

Dispersion Relations: Applications to meson interactions

Emilie Passemar Indiana University/Jefferson Laboratory

Future Directions in Spectroscopy Analysis Thomas Jefferson Accelerator Facility, Newport News, November 18, 2014

- 1. Introduction and Motivation
- 2. Dispersion Relations: the method
- 3. Applications
 - Two body: $\pi\pi$ and $K\pi$ form factors

Talk by L. Dai

- Three body: $\eta \to 3\pi, K_{I4}$ decays

Talk by I. Danilkin, P. Guo

4. Conclusion and Outlook

1. Introduction and Motivation

1.1 Hadronic Physics

- Hadronic Physics: Interactions of quarks at low energy
 - Precise tests of the Standard Model:

 \implies Extraction of V_{us}, α_s , light quark masses...

- Look for physics beyond the Standard Model: High precision at low energy as a key to new physics?
- Look for exotics, new hadronic states

1.2 Tools

- Hadronic Physics: Interactions of quarks at low energy
- Low energy (Q <~1 GeV), long distance: α_S becomes large !
 Non-perturbative QCD
- A perturbative expansion in the usual sense fails
- Use of alternative approaches, expansions...: e.g.
 - Effective field theory
 Ex: ChPT for light quarks
 - Dispersion relations
 - Numerical simulations on the lattice

1.3 On the interest of using Dispersion Relations

- If E > 1 GeV: ChPT not valid anymore to describe dynamics of the process
 Resonances appear :
 - For ππ: I=1: ρ(770), ρ(1450), ρ(1700), ..., I=0: "σ(~500)", f₀(980),...
 - For Kπ: *I*=1: K*(892), K*(1410), K*(1680), …, *I*=0: "K(~800)", …
- Two-body case: form factor: $H_{\mu} = \langle PP | (V_{\mu} A_{\mu}) e^{iL_{QCD}} | 0 \rangle = (Lorentz struct.)^{i}_{\mu} F_{i}(s)$

1.3 On the interest of using Dispersion Relations

- With Dispersion Relations:
 - no need for making assumptions of a dominance of resonances

directly given by the parametrization, phase shifts taken as inputs

Parametrization valid in a large range of energy: analyse several processes simultanously where the same quantity: FFs, amplitude appear

1.3 On the interest of using Dispersion Relations

Allow to take into account large final state interactions

Ex: $\eta \rightarrow 3\pi$ LO: Osborn. Wallace'70 Slow convergence of the chiral series: NLO: Gasser & Leutwyler'85 $\Gamma_{\eta \to 3\pi} = (66 + 94 + 138 + ...) eV = (300 \pm 12) eV$ NNLO: Bijnens & Ghorbani'07 **PDG'14** NLO NNLO Large $\pi\pi$ final state interactions

• Need to use **Dispersion Relations** to improve on the convergence of ChPT!

1.4 Strategy

- Build a parametrization to analyse the data relying on: ۲
 - Physical properties of the amplitude:
 - Analyticity
 - Unitarity
 - Crossing symmetry
 - Statisfies Chiral constraints at low energy
 - Statisfies the asymptotic behaviour dictated by perturbative QCD

Dispersion Relations

Aim: have the best physically motivated and the more model independent ۲ parametrization for the hadronic part of the process under study: amplitude or form factor to analyse the data accurately

More precise extraction of form factors or amplitude

2. Dispersion Relations: the method

- Two-body case: form factor: $H_{\mu} = \langle PP | (V_{\mu} A_{\mu}) e^{iL_{QCD}} | 0 \rangle = (Lorentz struct.)_{\mu}^{i} F_{i}(s)$
- Unitarity is the discontinuity of the form factor is known

$$\frac{1}{2i}disc \ F_{PP}(s) = \operatorname{Im} F_{PP}(s) = \sum_{n} F_{PP \to n} \left(T_{n \to PP} \right)^{*}$$

- Two-body case: form factor: $H_{\mu} = \langle PP | (V_{\mu} A_{\mu}) e^{iL_{QCD}} | 0 \rangle = (Lorentz struct.)_{\mu}^{i} F_{i}(s)$
- Unitarity the discontinuity of the form factor is known

$$\frac{1}{2i} \operatorname{disc} F_{PP}(s) = \operatorname{Im} F_{PP}(s) = \sum_{n} F_{PP \to n} \left(T_{n \to PP} \right)^{*}$$

- Two-body case: form factor: $H_{\mu} = \langle PP | (V_{\mu} A_{\mu}) e^{iL_{QCD}} | 0 \rangle = (Lorentz struct.)_{\mu}^{i} F_{i}(s)$
- Unitarity the discontinuity of the form factor is known

$$\frac{1}{2i}disc \ F_{pp}(s) = \operatorname{Im} F_{pp}(s) = \sum_{n} F_{pp \to n} \left(T_{n \to Pp} \right)^{*}$$

- Two-body case: form factor: $H_{\mu} = \langle PP | (V_{\mu} A_{\mu}) e^{iL_{QCD}} | 0 \rangle = (Lorentz struct.)_{\mu}^{i} F_{i}(s)$
- Unitarity is the discontinuity of the form factor is known

$$\frac{1}{2i}disc \ F_{PP}(s) = \operatorname{Im} F_{PP}(s) = \sum_{n} F_{PP \to n} \left(\mathbf{T}_{n \to PP} \right)^{*}$$

- Two-body case: form factor: $H_{\mu} = \langle PP | (V_{\mu} A_{\mu}) e^{iL_{QCD}} | 0 \rangle = (Lorentz struct.)_{\mu}^{i} F_{i}(s)$ ٠
- Unitarity is the discontinuity of the form factor is known ٠

$$\frac{1}{2i} \operatorname{disc} F_{PP}(s) = \operatorname{Im} F_{PP}(s) = \sum_{n} F_{PP \to n} \left(\mathbf{T}_{n \to PP} \right)^{*}$$

Only one channel n = PP (elastic region) ٠

$$isc \left[\underbrace{1}_{2i} disc F_{I}(s) = Im F_{I}(s) = F_{I}(s) \sin \delta_{I}(s)e^{-i\delta_{I}(s)} \right]$$

$$Watson's theorem$$

$$PP scattering phase$$
known from experiment 15

 $s = \left(p_{P_{\perp}} + p_{P_{\perp}}\right)^{2}$

2.2 Analyticity: Dispersion Relations

- Knowing the discontinuity of $F \implies$ write a dispersion relation for it
- Cauchy Theorem and Schwarz reflection principle

$$F(s) = \frac{1}{\pi} \oint \frac{F(s')}{s' - s} ds' \implies \frac{1}{2i\pi} \int_{M_{PP}^2}^{\infty} \frac{disc [F(s')]}{s' - s - i\varepsilon} ds'$$

• If *F* does not drop off fast enough for $|s| \rightarrow \infty$ subtract the DR

$$F(s) = P_{n-1}(s) + \frac{s^n}{\pi} \int_{M_{pp}^2}^{\infty} \frac{ds'}{s'^n} \frac{\operatorname{Im}[F(s')]}{(s'-s-i\varepsilon)}$$

 $P_{n-1}(s)$ polynomial

 $s_{th} \equiv M_{PP}^2$

2.2 Analyticity: Dispersion Relations

• Solution: Use analyticity to reconstruct the form factor in the entire space

Omnès function :
$$\Omega_{I}(s) = \exp\left[\frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{\delta_{I}(s')}{s'-s-i\varepsilon}\right]$$

 Polynomial: P_I(s) not known but determined from a matching to experiment or to ChPT at low energy

2.3 Assumptions

• Form factor:
$$F_{I}(s) = \exp\left[\frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{\phi_{I}(s')}{s'-s-i\varepsilon}\right]$$

- Up to the first inelastic threshold (s < s_{in}) : $\phi_I(s) = \delta_I(s)$ elastic phase, known
- In the inelastic region (s \ge s_{in}) phase not known except asymptotic behaviour $\phi_{+,0}(s) \rightarrow \phi_{+,0as}(s) = \pi \quad (\bar{f}_{+,0}(s) \rightarrow 1/s) \quad [Brodsky\&Lepage]$
- Different strategies:
 - Subtract the dispersive integrals to weaken the high-energy contribution not known is subtraction constants to fit to the data
 - Build a model for the phase and fit to the data: done for the Kpi and pipi vector form factors \longrightarrow Data from Belle and BaBar on $\tau \rightarrow \kappa \pi v_{\tau}$ or $\tau \rightarrow \pi \pi v_{\tau}$
 - Conformal mapping to include inelasticities, see talk by I. Danilkin
 - Perform a coupled channel analysis

3. Applications

3.1 Application 1: $\pi\pi$ form factors and probing New physics with Tau LFV

• Constrain new physics operators from low energy decays: ex: $\tau \rightarrow \mu \pi \pi$

• Effective Lagrangian:
$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O^{(6)}_{i} + \dots$$

- Each UV model generates a *specific pattern* of D=6 operators: $\tau \rightarrow \mu \pi \pi$ very interesting probe to discriminate them \longrightarrow For these need to know the FFs!
- 4 form factors :

Emilie Passemar

3.1 Application 1: $\pi\pi$ form factors and probing New physics with Tau LFV Celis, Cirigliano, E.P.'14

Constrain new physics operators from low energy decays: ex: $\tau \rightarrow \mu \pi \pi$

• Effective Lagrangian:
$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Each UV model generates a *specific pattern* of D=6 operators: $\tau \rightarrow \mu \pi \pi$ very interesting probe to discriminate them - For these need to know the FFs!
- 4 form factors :

Determination of $F_V(s)$

Celis, Cirigliano, E.P.'14

• Vector form factor

Precisely known from experimental measurements

$$e^+e^- \rightarrow \pi^+\pi^-$$
 and $\tau^- \rightarrow \pi^0\pi^-\nu_{\tau}$ (isospin rotation)

> Theoretically: Dispersive parametrization for $F_V(s)$

Guerrero, Pich'98, Pich, Portolés'08 Gomez, Roig'13

$$F_{V}(s) = \exp\left[\lambda_{V}^{\prime}\frac{s}{m_{\pi}^{2}} + \frac{1}{2}\left(\lambda_{V}^{\prime\prime} - \lambda_{V}^{\prime2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{ds'}{s'^{3}}\frac{\phi_{V}(s')}{\left(s' + s - i\varepsilon\right)}\right]$$

Extracted from a model including 3 resonances $\rho(770)$, $\rho'(1465)$ and $\rho''(1700)$ fitted to the data

> Subtraction polynomial + phase determined from a *fit* to the Belle data $\tau^- \rightarrow \pi^0 \pi^- v_{\tau}$

Determination of $F_V(s)$

Celis, Cirigliano, E.P.'14

Determination of $F_V(s)$ thanks to precise measurements from Belle!

Emilie Passemar

Determination of the $K\pi$ FFs: Dispersive representation

Celis, Cirigliano, E.P.'14

• Model for $\phi_{\vee}(s)$:

Guerrero, Pich'98, Pich, Portolés'08 Gomez, Roig'13

$$\tilde{F}_V(s) = \frac{\tilde{M}_{\rho}^2 + \left(\alpha' e^{i\phi'} + \alpha'' e^{i\phi''}\right)s}{\tilde{M}_{\rho}^2 - s + \kappa_{\rho} \operatorname{Re}\left[A_{\pi}(s) + \frac{1}{2}A_K(s)\right] - i\tilde{M}_{\rho}\tilde{\Gamma}_{\rho}(s)} - \frac{\alpha' e^{i\phi'}s}{D(\tilde{M}_{\rho'}, \tilde{\Gamma}_{\rho'})} - \frac{\alpha'' e^{i\phi''}s}{D(\tilde{M}_{\rho''}, \tilde{\Gamma}_{\rho''})}$$

with
$$D(\tilde{M}_R, \tilde{\Gamma}_R) = \tilde{M}_R - s + \kappa_R \text{Re}A_{\pi}(s) - i\tilde{M}_R \tilde{\Gamma}_R(s)$$
.

$$\tan \phi_V \equiv \tan \delta^P_{\pi\pi} = \frac{\operatorname{Im} \tilde{F}_V(s)}{\operatorname{Re} \tilde{F}_V(s)}$$

• Determine the resonance parameters by finding the poles in the complex plane

Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

Celis, Cirigliano, E.P.'14

- No experimental data for the other FFs → Coupled channel analysis up to √s~1.4 GeV Donoghue, Gasser, Leutwyler'90 Inputs: I=0, S-wave ππ and KK data Moussallam'99 Daub et al'13
- Unitarity:

Emilie Passemar

Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

Celis, Cirigliano, E.P.'14

• Inputs : $\pi\pi \rightarrow \pi\pi$, KK

- A large number of theoretical analyses *Descotes-Genon et al'01, Kaminsky et al'01, Buttiker et al'03, Garcia-Martin et al'09, Colangelo et al.'11* and all agree
- 3 inputs: $\delta_{\pi}(s)$, $\delta_{K}(s)$, η from *B. Moussallam* \implies *reconstruct T matrix* Emilie Passemar

Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

Celis, Cirigliano, E.P.'14

• General solution:

• Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions X(s) = C(s), D(s)

$$\operatorname{Im} X_n^{(N+1)}(s) = \sum_{m=1}^2 \operatorname{Re} \left\{ T_{nm}^* \sigma_m(s) X_m^{(N)} \right\} \longrightarrow \operatorname{Re} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^\infty \frac{ds'}{s'-s} \operatorname{Im} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_$$

Emilie Passemar

Dispersion relations: Model-independent method, based on first principles that extrapolates ChPT based on data

Discriminating power of $\tau \rightarrow \mu(e)\pi\pi$ decays

Celis, Cirigliano, E.P.'14

Discriminating power of $\tau \rightarrow \mu(e)\pi\pi$ decays

3.2 Application 2: $\eta \rightarrow 3\pi$ and light quark masses

- $\eta \rightarrow 3\pi$: decay forbiden by isospin symmetry Clean access to $(m_u - m_d)$
- Dispersion relations and 3 body final state rescattering allow to improve on the ChPT bad convergence The amplitude has all the good properties of analyticity + unitarity + crossing symmetry Improve on Breit-Wigner models

$$\langle \pi^{+}\pi^{-}\pi^{0}_{out} | \eta \rangle = i(2\pi)^{4} \delta^{4}(p_{\eta} - p_{\pi^{+}} - p_{\pi^{-}} - p_{\pi^{0}}) A(s,t,u)$$

$$\left(Q^2 \equiv \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}\right)$$

G. Colangelo, S. Lanz,

 p_{π^+}

H. Leutwyler, E.P.

 p_n

$$A(s,t,u) = -\frac{1}{Q^2} \frac{M_K^2}{M_\pi^2} \frac{M_K^2 - M_\pi^2}{3\sqrt{3}F_\pi^2} M(s,t,u) \qquad \Longrightarrow \qquad \left[\Gamma_{\eta \to 3\pi} \propto \int \left| A(s,t,u) \right|^2 \propto Q^{-4} \right]$$

• Compute the normalized amplitude M(s,t,u) with the best accuracy

Emilie Passemar

The Method

G. Colangelo, S. Lanz, H. Leutwyler , E.P.

• **Decomposition** of the amplitude as a function of $\pi\pi$ isospin states

 $M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

- $\succ M_I$ isospin / rescattering in two particles
- > Amplitude in terms of S and P waves \implies exact up to NNLO ($\mathcal{O}(p^6)$)
- Main two body rescattering corrections inside M_I
- Unitary relation for M_I(s):

$$\frac{disc \ M_{I}(s) = 2i \left(M_{I}(s) + \hat{M}_{I}(s) \right) \ \sin \delta_{I}(s) e^{-i\delta_{I}(s)} \theta \left(s - 4M_{\pi}^{2} \right)}{right}$$
right-hand cut left-hand cut

G. Colangelo, S. Lanz, *H.* Leutwyler , E.P.

• Unitary relation for M_I(s):

$$\frac{disc \ M_{I}(s) = 2i \ \left(M_{I}(s) + \right) \ \sin \delta_{I}(s) e^{-i\delta_{I}(s)} \theta \left(s - 4M_{\pi}^{2}\right)}{right}$$
right-hand cut

• Right-hand cut only in Omnès problem

$$M_{I}(s) = P_{I}(s) \ \Omega_{I}(s) = \exp\left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s'-s-i\varepsilon)}\right)\right]$$

The Method

G. Colangelo, S. Lanz, *H.* Leutwyler , *E.P.*

• Unitary relation for M_I(s):

$$\frac{disc \ M_{I}(s) = 2i \left(M_{I}(s) + \hat{M}_{I}(s) \right) \sin \delta_{I}(s) e^{-i\delta_{I}(s)} \theta \left(s - 4M_{\pi}^{2} \right)}{\text{right-hand cut}}$$

$$\text{Dispersion relation for the } M_{I}'s$$

$$\frac{M_{I}(s) = \Omega_{I}(s) \left(P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s^{n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| \left(s' - s - i\varepsilon \right)} \right)} \qquad \left[\Omega_{I}(s) = \exp \left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s' - s - i\varepsilon)} \right) \right]$$

Omnès function

M

 *M
 I*(s) singularities in the t and u channels, depend on the other *M
 I*(s) subtract *M
 I*(s) from the partial wave projection of *M*(s,t,u)

 Angular averages of the other functions → Coupled equations
Determination of the Amplitude

G. Colangelo, S. Lanz, *H.* Leutwyler , *E.P.*

• Dispersion relation for the M_I's

$$M_{I}(s) = \Omega_{I}(s) \left(P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| (s' - s - i\varepsilon)} \right) \left[\Omega_{I}(s) = \exp\left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s' - s - i\varepsilon)}\right) \right]$$

Omnès function

 Solve by iterative procedure: Inputs needed : S and P-wave phase shifts of ππ scattering

Determination of the Amplitude

G. Colangelo, S. Lanz, *H.* Leutwyler , *E.P.*

• Dispersion relation for the M_I's

$$M_{I}(s) = \Omega_{I}(s) \left(\frac{P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| (s' - s - i\varepsilon)} \right)}{\left(\Omega_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'(s' - s - i\varepsilon)} \right)} \int_{0}^{\infty} Omnès function$$

- Solve by iterative procedure: Inputs needed : S and P-wave phase shifts of ππ scattering
- Solution depends on *subtraction constants* only
 fitted from experimental results
- Normalisation from matching to ChPT

Experimental measurements : Charged channel

• Charged channel measurements with high statistics from *KLOE* and *WASA* e.g. *KLOE*: ~1.3 x 10⁶ $\eta \rightarrow \pi^+ \pi^- \pi^0$ events from e⁺e⁻ $\rightarrow \phi \rightarrow \eta \gamma$

Experimental measurements : Neutral channel

• Neutral channel measurements with high statistics from *MAMI-B*, *MAMI-C* and *WASA* e.g. *MAMI-C*: ~3 x 10⁶ $\eta \rightarrow 3\pi^0$ events from $\gamma p \rightarrow \eta p$

$$A_n(s,t,u)\Big|^2 = N\left(1+2\alpha Z+6\beta Y\left(X^2-\frac{Y^2}{3}\right)+2\gamma Z^2\right)$$

Extraction of the slope :

 $\left| Z = \frac{2}{3} \sum_{i=1}^{3} \left(\frac{3T_i}{Q_n} - 1 \right) \right|$

Emilie Passemar

 $= X^2 + Y^2$

G. Colangelo, S. Lanz, *H.* Leutwyler , *E.P.*

• Determination of Q from the dispersive approach :

$$\Gamma_{\eta \to \pi^{+}\pi^{-}\pi^{0}} = \frac{1}{Q^{4}} \frac{M_{K}^{4}}{M_{\pi}^{4}} \frac{\left(M_{K}^{2} - M_{\pi}^{2}\right)^{2}}{6912\pi^{3} F_{\pi}^{4} M_{\eta}^{3}} \int_{s_{\min}}^{s_{\max}} ds \int_{u_{-}(s)}^{u_{+}(s)} du \left|M(s, t, u)\right|^{2}}{\int_{r_{\eta \to 3\pi}}^{r} = 300 \pm 12 \text{ eV} \quad PDG'14} \left(Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}}\right)$$

• Determination of α

$$\left|A_n(s,t,u)\right|^2 = N\left(1+2\alpha Z\right)$$

G. Colangelo, S. Lanz, H. Leutwyler , E.P.

Plot of Q versus α :

• All the data give consistent results. The preliminary outcome for Q is intermediate between the lattice result and the one of Kastner and Neufeld.

G. Colangelo, S. Lanz, H. Leutwyler , E.P.

• Plot of Q versus α :

NB: Isospin breaking has not been accounted for

• All our preliminary results give a negative value for α . In particular the result using KLOE data for $\eta \rightarrow \pi^+ \pi^- \pi^0$ is in perfect agreement with the PDG value!

Comparison of results for Q

G. Colangelo, S. Lanz, *H.* Leutwyler , *E.P.*

Emilie Passemar

Comparison of results for α

H. Leutwyler, E.P. $\chi \text{PT} \mathcal{O}(p^4)$ $\chi \text{PT } \mathcal{O}(p^6)$ Kambor et al. Н Kampf et al. • NREFT He-I GAMS-2000 (1984) Crystal Barrel@LEAR (1998) Crystal Ball@BNL (2001) SND (2001) WASA@CELSIUS (2007) WASA@COSY (2008) Crystal Ball@MAMI-B (2009) Crystal Ball@MAMI-C (2009) KLOE (2010) PDG average dispersive, one loop Preliminary dispersive, fit to KLOE -0.06 - 0.04 - 0.02 0.00 0.02 0.04 0.06

Emilie Passemar

G. Colangelo, S. Lanz,

Light quark masses

H. Leutwyler

Smaller values for Q is smaller values for ms/md and mu/md than LO ChPT

4. Conclusion and outlook

4.1 Conclusion

- Look for exotics, new hadronic states:
 — need to know the hadronic background
- In this talk 2 examples :
 - Two body: $\pi\pi$ form factors
 - Three body: $\eta \to 3\pi \text{decays}$
- Use dispersion relations
- Dispersion relations rely on analyticity, unitarity and crossing symmetry
 Rigorous treatment of two and three hadronic final state

- For reaching a high level of precision, theoretical challenges : in the dispersion relation
 - include inelasticities
 - Take isospin breaking and electromagnetic corrections into account

Work in this direction in JPAC

Talk by L. Dai, I. Danilkin, P. Guo, V. Mathieu

- Collaboration with experimentalists to analyse the data efficiently:
 - find the best parametrization to analyse the data
 - take into account systematics etc...
- Apply dispersion relations to other processes:
 - baryons: nucleons, etc
 - > heavy mesons: J/Ψ , D, B decays

5. Back-up

• Model for $\phi_V(s)$:

$$\tilde{F}_V(s) = \frac{\tilde{M}_{\rho}^2 + \left(\alpha' e^{i\phi'} + \alpha'' e^{i\phi''}\right)s}{\tilde{M}_{\rho}^2 - s + \kappa_{\rho} \operatorname{Re}\left[A_{\pi}(s) + \frac{1}{2}A_K(s)\right] - i\tilde{M}_{\rho}\tilde{\Gamma}_{\rho}(s)} - \frac{\alpha' e^{i\phi'}s}{D(\tilde{M}_{\rho'}, \tilde{\Gamma}_{\rho'})} - \frac{\alpha'' e^{i\phi''}s}{D(\tilde{M}_{\rho''}, \tilde{\Gamma}_{\rho''})}$$

with
$$D(\tilde{M}_R, \tilde{\Gamma}_R) = \tilde{M}_R - s + \kappa_R \text{Re}A_{\pi}(s) - i\tilde{M}_R \tilde{\Gamma}_R(s)$$
.

$$\tan \phi_{+} \equiv \tan \delta_{\pi\pi}^{P} = \frac{\operatorname{Im} \tilde{f}_{+}(s)}{\operatorname{Re} \tilde{f}_{+}(s)}$$

Emilie Passemar

3.1 Application 3: $\eta \rightarrow 3\pi$ and light quark masses

• Unitary relation for M_I(s):

$$\frac{disc \ M_{I}(s) = 2i \left(M_{I}(s) + \hat{M}_{I}(s) \right) \sin \delta_{I}(s) e^{-i\delta_{I}(s)} \theta \left(s - 4M_{\pi}^{2} \right)}{\text{right-hand cut}}$$

$$\text{Dispersion relation for the M}_{I}'s$$

$$\frac{M_{I}(s) = \Omega_{I}(s) \left(P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| \left(s' - s - i\varepsilon \right)} \right)} \left[\Omega_{I}(s) = \exp \left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s' - s - i\varepsilon)} \right) \right]$$

- Omnès function
- Inputs needed : S and P-wave phase shifts of $\pi\pi$ scattering

3.1 Application 3: $\eta \rightarrow 3\pi$ and light quark masses

• Unitary relation for M_I(s):

$$\frac{disc \ M_{I}(s) = 2i \left(M_{I}(s) + \hat{M}_{I}(s) \right) \sin \delta_{I}(s) e^{-i\delta_{I}(s)} \theta \left(s - 4M_{\pi}^{2} \right)}{\text{right-hand cut}}$$

right-hand cut left-hand cut
Dispersion relation for the M_I's

$$\frac{M_{I}(s) = \Omega_{I}(s) \left(P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s^{'n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| \left(s' - s - i\varepsilon \right)} \right)} \left[\Omega_{I}(s) = \exp \left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s' - s - i\varepsilon)} \right) \right]$$

Omnès function

Solution depends on *subtraction constants* only solve by iterative procedure + match with experiment

3.1 Dalitz plot distribution of $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

• The amplitude squared along the line t = u :

- Good agreement between theory and experiment

3.2 Z distribution for $\eta \rightarrow \pi^0 \pi^0 \pi^0$ decays

If one wants to fit the data, at this level of precision the e.m. corrections matter
 use the one loop e.m. calculations from *Ditsche, Kubis and Meissner'09*

1.1 Hadronic Physics

- Hadronic Physics: Interactions of quarks at low energy
 - Precise tests of the Standard Model:

 \implies Extraction of V_{us}, α_s , light quark masses...

 Look for physics beyond the Standard Model: High precision at low energy as a key to new physics?

SUSY loops Z', Charged Higgs, Right-Handed Currents,....

Look for exotics, new hadronic states

Emilie Passemar

3.1 Application 1: $\pi\pi$ form factors and probing New physics with Tau LFV

- Constrain new physics operators from low energy decays: ex: $\tau \rightarrow \mu \pi \pi$
- Effective Lagrangian: $\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$
- Summary table:

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau \to \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$O_{S,V}^{4\ell}$	1	_		_	_	_
OD	1	1		1	_	_
O_V^q	_	-	✓ (I=1)	\checkmark (I=0,1)	_	_
O_S^q	_	-	✓ (I=0)	$\checkmark(\mathrm{I=0,1})$	_	_
O_{GG}	_	-	1	1	_	_
$\mathrm{O}^{\mathrm{q}}_{\mathrm{A}}$	—	—	—	_	\checkmark (I=1)	✓ (I=0)
$\mathrm{O}_\mathrm{P}^\mathrm{q}$	—	—	- /	_	✓ (I=1)	✓ (I=0)
$\mathrm{O}_{\mathrm{G}\widetilde{\mathrm{G}}}$	—	_		_	—	1

• Each UV model generates a *specific pattern* of D=6 operators: $\tau \rightarrow \mu \pi \pi$ very interesting probe to discriminate them \longrightarrow For these need to know the FFs!

Emilie Passemar

$\tau \rightarrow \mu(e)\pi\pi$ decays

• $\tau \rightarrow \mu(e)\pi\pi$ differential decay rate:

$$\begin{aligned} \frac{d\Gamma(\tau \to \mu \pi^+ \pi^-)}{ds} &= \frac{(s - 4m_\pi^2)^{1/2} (m_\tau^2 - s)^2}{1536\pi^3 \Lambda^4 m_\tau s^{5/2}} \\ &\times \left\{ 3s^2 G_F^2 |Q_L(s)|^2 - 4(4m_\pi^2 - s)|F_V(s)|^2 \bigg[4\pi \alpha_{\rm em} (2m_\tau^2 + s)|C_{\rm DL}|^2 \\ &+ s(C_{\rm VL}^{\rm d} - C_{\rm VL}^{\rm u}) \Big(12\sqrt{\pi\alpha_{\rm em}} C_{\rm DL} + \frac{(m_\tau^2 + 2s)}{m_\tau^2} (C_{\rm VL}^{\rm d} - C_{\rm VL}^{\rm u}) \Big) \bigg] \\ &+ (L \to R) \right\}. \qquad Q_{\rm L}(s) = \Big(\theta_\pi(s) - \Gamma_\pi(s) - \Delta_\pi(s) \Big) C_{\rm GL} + \Delta_\pi(s) C_{\rm SL}^{\rm s} + \Gamma_\pi(s) \left(C_{\rm SL}^{\rm u} + C_{\rm SL}^{\rm d} \right) \end{aligned}$$

4 form factors to be determined:

- Vector:
$$\langle \pi^+(p_{\pi^+})\pi^-(p_{\pi^-})|\frac{1}{2}(\bar{u}\gamma^{\alpha}u-\bar{d}\gamma^{\alpha}d)|0\rangle \equiv F_V(s)(p_{\pi^+}-p_{\pi^-})^{\alpha}$$

- Scalars: $\langle \pi^+\pi^- | m_u \bar{u}u + m_d \bar{d}d | 0 \rangle \equiv \Gamma_{\pi}(s)$, $\langle \pi^+\pi^- | m_s \bar{s}s | 0 \rangle \equiv \Delta_{\pi}(s)$

 $m_q \bar{q} q$

- Gluonic:
$$\left\langle \pi^{+}\pi^{-} \left| \theta^{\mu}_{\mu} \right| 0 \right\rangle \equiv \theta_{\pi}(s)$$
 with $\left| \theta^{\mu}_{\mu} = -9 \frac{\alpha_{s}}{8\pi} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + \sum_{q=u,d,s} \right|$

 Recent progress in the determination of the form factors using *dispersive techniques* Daub et al'13, Celis, Cirigliano, E.P.'14

1.3 On the interest of using Dispersion Relations

- If E > 1 GeV: ChPT not valid anymore to describe dynamics of the process
 Resonances appear :
 - For ππ: I=1: ρ(770), ρ(1450), ρ(1700), ..., I=0: "σ(~500)", f₀(980),...
 - For Kπ: *I*=1: K*(892), K*(1410), K*(1680), …, *I*=0: "K(~800)", …

1.3 On the interest of using Dispersion Relations

- If E > 1 GeV: ChPT not valid anymore to describe dynamics of the process
 Resonances appear :
 - For ππ: I=1: ρ(770), ρ(1450), ρ(1700), ..., I=0: "σ(~500)", f₀(980),...
 - For Kπ: *I*=1: K*(892), K*(1410), K*(1680), …, *I*=0: "K(~800)", …
- With Dispersion Relation:
 - no need for making assumptions of a dominance of resonances
 - directly given by the parametrization,
 phase shifts taken as inputs
 - Parametrization valid in a large range of energy:
 - analyse several processes simultanously where the same quantity: FFs, amplitude appear: Ex: K_{I3} decays, $\tau \rightarrow K\pi v_{\tau}$

Extraction of V_{us}

Antonelli, Cirigliano, Lusiani, E.P.'13

QCHSXI, September 11, 2014

Bernard, Boito, E.P., in progress Antonelli, Lusiani, E.P. in progress

• Preliminary results :

	TT 0 TT	TF 0 TF	1
	$\tau \to K \pi \nu_\tau \& K_{\ell 3}$	$\tau \to K \pi \nu_\tau \& K_{\ell 3}$	
	Belle	SuperB	
$\ln C$	0.20193 ± 0.00892	0.20034 ± 0.00557	
$\lambda_0' \times 10^3$	13.139 ± 0.965	13.851 ± 0.592	
$m_{K^*}[\text{MeV}]$	892.09 ± 0.22	892.01 ± 0.21	
$\Gamma_{K^*}[\text{MeV}]$	46.287 ± 0.417	46.494 ± 0.436	
$m_{K^{*'}}[\text{MeV}]$	1292.5 ± 47.2	1259.8 ± 27.2	Very accurate
$\Gamma_{K^{*'}}[MeV]$	171.64 ± 234.65	205.41 ± 10.27	determination o
β	-0.0204 ± 0.0289	-0.0350 ± 0.0229	K (092)!
$\lambda'_+ \times 10^3$	25.714 ± 0.332	25.655 ± 0.268	
$\lambda''_{+} \times 10^3$	1.1988 ± 0.0313	1.2176 ± 0.0089	
$\chi^2/d.o.f$	59.7/67	56.5/67	
I_K^{τ}	0.7655 ± 0.0416	0.7857 ± 0.0105	
$f_+(0)V_{us}$	0.2134 ± 0.0061	0.21103 ± 0.0037	

3.1 Application 1: $K\pi$ form factors and V_{us}

• Master formula for $\tau \rightarrow K\pi v_{\tau}$:

$$\Gamma\left(\tau \to \overline{K}\pi v_{\tau} [\gamma]\right) = \frac{G_F^2 m_{\tau}^5}{96\pi^3} C_K^2 S_{EW}^{\tau} |V_{us}|^2 \left| f_+^{K^0 \pi^-}(0) \right|^2 I_K^{\tau} \left(1 + \delta_{EM}^{K\tau} + \widetilde{\delta}_{SU(2)}^{K\pi}\right)^2$$

$$I_K^{\tau} = \int ds \ F\left(s, \overline{f}_+(s), \overline{f}_0(s)\right)$$

Hadronic matrix element: Crossed channel from $K \rightarrow \pi I V_I$

$$\frac{\langle \mathbf{K}\boldsymbol{\pi} | \ \overline{\mathbf{s}}\boldsymbol{\gamma}_{\mu}\mathbf{u} | \mathbf{0} \rangle = \left[\left(p_{K} - p_{\pi} \right)_{\mu} + \frac{\Delta_{K\pi}}{s} \left(p_{K} + p_{\pi} \right)_{\mu} \right] f_{+}(s) - \frac{\Delta_{K\pi}}{s} \left(p_{K} + p_{\pi} \right)_{\mu} f_{0}(s) }{\mathsf{vector}}$$

$$\text{vector} \qquad \text{scalar}$$

$$\text{with} \ s = q^{2} = \left(p_{K} + p_{\pi} \right)^{2}, \quad \overline{f}_{0,+}(t) = \frac{f_{0,+}(t)}{f_{+}(0)}$$

 \square Use a *dispersive parametrization* to combine with K₁₃ analysis

Bernard, Boito, E.P.'11

• $\overline{f}_0(s)$: dispersion relation with 3 subtractions: 2 in s=0 and 1 in s = $(m_K + m_\pi)^2$ Callan-Treiman

$$\overline{f}_{0}(s) = \exp\left[\frac{s}{\Delta_{K\pi}}\left(\ln C + \left(s - \Delta_{K\pi}\right)\left(\frac{\ln C}{\Delta_{K\pi}} - \frac{\lambda_{0}}{m_{\pi}^{2}}\right) + \frac{\Delta_{K\pi}s\left(s - \Delta_{K\pi}\right)}{\pi}\int_{\left(m_{K} + m_{\pi}\right)^{2}}^{\infty}\frac{ds'}{s'^{2}}\frac{\phi_{0}(s')}{\left(s' - \Delta_{K\pi}\right)\left(s' - s - i\varepsilon\right)}\right)\right]$$

• $\overline{f}_{+}(s)$: dispersion relation with 3 subtractions in s=0 Boito, Escribano, Jamin'09,'10

$$\overline{f}_{+}(s) = \exp\left[\lambda_{+}'\frac{s}{m_{\pi}^{2}} + \frac{1}{2}\left(\lambda_{+}'' - \lambda_{+}'^{2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{(m_{K}+m_{\pi})^{2}}^{\infty}\frac{ds'}{s'^{3}}\frac{\phi_{+}(s')}{(s' \neq s - i\varepsilon)}\right]$$

Extracted from a model including
2 resonances K*(892) and K*(1414)
Jamin, Pich, Portolés'08

Fit to the $\tau \rightarrow K\pi v_{\tau}$ decay data + K_{13} constraints Bernard, Boito, E.P.'11

Emilie Passemar

QCHSXI, September 11, 2014

Determination of the $K\pi$ FFs: Dispersive representation

• Model for
$$\phi_+(s)$$
: $K^{*-(892)} = K^{*-(892)} + K^{*-(892)} + K^{*-(892)} + K^{*-(892)} + \cdots$

$$\tilde{f}_{+}(s) = \left[\frac{m_{K^{*}}^{2} - \kappa_{K^{*}} \left(\operatorname{Re} \tilde{H}_{K\pi}(0) + \operatorname{Re} \tilde{H}_{K\eta}(0)\right) + \beta s}{D(m_{K^{*}}, \Gamma_{K^{*}})} - \frac{\beta s}{D(m_{K^{*'}}, \Gamma_{K^{*'}})}\right]$$

 $K^{*}(892)$

 $K^{*}(1410)$

with
$$D(m_n, \Gamma_n) = m_n^2 - s - \kappa_n \sum \operatorname{Re} \tilde{H} - im_n \Gamma_n(s)$$

$$\tan \phi_{+} \equiv \tan \delta_{K\pi}^{P,1/2} = \frac{\operatorname{Im} \tilde{f}_{+}(s)}{\operatorname{Re} \tilde{f}_{+}(s)}$$

Emilie Passemar

Bernard, Boito, E.P., in progress Antonelli, Lusiani, E.P. in progress

• Preliminary results :

			1
	$\tau \to K \pi \nu_\tau \& K_{\ell 3}$	$\tau \to K \pi \nu_{\tau} \& K_{\ell 3}$	
	Belle	SuperB	
$\ln C$	0.20193 ± 0.00892	0.20034 ± 0.00557	
$\lambda_0' \times 10^3$	13.139 ± 0.965	13.851 ± 0.592	
$m_{K^*}[\text{MeV}]$	892.09 ± 0.22	892.01 ± 0.21	
$\Gamma_{K^*}[\text{MeV}]$	46.287 ± 0.417	46.494 ± 0.436	
$m_{K^{*'}}[\text{MeV}]$	1292.5 ± 47.2	1259.8 ± 27.2	Very accurate
$\Gamma_{K^{*'}}[MeV]$	171.64 ± 234.65	205.41 ± 10.27	determination c
β	-0.0204 ± 0.0289	-0.0350 ± 0.0229	K (092)!
$\lambda'_+ imes 10^3$	25.714 ± 0.332	25.655 ± 0.268	
$\lambda_{+}'' \times 10^3$	1.1988 ± 0.0313	1.2176 ± 0.0089	
$\chi^2/d.o.f$	59.7/67	56.5/67	
I_K^{τ}	0.7655 ± 0.0416	0.7857 ± 0.0105	
$f_+(0)V_{us}$	0.2134 ± 0.0061	0.21103 ± 0.0037	

Extraction of V_{us}

• Decay rate master formula

Antonelli, Cirigliano, Lusiani, E.P.'13

$$\Gamma\left(\tau \to \overline{K}\pi v_{\tau} [\gamma]\right) = \frac{G_F^2 m_{\tau}^5}{96\pi^3} C_K^2 S_{EW}^{\tau} |V_{us}|^2 \left| f_+^{K^0 \pi^-}(0) \right|^2 I_K^{\tau} \left(1 + \delta_{EM}^{K\tau} + \widetilde{\delta}_{SU(2)}^{K\tau} \right)^2$$

• Result of fit to $K_{I3} + \tau \rightarrow K\pi v_{\tau}$ and $K\pi$ scattering data including inelasticities in the dispersive FFs

$$f_{+}(0)|V_{us}| = 0.2163 \pm 0.0014$$

Emilie Passemar

QCHSXI, September 11, 2014

Bernard'14

Emilie Passemar

QCHSXI, September 11, 2014

1.1 Definitions

• Mandelstam variables $s = (p_{\pi^+} + p_{\pi^-})^2$, $t = (p_{\pi^-} + p_{\pi^0})^2$, $u = (p_{\pi^0} + p_{\pi^+})^2$ $s + t + u = M_{\eta}^2 + M_{\pi^0}^2 + 2M_{\pi^+}^2 \equiv 3s_0$ only two independent variables

• Neutral channel: $\eta \rightarrow \pi^0 \pi^0 \pi^0$:

A(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)

2.5 Subtraction constants

• As we have seen, only Dalitz plots are measured, *unknown normalization!*

$$A(s,t,u) = -\frac{1}{Q^2} \frac{M_K^2}{M_\pi^2} \frac{M_K^2 - M_\pi^2}{3\sqrt{3}F_\pi^2} M(s,t,u)$$

To determine Q, one needs to know the normalization

→ For the normalization one needs to use ChPT

• The subtraction constants are

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

2.5 Subtraction constants

• As we have seen, only Dalitz plots are measured, unknown normalization!

$$A(s,t,u) = -\frac{1}{Q^2} \frac{M_K^2}{M_\pi^2} \frac{M_K^2 - M_\pi^2}{3\sqrt{3}F_\pi^2} M(s,t,u)$$

To determine Q, one needs to know the normalization

→ For the normalization one needs to use ChPT

• The subtraction constants are

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

Only 6 coefficients are of physical relevance
2.5 Subtraction constants

• The subtraction constants are

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

Only 6 coefficients are of physical relevance

- They are determined from
 - Matching to one loop ChPT $\implies \delta_0 = \gamma_1 = 0$
 - Combine ChPT with fit to the data $\implies \delta_{_0}$ and $\gamma_{_1}$ are determined from the data
- Matching to one loop ChPT: Taylor expand the dispersive M_I Subtraction constants (Taylor coefficients
- Important : Adler zero should be reproduced!
 Can be used to constrain the fit

$\lambda_V' imes 10^3$	36.7 ± 0.2
$\lambda_V'' imes 10^3$	3.12 ± 0.04
$\tilde{M}_{\rho}[\text{MeV}]$	833.9 ± 0.6
$\tilde{\Gamma}_{ ho}[{ m MeV}]$	198 ± 1
$\tilde{M}_{\rho'}[\text{MeV}]$	1497 ± 7
$\tilde{\Gamma}_{\rho'}[\text{MeV}]$	785 ± 51
$\tilde{M}_{\rho^{\prime\prime}}[\text{MeV}]$	1685 ± 30
$\tilde{\Gamma}_{\rho^{\prime\prime}}[MeV]$	800 ± 31
α'	0.173 ± 0.009
ϕ'	-0.98 ± 0.11
α''	0.23 ± 0.01
ϕ''	2.20 ± 0.05
$\chi^2/d.o.f$	38/52

Details on the parametrization of the phase

Model for the phase:
$$\implies$$
 $\tan \phi_V = \frac{\operatorname{Im} \tilde{F}_V(s)}{\operatorname{Re} \tilde{F}_V(s)}$

$$\begin{split} & Guerrero, Pich'98, Pich, Portolés'08\\ & Gomez, Roig'13\\ \hline \tilde{M}_{\rho}^2 + \left(\alpha' e^{i\phi'} + \alpha'' e^{i\phi''}\right)s & - \frac{\alpha' e^{i\phi'}s}{2} - \frac{\alpha'' e^{i\phi''}s}{2} \end{split}$$

$$\tilde{F}_V(s) = \frac{M\rho + (\alpha e^{i\phi} + \alpha e^{i\phi})e^{i\phi}}{\tilde{M}_\rho^2 - s + \kappa_\rho \operatorname{Re}\left[A_\pi(s) + \frac{1}{2}A_K(s)\right] - i\tilde{M}_\rho\tilde{\Gamma}_\rho(s)} - \frac{\alpha e^{i\phi}s}{D(\tilde{M}_{\rho'}, \tilde{\Gamma}_{\rho'})} - \frac{\alpha e^{i\phi}s}{D(\tilde{M}_{\rho''}, \tilde{\Gamma}_{\rho''})}$$

with
$$D(\tilde{M}_R, \tilde{\Gamma}_R) = \tilde{M}_R - s + \kappa_R \text{Re}A_{\pi}(s) - i\tilde{M}_R \tilde{\Gamma}_R(s)$$

and
$$\tilde{\Gamma}_R(s) = \tilde{\Gamma}_R \frac{s}{\tilde{M}_R^2} \frac{\left(\sigma_{\pi}^3(s) + 1/2 \ \sigma_K^3(s)\right)}{\left(\sigma_{\pi}^3(\tilde{M}_R^2) + 1/2 \ \sigma_K^3(\tilde{M}_R^2)\right)}$$

$$\kappa_R(s) = \frac{\tilde{\Gamma}_R}{\tilde{M}_R} \frac{s}{\pi \left(\sigma_\pi^3(\tilde{M}_R^2) + 1/2 \ \sigma_K^3(\tilde{M}_R^2)\right)}$$

•

Details on the fit

• The minimized quantity:

$$\chi^2 = \sum_{i=1}^{62} \left(\frac{\left(|F_V(s)|^2\right)_i^{\text{theo}} - \left(|F_V(s)|^2\right)_i^{\text{exp}}}{\sigma_{(|F_V(s)|^2)_i^{\text{exp}}}} \right)^2 + \left(\frac{\lambda_V' - \lambda_V' \,^{\text{sr}}}{\sigma_{\lambda_V' \,^{\text{sr}}}}\right)^2 + \left(\frac{\alpha_{2v} - \alpha_{2v}^{\text{sr}}}{\sigma_{\alpha_{2v}^{\text{sr}}}}\right)^2$$

• 2 sum-rules are added such that $F_V(s) \rightarrow 1/s$ Brodsky & Lepage

$$\lambda_V'^{
m sr} = \frac{m_\pi^2}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\phi_V(s')}{s'^2}$$

$$(\lambda_V'' - \lambda_V'^2)^{\rm sr} = \frac{2m_\pi^4}{\pi} \int_{4M_\pi^2}^\infty ds' \frac{\phi_V(s')}{s'^3} \equiv \alpha_{2v}^{\rm sr}$$

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• Fix the polynomial with requiring $F_p(s) \rightarrow 1/s$ (Brodsky & Lepage) + ChPT: Feynman-Hellmann theorem: $\Gamma_P(0) = \left(m_u \frac{\partial}{\partial m_u} + m_d \frac{\partial}{\partial m_d}\right) M_P^2$

$$\Delta P(0) = \left(m_u \frac{\partial}{\partial m_u} + m_d \frac{\partial}{\partial m_d} \right)^{N}$$
$$\Delta P(0) = \left(m_s \frac{\partial}{\partial m_s} \right) M_P^2$$

• At LO in ChPT:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}}) \, B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}}) \, B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}}) \, B_0 + O(m^2) \end{aligned}$$

$$P_{\Gamma}(s) = \Gamma_{\pi}(0) = M_{\pi}^{2} + \cdots$$

$$Q_{\Gamma}(s) = \frac{2}{\sqrt{3}}\Gamma_{K}(0) = \frac{1}{\sqrt{3}}M_{\pi}^{2} + \cdots$$

$$P_{\Delta}(s) = \Delta_{\pi}(0) = 0 + \cdots$$

$$Q_{\Delta}(s) = \frac{2}{\sqrt{3}}\Delta_{K}(0) = \frac{2}{\sqrt{3}}\left(M_{K}^{2} - \frac{1}{2}M_{\pi}^{2}\right) + \cdots$$

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• At LO in ChPT:

$$M_{\pi^{+}}^{2} = (m_{u} + m_{d}) B_{0} + O(m^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s}) B_{0} + O(m^{2})$$

$$M_{K^{0}}^{2} = (m_{d} + m_{s}) B_{0} + O(m^{2})$$

$$M_{K$$

Problem: large corrections in the case of the kaons!
 Use lattice QCD to determine the SU(3) LECs

 $\Gamma_K(0) = (0.5 \pm 0.1) \ M_\pi^2$ $\Delta_K(0) = 1^{+0.15}_{-0.05} \left(M_K^2 - 1/2M_\pi^2 \right)$

Dreiner, Hanart, Kubis, Meissner'13 Bernard, Descotes-Genon, Toucas'12

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• For θ_P enforcing the asymptotic constraint is not consistent with ChPT The unsubtracted DR is not saturated by the 2 states

Relax the constraints and match to ChPT

$$P_{\theta}(s) = 2M_{\pi}^{2} + \left(\dot{\theta}_{\pi} - 2M_{\pi}^{2}\dot{C}_{1} - \frac{4M_{K}^{2}}{\sqrt{3}}\dot{D}_{1}\right)s$$

$$Q_{\theta}(s) = \frac{4}{\sqrt{3}}M_{K}^{2} + \frac{2}{\sqrt{3}}\left(\dot{\theta}_{K} - \sqrt{3}M_{\pi}^{2}\dot{C}_{2} - 2M_{K}^{2}\dot{D}_{2}\right)s$$