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Abstract

Isoniazid is still, 60 years after its introduction, a main front line drug for treating 
tuberculosis. Isoniazid, a hydrazine compound, is metabolized through N-acetylation 
by the arylamine N-acetyltransferase (NAT) enzyme in humans and its metabolism 
was important in establishing the early observations on pharmacogenetics since its 
metabolism to N-acetylisoniazid was identified as being genetically controlled. The 
incidence of adverse side effects to isoniazid is also linked to its metabolism. These 
side effects include liver toxicity, neuropathy and a condition resembling the auto-
immune disorder Systemic Lupus Erythematosus (SLE). The latter side effect shares 
similarities with side effects to hydralazine, an anti-hypertensive, which is also a 
hydrazine and, like isoniazid, induces SLE-like symptoms in a sub group of patients 
who are almost exclusively slow NAT acetylators. The complement system in humans 
is essential for immune complex clearance and the chemical mechanism by which 
isoniazid and hydralazine interact with the activation of the complement cascade 
has been established, demonstrating their interference with the activation of the thiol 
ester in complement component C4 such that immune complexes become deposited 
at inappropriate tissue sites in the small blood vessels, kidneys and joints, thereby 
generating a SLE-like condition. The relevance of immunohistocompatibitility types 
relating to the polymorphic C4 type is also explored.

ABBREVIATIONS
ADPR: Adenosine Diphosphate Ribose; HLA: Human 

Leukocyte Antigen; NAD: Nicotinamide Adenine Dinucleotide; 
INH: Isoniazid; InhA: enoyl-[acyl-carrier-protein]-reductase; 
SLE: Systemic Lupus Erythematosis; TB: Tuberculosis

INTRODUCTION
Isoniazid (INH) was first introduced for the treatment of 

tuberculosis (TB) in 1952. It has revolutionized treatment of TB, 
usually in combination with other drugs [1]. Nevertheless there 
is a growing search for new anti-tubercular therapies following 
the availability of genomic information and identification of 
possible new anti-tubercular targets [2,3] with new treatments 
reaching the clinical trials stage as part of a growing pipeline of 
novel anti-tuberculars [4]. Although drug resistance is a growing 
and real problem, INH is still a front line treatment in combined 
therapies [5]. The mechanism of action of isoniazid is important 
as it is one way of identifying new drug treatments [6,7] and 
resulted in the identification of the agent ethionamide [8]. With 
INH, the drug is activated by oxidation by KatG (Figure 1), inside 
the mycobacterial cells and the resulting activated moiety then 
forms an adduct with NAD+ [8].There is now a consensus that the 
adduct inhibits the enoyl-[acyl-carrier-protein]-reductase (InhA) 
[9] and thus inhibits synthesis of the mycolic acid component of 

the mycobacterial cell wall. There was an earlier controversy as 
to the nature of the inhibited enzyme and a more recent study has 
used computational methods to investigate the range of targets 
for the adduct [10]. Understanding of the molecular changes 
which lead to isoniazid resistance [11], have been important not 
only in understanding resistance but also in understanding the 
mechanism of action of this mainstay of anti-tubercular therapy 
and of identifying new possible treatments [6,7,12].

Whilst INH is still a front line treatment and is the drug of 
choice for latent TB, it is however a drug which has been associated 
with a wide range of adverse side effects. The most common of 
these is hepatotoxicity [13], followed by neuropathy [14], and 
also a condition resembling systemic lupus erythematosus (SLE) 
[15,16]. The mode of action of isoniazid oxidation results in the 
formation of a covalent bond with NAD+. The effectiveness of 
isoniazid in combating TB and its mode of action being is the “yin” 
to the “yang” in relation to its side effects. This review focuses on 
one particular side effect induced by isoniazid, namely systemic 
lupus erythematosus (SLE). The condition of drug-induced lupus 
is shared with a wide range of other drugs [17], and has also been 
reviewed recently in an excellent online article which sets out the 
facts [18].

The most common other drugs associated with SLE include the 
anti-hypertensive, hydralazine, the anti-arrythmic procainamide 
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studies in different populations [15,32]. The implication is 
that the difference in the clearance of the drug in slow NAT 
acetylators creates sufficient of a non-acetylated metabolite to 
be involved in the adverse reaction. The competition between 
NAT-acetylation and KatG-activation of INH in humans has also 
been described in mycobacterial cells themselves [44]. It was 
demonstrated that mycobacterial cells have an enzyme which 
N-acetylates INH [26,45], and this has also been demonstrated 
to contribute to sensitivity to INH in mycobacterial gene deletion 
and overexpression studies [44,45]. Genetic mutations in the nat 
gene in clinical isolates of Mycobacterium tuberculosis [11,24,25], 
have demonstrated that whilst the nat gene does show mutations 
it makes a minor contribution clinically to INH resistance with 
the mutations in InhA and KatG genes being of most importance 
[11,12]. Whilst genetic variation in the mechanisms for pumping 
INH from the mycobacterial cells has also been identified, but it 
has also been found to contribute only marginally to the overall 
INH resistance [11,12].

Structural studies on NAT enzymes from mycobacteria in 
which each NAT protein has a very similar amino acid sequence 
[46] have demonstrated INH in the binding pocket of the NAT 
enzyme from M. smegmatis [47]. In a separate study, hydralazine 
has been located in the binding site of the NAT enzyme from M. 
marinum [48], which has shed light on the reaction mechanism 
for N-acetylation. Interestingly the nat gene itself and the operon 
in which it is found is essential for mycobacterial survival inside 
cells [45] and has been explored as a target for antibacterial 
therapy [49-51].

MECHANISM OF THERAPEUTIC ACTION AND 
ADVERSE REACTION

Isoniazid is activated inside macrophage and the enzyme 
KatG which catalyses the activation is essential for the action of 
isoniazid (Figure 1). 

Once it is activated, the moiety forms a covalent interaction 
with NAD+ and the adduct formed gives rise to a complex which 
stops InhA working in the formation of mycolic acids [9].

It has been argued that the adverse reaction in humans is 
caused by an oxidation reaction perhaps in activated macrophages 
[34]. It is clear that there is a sub population of individuals who 
are susceptible to drug-induced SLE. Not all individuals get 
the adverse reaction. The incidence of INH-induced SLE is low 
(much less than 5%) although in hydralazine-induced lupus the 
incidence is higher with up to 12% in the early days when higher 
doses were used [31,41]. In order to understand the contribution 
of genetics, studies have been carried out to investigate the 
Human Leukocyte Antigen (HLA) type of patients who experience 
SLE-like symptoms. These studies have identified that individuals 
who carry the HLA DR4 type are more prevalent in the adverse 
reactors [52], along with those who are slow acetylators for NAT. 
In addition to the HLA DR4 type, it has been observed that there is 
an increased incidence of side effects on individuals carrying the 
C4A-null type - a class 3 HLA antigen [53]. It is well established 
that deletion of the genes for the early components of the classical 
pathway of complement are at increased risk of developing SLE 
and the C4A-null type is a particular risk feature [54]. These 
studies have been confirmed for hydralazine-induced SLE in 

(which is still used in the USA but only in special circumstances in 
the UK) and also the anti-arthritic drug penicillamine.

Isoniazid and hydralazine are chemically similar, both being 
hydrazine compounds (Figure 2), and this review focuses on a the 
nature of SLE induced by isoniazid, using examples derived from 
isoniazid’s interaction with the immune system in comparison 
with hydralazine also.

The emergence of HIV and concommitant increase in TB, 
including paediatric TB [19], has resulted in an increased interest 
in isoniazid toxicity and this has been particularly important in 
relation to understanding the presentation of instances where 
children have suffered adverse side effects [14].

ISONIAZID USE
Isoniazid is still the main front line drug against tuberculosis, 

despite the growing problem of resistance. It is usually used in 
combination with other anti-tuberculars for latent TB and in 
ongoing drug regimens [20-22]. In addition, isoniazid is being 
used prophylactically in latent TB [23], and it has been studied in 
relation to treatment of children who are not receiving anti-viral 
agents for HIV and appears to have a positive effect in reducing 
deaths from TB.

INH resistance in TB has been widely studied and the 
overwhelming evidence suggests that mutations in the InhA gene 
and the KatG gene account for the majority of the incidences of 
resistance in clinical isolates [11,12], but in addition mutations 
in the gene encoding for the mycobacterial pumps and in the 
arylamine N-acetyltransferase (nat) gene in mycobacteria have 
been implicated. The latter two appear to have a minor effect 
[11,24-26]. 

PATTERN OF SIDE EFFECTS 
SLE is one of the less common side effects of isoniazid 

therapy. The diagnosis relies on the appearance of a combination 
of a range of indicators such as rash, joint involvement, and is 
particularly linked with the appearance of autoantibodies [27-
29], which have been noted in a similar fashion to hydralazine and 
procainamide induced SLE [30-32]. One of the key features of the 
diagnosis of INH-induced SLE has been the recovery and reversal 
of symptoms on removal of the drug and predictive assays 
have been reported relating to the induction of autoantibodies 
[15,28], such as the antibodies identified against the DNA H2A-
H2B complex [28]. A predictive test involves a popliteal lymph 
node activation test and has been reported to be useful in both 
isoniazid and procainamide adverse reactions [33].

EFFECTS O METABOLISM
It has been proposed that the oxidation or peroxidation of 

INH and also of hydralazine are important in the development 
of the idiopathic immune response [34], however there is 
overwhelming evidence that isoniazid is metabolized in humans 
by N-acetylation [35-37]. N-acetylation of INH was amongst the 
first examples of pharmacogenetic variation to be identified 
[35] and the molecular basis of the variation in acetylation now 
extends to over 90 alleles [38]. The original observation that SLE 
was associated with slow N-acetylation of hydralazine [31,39-42] 
and INH [43], has been substantiated by extensive genotyping 
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Figure 1 Mechanism of action of Isoniazid. Isoniazid is a prodrug which can be activated by the catalase-peroxidase KatG. The activated form 
(isonicotinoyl) reacts with NAD+ to form the adducts isonicotinoyl-NAD which inhibit the target NADH-dependent enoyl-ACP reductase involved in 
the fatty acid synthase type II system; this results in mycolic acid biosynthesis inhibition and mybacterial cell lysis. Based on [8,9]. ADPR= adenosine 
diphosphate ribose.

Figure 2 Comparison of the chemical structures of isoniazid and hydralazine.

Figure 3 Isoniazid inhibition of complement component C4.
When C4 is activated by immune complexes and also by subcellular debris via the classical or lectin pathways of complement the C4 is cleaved by 
either C1s or MASP2 and the thiolester which is within the C4 structure is activated through a conformational change. The exposed short lived thiol 
ester can bind to either hydroxyl or amine groups on the activating surface but this binding can be inhibited by the presence of a nucleophile and 
isoniazid itself can become bound to the active site via an amide bond [64-66].

the clinic [52-54]. In addition, noting that it is the drug rather 
than the N-acetylated metabolite which is the likely causative 
agent, a study showed that hydralazine but not its N-acetylated 
metabolite will bind to C4 when C4 is activated [55], in effect 
creating a chemical knock out of C4. In addition, the C4A type is 
more susceptible to this inhibition that C4B [56]. The inhibition 
reaction occurs on activation of the crucial thiolester in C4 [57], 
and results in the drug becoming bound to the complement 
component via the activated thiolester [56]. This in turn hinders 
the amplification of the complement cascade such that binding of 
the main component C3 does not occur. It has been demonstrated 
that immune complexes which are bound in joints and kidneys in 

drug-induced SLE have a reduced binding of C3 [58,59].

The mechanism of INH inhibition of C4 activation is shown 
in Figure 3. Other polymorphisms in complement receptor type 
1 affecting the handling of immune complexes have also been 
investigated in hydralazine-related SLE cases [60-63].

DISCUSSION & CONCLUSION
Isoniazid is still a front line drug of choice in tuberculosis 

treatment. It is metabolized by N-acetylation in humans. Adverse 
side effects are associated with a genetic sub group of individuals 
in particular the slow NAT acetylators, although no distinct NAT 
allele has been specifically identified. SLE is a rare side effect in 
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INH treatment. The disruption of immune regulation which leads 
to SLE can be associated with the ability of INH and the chemically 
similar anti-hypertensive agent hydralazine, to form a covalent 
inhibitory reaction with complement component C4, which is 
likely to result in an inability to clear immune complexes.
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