\left(\alpha^{\prime} e^{i \phi^{\prime}}+\alpha^{\prime \prime} e^{i \phi^{\prime \prime}}\right) s}{\tilde{M}_{\rho}^{2}-s+\kappa_{\rho} \operatorname{Re}\left[A_{\pi}(s)+\frac{1}{2} A_{K}(s)\right]-i \tilde{M}_{\rho} \tilde{\Gamma}_{\rho}(s)}-\frac{\alpha^{\prime} e^{i \phi^{\prime}} s}{D\left(\tilde{M}_{\rho^{\prime}}, \tilde{\Gamma}_{\rho^{\prime}}\right)}-\frac{\alpha^{\prime \prime} e^{i \phi^{\prime \prime}} s}{D\left(\tilde{M}_{\rho^{\prime \prime}}, \tilde{\Gamma}_{\rho^{\prime \prime}}\right)} \\
& \text { with } \quad D\left(\tilde{M}_{R}, \tilde{\Gamma}_{R}\right)=\tilde{M}_{R}-s+\kappa_{R} \operatorname{Re} A_{\pi}(s)-i \tilde{M}_{R} \tilde{\Gamma}_{R}(s) \\
& \text { and } \tilde{\Gamma}_{R}(s)=\tilde{\Gamma}_{R} \frac{s}{\tilde{M}_{R}^{2}} \frac{\left(\sigma_{\pi}^{3}(s)+1 / 2 \sigma_{K}^{3}(s)\right)}{\left(\sigma_{\pi}^{3}\left(\tilde{M}_{R}^{2}\right)+1 / 2 \sigma_{K}^{3}\left(\tilde{M}_{R}^{2}\right)\right)} \\
& \kappa_{R}(s)=\frac{\tilde{\Gamma}_{R}}{\tilde{M}_{R}} \frac{s}{\pi\left(\sigma_{\pi}^{3}\left(\tilde{M}_{R}^{2}\right)+1 / 2 \sigma_{K}^{3}\left(\tilde{M}_{R}^{2}\right)\right)}
\end{aligned}
$$

Details on the fit

- The minimized quantity:

$$
\chi^{2}=\sum_{i=1}^{62}\left(\frac{\left(\left|F_{V}(s)\right|^{2}\right)_{i}^{\text {theo }}-\left(\left|F_{V}(s)\right|^{2}\right)_{i}^{\exp }}{\left.\sigma_{\left(\left|F_{V}(s)\right|^{2}\right)_{i}^{\exp }}\right)^{2}+\left(\frac{\lambda_{V}^{\prime}-\lambda_{V}^{\prime}}{\sigma_{\lambda_{V}^{\prime}} \mathrm{sr}}\right)^{2}+\left(\frac{\alpha_{2 v}-\alpha_{2 v}^{\mathrm{sr}}}{\sigma_{\alpha_{2 v}}}\right)^{2},{ }^{\mathrm{sr}},}\right.
$$

- 2 sum-rules are added such that $\boldsymbol{F}_{V}(\boldsymbol{s}) \boldsymbol{\rightarrow 1 / s}$ Brodsky \& Lepage

$$
\begin{aligned}
& \lambda_{V}^{\prime \mathrm{sr}}=\frac{m_{\pi}^{2}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\phi_{V}\left(s^{\prime}\right)}{s^{\prime 2}} \\
& \left(\lambda_{V}^{\prime \prime}-\lambda_{V}^{\prime 2}\right)^{\mathrm{sr}}=\frac{2 m_{\pi}^{4}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\phi_{V}\left(s^{\prime}\right)}{s^{\prime 3}} \equiv \alpha_{2 v}^{\mathrm{sr}}
\end{aligned}
$$

Determination of the polynomial

- General solution

$$
\binom{F_{\pi}(s)}{\frac{2}{\sqrt{3}} F_{K}(s)}=\left(\begin{array}{cc}
C_{1}(s) & D_{1}(s) \\
C_{2}(s) & D_{2}(s)
\end{array}\right)\binom{P_{F}(s)}{Q_{F}(s)}
$$

- Fix the polynomial with requiring $\boldsymbol{F}_{\boldsymbol{p}}(\boldsymbol{s}) \rightarrow \mathbf{1} / \boldsymbol{s}$ (Brodsky \& Lepage) + ChPT:

Feynman-Hellmann theorem: $\square \Gamma_{P}(0)=\left(m_{u} \frac{\partial}{\partial m_{u}}+m_{d} \frac{\partial}{\partial m_{d}}\right) M_{P}^{2}$

$$
\Delta_{P}(0)=\left(m_{s} \frac{\partial}{\partial m_{s}}\right) M_{P}^{2}
$$

- At LO in ChPT:

$$
\begin{aligned}
& M_{\pi^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{d}}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right) \square
\end{aligned}
$$

$$
\begin{aligned}
P_{\Gamma}(s) & =\Gamma_{\pi}(0)=M_{\pi}^{2}+\cdots \\
Q_{\Gamma}(s) & =\frac{2}{\sqrt{3}} \Gamma_{K}(0)=\frac{1}{\sqrt{3}} M_{\pi}^{2}+\cdots \\
P_{\Delta}(s) & =\Delta_{\pi}(0)=0+\cdots \\
Q_{\Delta}(s) & =\frac{2}{\sqrt{3}} \Delta_{K}(0)=\frac{2}{\sqrt{3}}\left(M_{K}^{2}-\frac{1}{2} M_{\pi}^{2}\right)+\cdots
\end{aligned}
$$

Determination of the polynomial

- General solution

$$
\binom{F_{\pi}(s)}{\frac{2}{\sqrt{3}} F_{K}(s)}=\left(\begin{array}{cc}
C_{1}(s) & D_{1}(s) \\
C_{2}(s) & D_{2}(s)
\end{array}\right)\binom{P_{F}(s)}{Q_{F}(s)}
$$

- At LO in ChPT:

$$
M_{\pi^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{d}}\right) B_{0}+O\left(m^{2}\right)
$$

$$
P_{\Gamma}(s)=\Gamma_{\pi}(0)=M_{\pi}^{2}+\cdots
$$

$$
M_{K^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right)
$$

$$
Q_{\Gamma}(s)=\frac{2}{\sqrt{3}} \Gamma_{K}(0)=\frac{1}{\sqrt{3}} M_{\pi}^{2}+\cdots
$$

$$
M_{K^{0}}^{2}=\left(m_{\mathrm{d}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right)
$$

$$
P_{\Delta}(s)=\Delta_{\pi}(0)=0+\cdots
$$

$$
Q_{\Delta}(s)=\frac{2}{\sqrt{3}} \Delta_{K}(0)=\frac{2}{\sqrt{3}}\left(M_{K}^{2}-\frac{1}{2} M_{\pi}^{2}\right)+\cdots
$$

- Problem: large corrections in the case of the kaons! \Rightarrow Use lattice QCD to determine the SU(3) LECs

$$
\begin{aligned}
& \Gamma_{K}(0)=(0.5 \pm 0.1) M_{\pi}^{2} \\
& \Delta_{K}(0)=1_{-0.05}^{+0.15}\left(M_{K}^{2}-1 / 2 M_{\pi}^{2}\right)
\end{aligned}
$$

Determination of the polynomial

- General solution

$$
\binom{F_{\pi}(s)}{\frac{2}{\sqrt{3}} F_{K}(s)}=\left(\begin{array}{cc}
C_{1}(s) & D_{1}(s) \\
C_{2}(s) & D_{2}(s)
\end{array}\right)\binom{P_{F}(s)}{Q_{F}(s)}
$$

- For θ_{p} enforcing the asymptotic constraint is not consistent with ChPT The unsubtracted DR is not saturated by the 2 states

Relax the constraints and match to ChPT

$$
\begin{aligned}
P_{\theta}(s) & =2 M_{\pi}^{2}+\left(\dot{\theta}_{\pi}-2 M_{\pi}^{2} \dot{C}_{1}-\frac{4 M_{K}^{2}}{\sqrt{3}} \dot{D}_{1}\right) s \\
Q_{\theta}(s) & =\frac{4}{\sqrt{3}} M_{K}^{2}+\frac{2}{\sqrt{3}}\left(\dot{\theta}_{K}-\sqrt{3} M_{\pi}^{2} \dot{C}_{2}-2 M_{K}^{2} \dot{D}_{2}\right) s
\end{aligned}
$$

