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Overview: objectives

Objectives of this talk

1. informally discuss some basic ideas from nonlinear approximation and
their applications in computation;

2. vaguely describe the results of [1], with minimal use of black magic
from theory of function spaces

[1] M. Lind & P. Petrushev, Nonlinear nonnested spline approximation
submitted, in revision
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Overview: approximation and computation

Approximation Theory - resolve a complicated target function by a
sequence of functions of small complexity (approximants)

Computation - in a sense the same goal

What assumptions?

Approximation: some direct knowledge of the target function, typically
values of simple functionals acting on it (e.g. point evaluations)

Computation: here knowledge of the target function is usually indirect, e.g.
it satisfies a PDE.

Still, the subjects are closely connected.
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Notation

Ω ⊆ Rd domain, p ∈ (0,∞].

Lp(Ω) - space of functions such that

‖f ‖p :=

(∫
Ω
|f (x)|pdx

)1/p

<∞

or
‖f ‖∞ = ess sup

x∈Ω
|f (x)| <∞.

H1
0 (Ω) - space of functions f such that f = 0 on ∂Ω and

‖f ‖H1
0 (Ω) := ‖f ‖2 + ‖|∇f |‖2 <∞
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Linear approximation

(X , ‖ · ‖X ) - normed vector space (typically a space of functions)

Sequence F = {Xj} of finite-dimensional subspaces

X0 ⊂ X1 ⊂ ... ⊂ Xn ⊂ ... ⊂ X

(approximation scheme)
Error of best approximation of f ∈ X

En(f )X = En(f ,F)X = inf
g∈Xn

‖f − g‖X

Note En(f )X decreasing sequence of real numbers
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Example: Weierstrass’ theorem

Example: X = C (0, 1) with norm ‖ · ‖X = ‖ · ‖∞

Xn = Pn = {polynomials of degree ≤ n}

and
En(f )∞ = inf

p∈Pn

‖f − p‖∞

Weierstrass’ theorem:
lim
n→∞

En(f )∞ = 0
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One main question

En(f )X encodes quality of approximation - central object.

On the other hand, constructive characteristics are not so easy to
understand

Fundamental problem

Given
• approximation scheme (several examples below);
• norm ‖ · ‖X to measure error of best approximation (e.g. X = Lp).

Question
relationship between

intrinsic properties of f ! behaviour of En(f )X ?
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One main question

Main focus of our research in this area

Interested in results of the following type

given f ∈ �, one has En(f )X = O(n−γ) (direct result/Jackson estimate)

given En(f )X = O(n−γ), one has f ∈ � (inverse result/Bernstein estimate)

Ideally, direct and inverse results should match (i.e. � = �); not always
the case
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Nonlinear approximation: set-up

Sequence F = {Xj} of sets/manifolds (not vector spaces) such that:

X0 ⊂ X1 ⊂ ... ⊂ Xn ⊂ ... ⊂ X ,

aXj = Xj (∀a ∈ R) and

Xn + Xn = {x + y : x , y ∈ Xn} ⊂ Xcn

some fixed c ∈ N (bounded nonlinearity)

As before,
En(f )X = En(f ,F)X = inf

g∈Xn

‖f − g‖X
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Example: N-term approximation

Ψ = {ψk} a sequence of functions (think of as basis)

XN =

{
g =

∑
k∈Λ

ckψk : ]Λ ≤ N

}

Scheme: approximate f with superpos. of at most N elements from Ψ

XN ⊂ XN+1, XN + XN ⊂ X2N

Compression: approximate a signal having ](spectrum) = M by using
N << M frequencies.
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Example: Free knot spline approximation

Set of points (”knots”)

T = {0 = x0 < x1 < ... < xn = 1}

A k-th order spline on T
=function s such that s is a polynomial of degree≤ k on each (xj , xj+1).

Sk(T ) = space of all k-th order splines on T
Example k = 0, T = {j/n : 0 ≤ j ≤ n}
S0(T )=all step functions (uniform step 1/n)
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Example: Free knot spline approximation

Spline manifolds

Xn = S(n, k) = {s : ∃T such that s ∈ Sk(T ) and ](T ) ≤ n + 1}

Xn ⊂ Xn+1, Xn + Xn ⊂ X2n

What is the point?! Point is that partitions are allowed to adapt to
target function ⇒ better approximating power
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A comparison

Example: f (x) = xα, 0 < x < 1, 0 < α < 1.

0th order spline approximation in L∞(0, 1)
(i.e. approximation with piecewise constants)

Linear approximation equidistant knots xi = i/n (0 ≤ i ≤ n)

Nonlinear approximation knots ti = (i/n)1/α (0 ≤ i ≤ n)

Case α = 1/2, n = 10
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A comparison

Philosophy: place the knots where they are useful!
(≈ equidistribute error/local variation)

Error rates for approximation of f (x) = xα (0th order spline, L∞-norm):

EL
n (f )∞ �

1

nα
and ENL

n (f )∞ =
1

n

Nonlinear method has faster convergence!

Direct and inverse theorem (0th order spline, L∞)

EL
n (f )∞ = O(1/n) ⇔ f ′ bounded

ENL
n (f )∞ = O(1/n) ⇔ f bounded variation

General Optimal rate attained for wider class of functions.
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Nonlinear approximation and computations

Extended example (applications)

Let Ω ⊂ R2 and consider Dirichlet problem for Poisson’s equation:

(?)

{
−∆u = f in Ω

u = 0 on ∂Ω

Weak formulation of (?)

(??)

∫
Ω
∇u · ∇vdx =

∫
Ω
fvdx all v ∈ H1

0 (Ω)

Galerkin method solve (??) in a finite-dimensional subspace V ⊂ H1
0 (Ω)

How to choose V ?
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Nonlinear approximation and computations

• T =triangulation of Ω, i.e. Ω ≈
⋃

∆∈T ∆
• V=vertices of triangles of T

Courant elements: for each P ∈ V, define a continuous function ϕP by

1. ϕP(P) = 1;

2. ϕP(Q) = 0 for Q ∈ V \ {P};
3. the restriction of ϕP to each ∆ ∈ T is affine

V := S0
1 (T ) = span{ϕP : P ∈ V},

1st degree splines (restrictions to ∆’s have degree≤ 1) with smoothness 0
(i.e. continuous).
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Nonlinear approximation and computations

Why is this choice of V good?

Quasi-uniform triangulation T = {∆} : |∆| ≈ |∆′|.
h = max(diam∆), coarseness parameter

T := Th, Galerkin method gives approximate solution

uh ∈ Vh := S0
1 (Th)

A priori estimate: u exact solution to (?)

‖u − uh‖H1
0 (Ω) ≤ Ch‖u‖H2(Ω) ≤ Ch‖f ‖L2(Ω)

if ∂Ω smooth.
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Nonlinear approximation and computations: AFEM

Adaptive FEM: quasi-uniform triangulations not always suitable.

Scheme Use a posteriori error estimator to refine triangulation at
necessary places

h = max(diam∆) loses its value as measure of coarseness

Substitute: n=number of triangles
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Nonlinear approximation and computations: AFEM
Adaptive schemes ’seems’ reasonable, but rigorous derivation?

For any Galerkin solution U (S0
1 -spline on n triangles)

En(u)H1
0 (Ω) ≤ ‖u − U‖H1

0 (Ω)

but ‖u − U‖H1
0 (Ω) may be much larger

Theorem (Binev, Dahmen, DeVore ’04)

Let u be the solution to (?). If u can be approximated (nonlinearly) by 1st
order continuous splines with rate

En(u)H1
0 (Ω) = O(n−γ)

then there is an explicit adaptive algorithm that in O(n) steps constructs
a triangulation Tn with ]Tn = O(n) and a Galerkin solution un ∈ S0

1 (Tn)
s.t.

‖u − un‖H1
0 (Ω) = O(n−γ)
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Nonlinear approximation and computations: AFEM

Program: from approximation to computation

1. Determine which functions have En(u)H1
0 (Ω) = O(n−γ)

(inverse theorem; how smooth must u be?)

2. Use regularity theory for PDE’s to ensure that the exact solution u has
correct smoothness (play with f and Ω).

3. Previous theorem guarantees that Galerkin’s method effectively
computes u.

Moral of the story: nontrivial computational information obtained from
rate of approximation.
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Highly nonlinear spline approximation
Besov space Bs

τ,τ (0 < τ, s <∞)

Roughly: f ∈ Bs
τ,τ means that f has partial derivatives up to order s in

Lτ (Ω).

Since s may be fractional, definition is not so simple.

Bs
τ,τ closely related to nonlinear approximation in Lp(Ω) (Ω ⊂ Rd) when

1

τ
=

s

d
+

1

p

(Critical line; Sobolev embedding theorem Bs
τ,τ ↪→ Lp(Ω).)

Notation S(n, 1, 0): set of continuous functions S on Ω such that there
exists a ’triangulation’ T = {∆} with

S |∆ is affine and ]T ≤ n
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Highly nonlinear spline approximation
For continuous piecewise linear spline approximation on ’triangles’ and
parameters satisfying

1

τ
=

s

d
+

1

p
, 0 < s ≤ d(1 + 1/p)

Direct estimate For any f we have

En(f )p ≤ cn−s/d |f |Bs
τ,τ

Inverse estimate Assume that S1 ∈ S(n, 1, 0) and S2 ∈ S(Kn, 1, 0), then

|S2|Bs
τ,τ
≤ |S1|Bs

τ,τ
+ cns/d‖S1 − S2‖p

S1 ∈ Bs
τ,τ ’simple’ function, S2 ’complex’ function;

If error ‖S2 − S1‖p = O(n−s/d), then

|S2|Bs
τ,τ
≤ |S1|Bs

τ,τ
+ cns/d × n−s/d <∞.
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