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Overview: objectives

Objectives of this talk
1. informally discuss some basic ideas from nonlinear approximation and

their applications in computation;
2. vaguely describe the results of [1], with minimal use of black magic
from theory of function spaces

[1] M. Lind & P. Petrushev, Nonlinear nonnested spline approximation

submitted, in revision
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Overview: approximation and computation

Approximation Theory - resolve a complicated target function by a
sequence of functions of small complexity (approximants)

Computation - in a sense the same goal
What assumptions?

Approximation: some direct knowledge of the target function, typically
values of simple functionals acting on it (e.g. point evaluations)

Computation: here knowledge of the target function is usually indirect, e.g.
it satisfies a PDE.

Still, the subjects are closely connected.
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Notation

Q C R? domain, p € (0, o).
LP(Q2) - space of functions such that

Il = ( i |f(x)|de)l/” <

|f|looc = esssup |f(x)] < oo.
xeN

or

HZ () - space of functions f such that f =0 on 9 and

1l @) = [Ifll2 + [[[VFll2 < oo
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Linear approximation

(X, |l - IIx) - normed vector space (typically a space of functions)
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Linear approximation

(X, |l - IIx) - normed vector space (typically a space of functions)

Sequence F = {X;} of finite-dimensional subspaces

XoCcXgCc..cX,C...CcX

(approximation scheme)
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Linear approximation

(X, |l - IIx) - normed vector space (typically a space of functions)

Sequence F = {X;} of finite-dimensional subspaces

XoCcXgCc..cX,C...CcX

(approximation scheme)
Error of best approximation of f € X

En(f)x = En(f, F)x = inf ||f —gl|x
gGXn

Note E,(f)x decreasing sequence of real numbers
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Example: Weierstrass' theorem

Example: X = C(0,1) with norm || - [|x = || - ||
Xn = Pn = {polynomials of degree < n}

and
Ex(f)oo = inf [ = pllc
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Example: Weierstrass' theorem

Example: X = C(0,1) with norm || - [|[x = - |leo
Xn = Pn = {polynomials of degree < n}

and
Ei(f)oe = inf ||f — plloo
(F)e = inf [IF = pl
Weierstrass' theorem:

lim En(f)oo =0

n—o00
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One main question

E,(f)x encodes quality of approximation - central object.
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One main question
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On the other hand, constructive characteristics are not so easy to
understand

Fundamental problem

Given
e approximation scheme (several examples below);
e norm || - ||x to measure error of best approximation (e.g. X = LP).
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One main question

E,(f)x encodes quality of approximation - central object.

On the other hand, constructive characteristics are not so easy to
understand

Fundamental problem

Given

e approximation scheme (several examples below);

e norm || - ||x to measure error of best approximation (e.g. X = LP).
Question

relationship between

intrinsic properties of f  «~  behaviour of E,(f)x?
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One main question

Main focus of our research in this area

Interested in results of the following type

given f € ], one has E,(f)x = O(n™") (direct result/Jackson estimate)

given Ep(f)x = O(n™7), one has f € [ (inverse result/Bernstein estimate)

Ideally, direct and inverse results should match (i.e. [1 = [J); not always
the case
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Nonlinear approximation: set-up

Sequence F = {Xj} of sets/manifolds (not vector spaces) such that:
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Nonlinear approximation: set-up

Sequence F = {Xj} of sets/manifolds (not vector spaces) such that:
XoCXiC...CcX,C..CX,
aXj=X; (VaeR)and
Xn+Xn={x+y:xy€Xp} CXe

some fixed ¢ € N (bounded nonlinearity)
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Nonlinear approximation: set-up

Sequence F = {Xj} of sets/manifolds (not vector spaces) such that:
XoCXiC...CcX,C..CX,
aXj=X; (VaeR)and
Xn+Xn={x+y:xy€Xp} CXe

some fixed ¢ € N (bounded nonlinearity)

As before,
E,(f)x = Ex(f, F)x = inf ||f —gllx
geXn
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Example: N-term approximation

W = {9} a sequence of functions (think of as basis)
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W = {9} a sequence of functions (think of as basis)

XNZ{g:ZCkWiW\SN}

ke

Scheme: approximate f with superpos. of at most N elements from W

Xn C Xny1, Xy + Xy C Xon
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Example: N-term approximation

W = {9} a sequence of functions (think of as basis)

XNZ{g:ZCkWiW\SN}

ke

Scheme: approximate f with superpos. of at most N elements from W

Xn C Xny1, Xy + Xy C Xon

Compression: approximate a signal having f(spectrum) = M by using
N << M frequencies.
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Example: Free knot spline approximation
Set of points (" knots")

T={0=x0<x1<..<xp=1}
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Example: Free knot spline approximation
Set of points (" knots")

T={0=x<x1<..<xp,=1}

A k-th order spline on T
=function s such that s is a polynomial of degree< k on each (xj, xj+1).

Sk(T) = space of all k-th order splines on T
Example k=0, 7 ={j/n:0<,<n}
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Example: Free knot spline approximation
Set of points (" knots")

T={0=xo<x <..<xp=1}
A k-th order spline on T
=function s such that s is a polynomial of degree< k on each (xj, xj+1).
Sk(T) = space of all k-th order splines on T

Example k=0, 7 ={j/n:0<j<n}
So(T)=all step functions (uniform step 1/n)
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Example: Free knot spline approximation

Spline manifolds

Xn = 8(n, k) = {s: 3T such that s € S,(7) and §(7) < n+ 1}

Martin Lind (Karlstad) Nonlinear Approximation KAAS Colloquium 12 /22
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Example: Free knot spline approximation

Spline manifolds

Xn=8(n, k) ={s: 3T such that s € S, (T) and §(7) < n+ 1}

Xn C Xn—i—l, Xn + Xn C X2n

What is the point?! Point is that partitions are allowed to adapt to
target function = better approximating power
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A comparison
Example: f(x) =x%, 0<x<1,0<a<1.
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A comparison

Philosophy: place the knots where they are useful!
(= equidistribute error/local variation)
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A comparison

Philosophy: place the knots where they are useful!
(= equidistribute error/local variation)

Error rates for approximation of f(x) = x® (Oth order spline, L>°-norm):
1 1
N = and EPY()oe =

Nonlinear method has faster convergence!

Direct and inverse theorem (Oth order spline, L)

EL(f)eo = O(1/n) &  f bounded
ENL(f)eo = O(1/n) <= f bounded variation

General Optimal rate attained for wider class of functions.
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Nonlinear approximation and computations

Extended example (applications)
Let Q € R? and consider Dirichlet problem for Poisson’s equation:

(%) —Au =f in Q
u =0 on 920

Weak formulation of (%)

(%) /vu-Vvdx:/ fudx all v € H3(Q)
Q Q

Galerkin method solve (xx) in a finite-dimensional subspace V C H}(Q)
How to choose V7
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Nonlinear approximation and computations

e T =triangulation of Q, i.e. Q ~ UAETA
e V=vertices of triangles of T
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Nonlinear approximation and computations

e T =triangulation of Q, i.e. Q ~ UAETA
e V=vertices of triangles of T

Courant elements: for each P € V), define a continuous function pp by
L pp(P)=1;
2. op(Q)=0for Q e V\ {P};
3. the restriction of pp to each A € T is affine

V = S)T) = span{pp : P € V},

1st degree splines (restrictions to A's have degree< 1) with smoothness 0
(i.e. continuous).
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Nonlinear approximation and computations

Why is this choice of V good?
Quasi-uniform triangulation 7 = {A} 1 |A| = |A/].
h = max(diamA), coarseness parameter

T := Tp, Galerkin method gives approximate solution

up € Vi := S2(Th)
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Nonlinear approximation and computations

Why is this choice of V good?
Quasi-uniform triangulation 7 = {A} 1 |A| = |A/].
h = max(diamA), coarseness parameter

T := Tp, Galerkin method gives approximate solution
up € Vi := SY(Th)
A priori estimate: u exact solution to (%)

lu = unll () < Chllullpei) < Chlfll)

if 0Q smooth.
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Nonlinear approximation and computations: AFEM

Adaptive FEM: quasi-uniform triangulations not always suitable.
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Nonlinear approximation and computations: AFEM

Adaptive FEM: quasi-uniform triangulations not always suitable.

N

W\
A

AV

N
N

A7
WAAAAA

Scheme Use a posteriori error estimator to refine triangulation at
necessary places
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Nonlinear approximation and computations: AFEM

Adaptive FEM: quasi-uniform triangulations not always suitable.

N

WAVA
>

N
ZAVZAVA!

h'iv‘un"
Pava)

WA

N

N
V7

LA
<] VAVAVAVA)

vaval
AVAN
TN,

PAVAVAVAVA VA VAV

Scheme Use a posteriori error estimator to refine triangulation at
necessary places

h = max(diamA) loses its value as measure of coarseness
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Nonlinear approximation and computations: AFEM

Adaptive FEM: quasi-uniform triangulations not always suitable.

N

WAVA
>

N
ZAVZAVA!

WAV
V7

AV

'i'iv‘
Pava)
VAV

PAVAY
VA VA VAV

g
\Vawal|
S
ARV,

LV

s
Pa
W AAAAA A

Scheme Use a posteriori error estimator to refine triangulation at

necessary places

h = max(diamA) loses its value as measure of coarseness

Substitute: n=number of triangles
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Nonlinear approximation and computations: AFEM
Adaptive schemes 'seems’ reasonable, but rigorous derivation?
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For any Galerkin solution U (S9-spline on n triangles)
En(u)ppia) < llu = Ul o)
but ||u — UHH&(Q) may be much larger
Theorem (Binev, Dahmen, DeVore '04)
Let u be the solution to (). If u can be approximated (nonlinearly) by 1st

order continuous splines with rate

En(u)pp) = O(n™7)
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Nonlinear approximation and computations: AFEM
Adaptive schemes 'seems’ reasonable, but rigorous derivation?

For any Galerkin solution U (S9-spline on n triangles)
En(u)ppia) < llu = Ul o)
but ||u — UHH&(Q) may be much larger

Theorem (Binev, Dahmen, DeVore '04)

Let u be the solution to (). If u can be approximated (nonlinearly) by 1st
order continuous splines with rate

En(u)pp) = O(n™7)

then there is an explicit adaptive algorithm that in O(n) steps constructs
a triangulation T, with §T, = O(n) and a Galerkin solution u, € S9(T,)
s.t.

lu = unllgy@)y = O(n™")
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Nonlinear approximation and computations: AFEM

Program: from approximation to computation
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Nonlinear approximation and computations: AFEM

Program: from approximation to computation

1. Determine which functions have E,,(u),_,&(ﬂ) =0(n7")
(inverse theorem; how smooth must u be?)
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1. Determine which functions have E,,(u)H&(Q) =0(n7")
(inverse theorem; how smooth must u be?)

2. Use regularity theory for PDE's to ensure that the exact solution u has
correct smoothness (play with f and Q).
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Nonlinear approximation and computations: AFEM

Program: from approximation to computation

1. Determine which functions have E,,(u)H&(Q) =0(n7")
(inverse theorem; how smooth must u be?)

2. Use regularity theory for PDE's to ensure that the exact solution u has
correct smoothness (play with f and Q).

3. Previous theorem guarantees that Galerkin's method effectively
computes u.

Moral of the story: nontrivial computational information obtained from
rate of approximation.
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Highly nonlinear spline approximation

Besov space B: . (0 < 7,5 < 00)
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Highly nonlinear spline approximation

Besov space B . (0 < 7,5 < 00)

Roughly: f € B? . means that f has partial derivatives up to order s in
L7(Q).

Since s may be fractional, definition is not so simple.
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Besov space B . (0 < 7,5 < 00)

Roughly: f € B? . means that f has partial derivatives up to order s in
L7(Q).

Since s may be fractional, definition is not so simple.

B; , closely related to nonlinear approximation in LP(Q) (Q C R?) when

_s+1
r d p

(Critical line; Sobolev embedding theorem B | — LP(Q2).)

Martin Lind (Karlstad) Nonlinear Approximation KAAS Colloquium 21 /22



Highly nonlinear spline approximation
Besov space B . (0 < 7,5 < 00)

Roughly: f € B? . means that f has partial derivatives up to order s in
L7(Q).

Since s may be fractional, definition is not so simple.
B; , closely related to nonlinear approximation in LP(Q) (Q C R?) when

s+1
d p

;
(Critical line; Sobolev embedding theorem B | — LP(Q2).)

Notation S(n,1,0): set of continuous functions S on  such that there
exists a 'triangulation’ 7 = {A} with

S|a is affine and #7 <n
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Highly nonlinear spline approximation
For continuous piecewise linear spline approximation on 'triangles’ and
parameters satisfying

1 s

1
- Z 0<s<d(l+1
. d+p, <s<d(l1+1/p)

Martin Lind (Karlstad) Nonlinear Approximation KAAS Colloquium 22 /22



Highly nonlinear spline approximation

For continuous piecewise linear spline approximation on 'triangles’ and
parameters satisfying

1 s 1

—=—-4—-, 0<s<d(1+1

i <d(1+1/p)

Direct estimate For any f we have

En(f)p < C”_s/de;T
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Highly nonlinear spline approximation

For continuous piecewise linear spline approximation on 'triangles’ and
parameters satisfying

1 5 1
- = -4 - 0 <d(1l+1
. d+p, <s<d(l1+1/p)

Direct estimate For any f we have

En(f)p < cn*/9|f|gs .

Inverse estimate Assume that S; € §(n, 1,0) and S; € S(Kn, 1,0), then

|Salgs . < [Suls, + cn®/9|1S1 — Syl

T
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Highly nonlinear spline approximation

For continuous piecewise linear spline approximation on 'triangles’ and
parameters satisfying

1 s 1

S=242 0<s<dl+1
. d+p, <s<d(l1+1/p)

Direct estimate For any f we have

En(f)p < cn*/9|f|gs .

Inverse estimate Assume that S; € §(n, 1,0) and S; € S(Kn, 1,0), then
|Salgs . < [Suls, + cn®/9|1S1 — Syl

S € B;T 'simple’ function, S, 'complex’ function;
If error ||Sa — Si]|, = O(n™5/9), then

T

|52|B$r < |51|B$r + Cns/d X n_s/d < 0.
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