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Abstract

Fusarium verticillioides is a multi-phytopathogenic fungi widely distributed throughout the 
world in association with cereals and cereal based food products. Cereals are the basic staple 
food which provides much of the energy and protein for many populations, where 2534MT 
consumed as food by Humans and animals. In some developing nations, grain in the form of rice, 
wheat or maize constitutes a majority of daily substance. In developed nations, cereal consumption 
is more moderate and varied as using cereal based products like corn flakes, oats, Poultry and 
animal feeds etc. Due to poor agricultural practices and intermittent rain at the time of harvest 
cereals are prone to contamination by number of fungi and it has become unavoidable and a 
worldwide problem. Fusarium species are the most common fungi associated with cereals all over 
the world. Among which F. verticillioides is the most frequently isolated species. FAO estimated 
that around 25-50% of cereals have been contaminated by mycotoxins. F. verticillioides produces 
secondary metabolites such as Fumonisins, trace level of fusaric acid, beauvericin, fusarin C, 
moniliformin, gibberiliformin in very low amount. Fumonisins receive the most attention as it is a 
potential carcinogen of global concern because they are the common contaminants of cereals and 
cereal-based foods. The International Agency for Research on Cancer (IARC) evaluated the toxin 
fumonisin as human carcinogen. 

ABBREVATIONS
IARC: International Agency for Research on Cancer; FAO: 

Food and Agriculture Organization; PROMEC: Programme on 
Mycotoxins and Experimental Carcinogenesis; MRC: Medical 
Research Council; CSIR: Council for Scientific and Industrial 
Research. 

INTRODUCTION
Fusarium verticillioide (Saccardo) Nirenberg (telomorph 

Gibberellamoniliformis Wineland) is an important plant pathogen 
with a wide range of hosts such as maize, sorghum, rice, millet, 
infecting plants in all stages of development, from the early 
hours of kernel germination to the time of harvest, including 
post-harvest deterioration of grains [1]. Seed infection by F. 
verticillioides is of major concern because it can reduce seed 
quality and result in contamination of grain with mycotoxins. 
Fusarium verticillioides infection of kernels occurs after flowering 
and is favored by hot and dry conditions. The fungus is distributed 
throughout the world, but predominant in humid tropical and 
subtropical regions and also present in the temperate regions 
[2,3]. In addition to causing plant diseases, infection by F. 
verticillioides can also result in contamination of kernels by 

fumonisins which can cause food safety problems for humans 
and animals and these fumonisins cannot easily be detoxified or 
removed from the grains [4,5]. 

TAXONOMY AND MORPHOLOGY
Fusarium verticillioides belongs to the section Liseola 

of Fusarium genus. In 1976, Helgard Nirenberg rejected 
F. moniliforme and transferred Oospora verticillioides to F. 
verticillioides (Sacc.) Nirenberg, while retaining Saccardo as 
the original author, and the epithet “verticillioides” which 
described the whorled nature (i.e., verticillate or cyclic) of the 
conidiophores [6] and it has been defined as mating population 
A of the Fusarium fujikuroi species complex (formally known 
as Gibberellafujikuroi species complex) [7].

The taxonomical relationship of Fusarium verticillioidesis 
as follows: Kingdom Fungi, Class Deuteromycetes, Order 
Moniliales, Family Tuberculariaceae and genus Fusarium. Name 
of the taxon was highly controversial among the taxonomists 
as F. moniliforme and F. verticillioides. Presently the name F. 
verticillioides has been generally accepted and been in practise 
in the routine days [7].  The name F. verticillioides should be used 
only for strains that have the G. monoliformis (Gibberellafujikuroi 
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mating population) telomorph and not simply as a replacement 
for F. moniliforme(Synder and Hansen). F. moniliforme is now 
likely called as F. thapsinum from sorghum, F. sacchari from sugar 
cane, F. mangiferae from mango, and F. fujikuroi from rice [5]. 

Fusarium verticillioides produces initially white mycelia but 
later develop into violet pigments with age. Macroconidia are long, 
slender, straight, thin walled, apically curved and notched basally 
with 3 to 5 septate and difficult to find. Abundant Microconidia 
are oval in shape, 0 septate, long chains of microconidia arise 
from monophialides and occasionally produces pair of rabbit 
ear shape of spores are observed. Chlamydospores are absent, 
swollen cells in some isolated species will be mistaken as 
pseudochlamydospores [5]. 

Fusarium verticillioides is morphologically similar to Fusarium 
thapsium which do not produce yellow pigment and Fusarium 
proliferatum which produce short chain of microconidiacan be 
differentiated by molecular markers, production of spores and 
pigments. F. verticillioides is very similar to F. andiyazibut does not 
form pseudochlamydospores. F. verticillioides is similar in some 
respects to F. nygamai which forms microconidia in short chains 
or false heads from monophialides, abundant macroconidia in 
sporodochia and chlamydospores in the aerial hyphae in older 
cultures [8].

HOST AND DISTRIBUTION
Fusarium verticillioides is widely distributed throughout the 

world and is particularly associated with Maize [9,10], rice [11-
13], sugarcane [14], wheat [15], banana [16], asparagus[17,18] 
and sorghum [19]. High incidence of F. verticillioides was found in 
poultry feed mixtures and in animal feeds based on maize pellets 
and wheat bran [20]. A total of 51 cereal samples were found 
to be associated with F. Verticillioides with 33.12% of percent 
incidence in maize [21]. F. verticillioides were particularly 
associated with maize causes stalk rot and cob rot with drastic 
decrease of grain quality resulting in yield loss. The brutality 
of the rottness is affected by mode of inoculation systemically 
initiating from different routes such as seed or kernel through 
wounds in plant or infections of silks reciting disease symptoms 
[22,23]. 

The resistant genotypes are studied by the molecular 
mechanisms of the host response to infection which have been 
recently elucidated in maize and the identification of resistant 
genotypes will contribute to reduce fumonisin contamination. 
Developing Genetic resistance in maize to F. Verticillioides is of 
high priority in which sources of resistance has been identified 
and incorporated into public and private breeding programs 
[3]. Lanubile et al. [24], reported transcriptional changes were 
studied by next-generation RNA-sequencing for the first time with 
F. verticillioides in resistant C0441 and susceptible C0354 maize 
genotypes which revealed 6,951 differently expressed genes. 
Very recently Ju et al.[25], in Aprildocumented 8 quantitative 
trait loci (QTLs) and 43 genes associated with 57 SNPs correlated 
with F. verticillioides stalk rot resistance through linkage mapping 
and genome wide association analysis respectively. Similarly, 
Maschietto et al. [26], accelerated the resistance of maize lines 
by using identified set of QTLs and candidate genes for reducing 
disease severity and lowering mycotoxin contamination by F. 
verticillioides. 

The quantity of stalk rot usually increases by drought 
stress and is reassured by irrigation. Many plants have at least 
one Fusarium associated diseases. Ear rot severity highness is 
due to disordered husk [27]. F. verticillioides infection is more 
susceptible among High lysine corn, brown midrib corn and 
sweet corn lines causing root rot with decreased root growth in 
maize seedlings [28,29]. F. verticillioides causes foot rot disease 
in rice; crown rot among asparagus and top rot in sugar cane and 
also infects many plant species, and has been reconfirmed that 
the infection is by F. verticillioides but not by the other G. fujikori 
species complex [30] (Table 1).  

PHYSIOLOGY AND BIOCHEMISTRY
F. verticillioides growth is reported to occur at 25ºC and an 

osmotic potential of -1.0 MPa with the best growth occurring 
on wounded immature reproductive tissues. Fumonisin B1 
production will also be high at this condition in the laboratory 
[31-33]. Biochemically many number of enzymes from F. 
verticillioides have been examined like ß-d-Galactosidase 
[34], Dextranase [35], D-lactonohydrolase [36], pectate lyase 
[37,38], peptidase [39], phosphatases [40], polygalacturonase 
[41-43], oxygenase [44], proteases [45], ribonucleases [46] and 
ß-xylosidase [47]. F. verticillioides strains are commercially used 
to resolve DL-pantolactone mixtures since some strains can 
degrade lactic acid containing polymers [48,49]. Gonzalez-Jaen 
et al. [50], demonstrated that genes Fum1 (=Fum5), Fum6, and 
Fum8 were only present in F. verticillioides and other Fusarium 
species as the principle producers of fumonisins within the G. 
fujikuroi complex. Sanchez-Rangel et al. [51], reported similar 
results with a different pair of primers with presence or absence 
of the Fum1 gene which is the principle ability of a F. verticillioides 
isolate to produce fumonisin. Ramana et al. [52], system was 
based on the Fum1 and Fum13 gene sequences of F. proliferatum 
and F. verticillioides and was applied to the detection of the fungi 
in artificially contaminated cornmeal in a multiplex PCR assay. 

Table 1: Fusarium verticillioides infection causing diseases in the crop.
Sl. 
No. Crop Disease Reference

1. Coconut palm
(Cocos nucifera)

Bud rot Ploetz R et al., 1999

2. Corn/Maize
(Zea mays)

Fusarium ear rot, 
stalk rot, kernel rot, 

root rot, seed rot, 
Seedling blight, seed-

ling root rot

Shurtleff M.C et al., 
1993

3.
Pearl millet

(Pennisetum-
glauccum)

Top rot Wilson J.P et al., 
1996

4. Sorghum
(Sorghum bicolor)

Fusarium wilt head 
blight, root rot, stalk 
rot, Seedling blight 

and seed rot

Horne C.W et al., 
1993

5. Sugarcane
(Saccharum spp.)

Fusarium stem rot 
and twisted top

Ferreira S.A. et al., 
1993

6.
Sunflower

(Helianthus an-
nus)

Fusarium stalk rot Gulya T.J et al., 
1993

Source: www. apsnet.org/online/common/search.asp 
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Ma et al. [53], studied the genome statistics of F. verticillioides 
strain 7600 with NCBI accession number of AAIM02000000 and 
genome size of 41.7Mb comprising of 8 sequence coverage folds, 
11 chromosomes, 31 scaffolds, 14,179 coding genes with 1,397bp 
median gene length and 0.36Mb repetitive sequence, 0.14% of 
transposable elements. 

SECONDARY METABOLITES
Secondary metabolites are generally produced by all Fusarium 

species, but some mycotoxins are toxic to humans and animals. 
To date, 28 structurally related fumonisin analogues have been 
identified, only three of them fumonisin B1 (FB1), B2 and B3 
occur abundantly, Fusaric acid and fusarin C is produced in very 
sensitive levels as of zinc and manganese occurs at fermentation 
time, trace levels of beauveriacin, Gibberellin and moniliformin 
are produced not more than trace levels by F. verticillioides 
[54]. Among the Fusarium species F. verticillioides is the most 
prominent Fusarium species that produces the most important 
toxins fumonisins, discovered in the cultures of F. moniliforme (= 
F. verticillioides) [55,2]. 

FUMONISINS AND ITS TYPES
During the mid-1980s, although their effects on horses had 

been recognized for at least 150 years before with a significant 
risk of contamination to the association of F. verticillioides species 
with cereals and cereal based feeds [57,58]. During the last two 
and half decade, fumonisins have received worldwide attention. 
In 1988, the fumonisins were first isolated at the Programme 
on Mycotoxins and Experimental Carcinogenesis (PROMEC) of 
the Medical Research Council (MRC) in Tygerberg, South Africa, 
by Gelderblomet al [55]. Also in the same year, the structures 
of the fumonisins were also elucidated in a collaborative effort 

between the PROMEC and the Council for Scientific and Industrial 
Research (CSIR) in Pretoria [59]. Fumonisins are a group of 15 
closely related mycotoxins that frequently occur in maize and 
other cereal based foods produced by 15 Fusarium species such 
as F. verticillioides, F. proliferatum, F. subglutinans, F. thapsinum, 
F. anthophilum, F. globosum, F. fujikuroi, F. sacchari. F. nygami, F. 
dlamini, F. napiforme, F. andiyazi, F. pseudonygami, F. oxysporum 
and F. Polyphialidicum [56]. 

Fumonisins receive the most attention because they are 
the common contaminants of cereals and cereal-based foods. 
They are ubiquitous in distribution and are found frequently on 
freshly harvested and stored agricultural commodities such as 
cereals in all stages of their production, processing and storage. 
Fumonisins are divided into four groups: A, B, C and G, with the 
B-type fumonisins being the most toxic. There are more than 
10 fumonisins, but only three, FB1, FB2 and FB3, occur naturally 
[60]. Fumonisin B1 is considered as the most serious threat to 
human and animal health and has been reported that FB1 makes 
up approximately 70%, and FB2 and FB3 each make up about 
10–20% of the total fumonisin content [57,61]. The International 
Agency for Research on Cancer (IARC) evaluated the fumonisins 
as Group 2B carcinogens i.e. possibly carcinogenic to humans 
[62,63]. 

The chemical structure of fumonisins (Figure 1) was 
elucidated and named them as fumonisin B1 (FB1) and fumonisin 
B2 (FB2) respectively [55,59]. The fumonisin optimally produces 
at moderate water activity and with nitrogen limited and usually 
its production doubles roughly for every 48 hrs with increase 
in mycelial dry weight. Cultures of F. moniliforme MRC 826 on 
maize were used to isolate and to study the structure of the 
fumonisins. A few years later FB3 and FB4 were also isolated 

Figure 1 Morphological features of Fusarium verticillioides.
A. Colony morphology,obverse; B. Micro-morphological features showing monophialides and long conidial chains
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and characterized [64,65]. Fumonisin B1 is a white hydroscopic 
powder that is soluble in water, acetonitrile-water or methanol 
and has the empirical formula C34H59NO15 (relative molecular 
mass: 721). Fumonisins B1 and B2 are stable in methanol if 
stored at –18ºC but steadily degrade at 25ºC and above. However, 
they are reported to be stable over a 6- month period at 25ºC in 
acetonitrile-water (1:1). Fumonisin B1 is the diester of propane-1, 
2, 3-tricarboxylicacid and 2S-amino-12S, 16R-dimethyl-3S, 5R, 
10R, 14S, 15R-pentahydroxyeicosane in which the C-14 and C-15 
hydroxy groups are esterified with the terminal carboxy group 
of propane-1, 2, 3-tricarboxylic acid. FB2 to FB4 show different 
hydroxylation patterns. 

FUMONISIN DISTRIBUTION, METABOLISM AND 
ITS AFFECTS

Fumonisins appears to be wide spread in U.S. maize [66]. 
Surveys of 1,300 maize samples collected in the central United 
States from 1988 through 1995 indicated low levels of FB1[67]. 
Cereals and cereal based products from maize source are the 
main commodities with natural FB1 occurrence have been 
reported from all parts of the world such as Brazil, Asia, Italy, 
Costa Rica and Hungary respectively [68-72]. In India, high levels 
of FB1 were reported in maize kernels infected with F. moniliforme 
[73,74]and in maize as well as poultry feeds [75]. Fumonisin B1 
contamination of maize and poultry feeds was high in Haryana, 
with 91 out of 100 maize samples and 42 out of 50 poultry 
feed samples were found to be contaminated with fumonisin 
B1. Fumonisins were considered as their occurrence was only 
confined to maize and later their presence was noted in a range 
of products, which include rice [76,77], sorghum [75,78,79] and 
low levels in wheat, barley, soybean [80] and at very low level 
in beer [81,82]. Recently fumonisin producing F. verticillioides 
was detected and differentiated from non fumonisin producing 
strains through nested and multiplex PCR as an early detection 
methods [83,84].

The secondary metabolite fumonisins include the polyketide 
pigment bikaverin, the terpenoid plant growth regulators 
gibberellic acids (GAs), and multiple mycotoxins. Nelson et al. 
[31], reported that Fumonisin toxicity is thought to result from the 
blockage of sphingolipid biosynthesis [85]. Sphingolipids have a 
complex role in cell function by affecting a number of metabolic 
processes due to fumonisins. Accumulation of sphingolipid bases 
leads to inhibition of growth cells resulting in cytotoxicity. They 
can inhibit protein kinase-C, activate phospholipase D, activate 
or inhibit enzymes involved in lipid signalling pathways, inhibit 
Na+/K+ ATPase, and induce dephosphorylation of retinoblastoma 
protein. All of these processes may increase cancer risk via loss of 
regulation of differentiation, apoptosis and lipid mediators that 
control cell proliferation [86-88]. Ceramide synthase inhibition 
generally results in accumulation of free sphinganine in liver, 
lung and kidney.Sphinganine, as a hydrophobic compound, can 
cross cell membranes and occur in blood and in urine if the 
kidneys are affected [89,87]. As the proposed mechanisms of 
action involve alterations in de novo synthesis, nutritional factors 
might be important in toxic end-points. The liver is the target for 
FB1 in all animals and the kidney is also a target in many animals. 
Initially fumonisin B induced toxicity is characterized by increase 
in apoptotic, oncotic necrosis and regeneration in kidney and 

bile duct hyperplasia is reported in liver. Fumonisin B1 toxicity 
depends on strain and sex of the rodents [31]. 

Marasaset al. [90], reported the first syndrome of fumonisins, 
ELEM, equine leukoencephalomalacia, in 1980s characterized 
by fatal necrotic lesions in the cerebrum in horses. Smith et al. 
[91], reported that fumonisins induce cardiovascular dysfunction 
in horses with decreased heart rates, lower cardiac output, and 
right ventricular contractibility which may be involved in the 
pathogenesis of the lesions in the central nervous system. The 
symptoms in swine have been referred to as Porcine Pulmonary 
Edema (PPE) characterized by pulmonary, cardiovascular and 
hepatic symptoms as a “mystery swine disease” with diarrhea, 
weight loss, increased liver weight and poor performance [92]
(Table 2).

Toxicity of FB1 has been implicated affecting alligators [93], 
fresh water fish [94] causing hepatotoxicity in rats [95] with 
skin lesions [96], wounds [97], keratitis [98],Polycystic kidney 
disease (PKD)mainly affecting liver, kidney and lungs in animals 
and life threatening cancer disease in humans [55](Table 2). 
Subsequent studies have also shown that fumonisins are toxic to 
plants causing root rot, stem rot, seed rot, seedling blight, head 
blight diseases which has been explained in table one [77]. It is 
known to be allergic to humans systematically infecting cancer 
and HIV patients and not associated with hospital settings but 
nosocomial diseases do occur [99-102,109]. F. verticillioides 
is resistant to most clinical antifungals like itraconazole, 
miconazole, amphotericin B [103] and flucytosine [104] reported 
as most effective. 

CONCLUSION
Fusarium verticilliodes is genetically the most intensively 

studied species in the section of Fusarium. This fungus is 
primarily a pathogen of maize and other crops like sorghum and 
largely responsible for important economic losses worldwide. 
F. verticillioides is mainly known to produce fumonisins which 
is well studied in terms of its synthesis, its effects on animals 
and humans that consumes contaminated grains its association 

Table 2: Effects of fumonisins on humans and animals.

Affected After effects Source

Horse CNS, ELEM (Equine 
Leukoencephalomalacia) Smith et al., [90]

Swine
PPE, Hepatotoxicosis, lesions in 

liver, lung targets to Pancreas, heart, 
oesophagus

Hollinger 
&Ekperigin [92]

Rats
Hepatic nodules, adenofibrosis, 

hepatocellular carcinoma, 
cholangiocarcinoma, hepatotoxins

Gross et al.,[105]

Rabbit Anorectic, lethargic, injures liver and 
kidney

Gumprechtet al., 
[106]

Chicken

Erythrocyte formation, lymphocyte 
cytotoxic effects, weight reduction, 

hepatic necrosis, biliary hyperplasia, 
thymic cortical atrophy.

Javid et al., [107]

Primates Oesophagal cancer, reduction in WBC 
and RBC

Gelderblomet al., 
[108]

Humans Esophageal cancer, skin lesions, 
wounds, keratitis.

Kyung et al., 
[109]
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with disruption of sphingolipid metabolism and folate transport 
which is a potential risk factor for human neural tubes. Hence it is 
a thrust area in food safety research for its prevention. 
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