Nonlinear Approximation - An Idiot Abroad

Martin Lind

Department of Mathematics and Computer Science, Karlstad University

KAAS Colloquium

Overview: objectives

Objectives of this talk

Martin Lind (Karlstad)

Overview: objectives

Objectives of this talk

1. *informally* discuss some *basic* ideas from nonlinear approximation and their applications in computation;

Overview: objectives

Objectives of this talk

- 1. *informally* discuss some *basic* ideas from nonlinear approximation and their applications in computation;
- 2. vaguely describe the results of [1], with *minimal* use of black magic from theory of function spaces

[1] M. Lind & P. Petrushev, *Nonlinear nonnested spline approximation* submitted, in revision

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)

Computation - in a sense the same goal

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)

Computation - in a sense the same goal

What assumptions?

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)

Computation - in a sense the same goal

What assumptions?

Approximation: some direct knowledge of the target function, typically values of simple functionals acting on it (e.g. point evaluations)

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)

Computation - in a sense the same goal

What assumptions?

Approximation: some direct knowledge of the target function, typically values of simple functionals acting on it (e.g. point evaluations)

Computation: here knowledge of the target function is usually indirect, e.g. it satisfies a PDE.

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)

Computation - in a sense the same goal

What assumptions?

Approximation: some direct knowledge of the target function, typically values of simple functionals acting on it (e.g. point evaluations)

Computation: here knowledge of the target function is usually indirect, e.g. it satisfies a PDE.

Still, the subjects are closely connected.

Notation

 $\Omega \subseteq \mathbb{R}^d$ domain, $p \in (0,\infty]$.

 $L^p(\Omega)$ - space of functions such that

$$|f||_{p} := \left(\int_{\Omega} |f(x)|^{p} dx\right)^{1/p} < \infty$$

or

$$\|f\|_{\infty} = \operatorname{ess\,sup}_{x\in\Omega} |f(x)| < \infty.$$

 $H^1_0(\Omega)$ - space of functions f such that f = 0 on $\partial \Omega$ and

$$\|f\|_{H^1_0(\Omega)} := \|f\|_2 + \||\nabla f|\|_2 < \infty$$

Martin Lind (Karlstad)

Linear approximation

 $(X, \|\cdot\|_X)$ - normed vector space (typically a space of functions)

Linear approximation

 $(X, \|\cdot\|_X)$ - normed vector space (typically a space of functions) Sequence $\mathcal{F} = \{X_j\}$ of finite-dimensional subspaces

$$X_0 \subset X_1 \subset ... \subset X_n \subset ... \subset X$$

(approximation scheme)

Linear approximation

 $(X, \|\cdot\|_X)$ - normed vector space (typically a space of functions) Sequence $\mathcal{F} = \{X_i\}$ of finite-dimensional subspaces

$$X_0 \subset X_1 \subset ... \subset X_n \subset ... \subset X$$

(approximation scheme) Error of best approximation of $f \in X$

$$E_n(f)_X = E_n(f, \mathcal{F})_X = \inf_{g \in X_n} \|f - g\|_X$$

Note $E_n(f)_X$ decreasing sequence of real numbers

Martin Lind (Karlstad)

Nonlinear Approximation

Example: Weierstrass' theorem

Example: X = C(0, 1) with norm $\|\cdot\|_X = \|\cdot\|_\infty$

$$X_n = \mathcal{P}_n = \{ \text{polynomials of degree} \le n \}$$

and

$$E_n(f)_{\infty} = \inf_{p \in \mathcal{P}_n} \|f - p\|_{\infty}$$

Example: Weierstrass' theorem

Example: X = C(0,1) with norm $\|\cdot\|_X = \|\cdot\|_\infty$

$$X_n = \mathcal{P}_n = \{ \text{polynomials of degree} \le n \}$$

and

$$E_n(f)_{\infty} = \inf_{p \in \mathcal{P}_n} \|f - p\|_{\infty}$$

Weierstrass' theorem:

 $\lim_{n\to\infty}E_n(f)_{\infty}=0$

Martin Lind (Karlstad)

 $E_n(f)_X$ encodes quality of approximation - central object.

 $E_n(f)_X$ encodes quality of approximation - central object.

On the other hand, constructive characteristics are not so easy to understand

 $E_n(f)_X$ encodes quality of approximation - central object.

On the other hand, constructive characteristics are not so easy to understand

Fundamental problem

 $E_n(f)_X$ encodes quality of approximation - central object.

On the other hand, constructive characteristics are not so easy to understand

Fundamental problem

Given

- approximation scheme (several examples below);
- norm $\|\cdot\|_X$ to measure error of best approximation (e.g. $X = L^p$).

 $E_n(f)_X$ encodes quality of approximation - central object.

On the other hand, constructive characteristics are not so easy to understand

Fundamental problem

Given

- approximation scheme (several examples below);
- norm $\|\cdot\|_X$ to measure error of best approximation (e.g. $X = L^p$).

Question

relationship between

intrinsic properties of $f \iff$ behaviour of $E_n(f)_X$?

Martin Lind (Karlstad)

Nonlinear Approximation

Main focus of our research in this area

Interested in results of the following type

Main focus of our research in this area

Interested in results of the following type

given $f \in \Box$, one has $E_n(f)_X = \mathcal{O}(n^{-\gamma})$ (direct result/Jackson estimate)

Main focus of our research in this area

Interested in results of the following type

given $f \in \Box$, one has $E_n(f)_X = O(n^{-\gamma})$ (direct result/Jackson estimate) given $E_n(f)_X = O(n^{-\gamma})$, one has $f \in \Box$ (inverse result/Bernstein estimate)

Main focus of our research in this area

Interested in results of the following type

given $f \in \Box$, one has $E_n(f)_X = O(n^{-\gamma})$ (direct result/Jackson estimate) given $E_n(f)_X = O(n^{-\gamma})$, one has $f \in \Box$ (inverse result/Bernstein estimate)

Ideally, direct and inverse results should match (i.e. $\Box = \Box$); not always the case

Sequence $\mathcal{F} = \{X_j\}$ of sets/manifolds (**not** vector spaces) such that:

Sequence $\mathcal{F} = \{X_j\}$ of sets/manifolds (**not** vector spaces) such that:

$$X_0 \subset X_1 \subset ... \subset X_n \subset ... \subset X,$$

Sequence $\mathcal{F} = \{X_j\}$ of sets/manifolds (**not** vector spaces) such that:

$$X_0 \subset X_1 \subset ... \subset X_n \subset ... \subset X$$
,

 $aX_j = X_j \ (\forall a \in \mathbb{R})$ and

$$X_n + X_n = \{x + y : x, y \in X_n\} \subset X_{cn}$$

some fixed $c \in \mathbb{N}$ (bounded nonlinearity)

Sequence $\mathcal{F} = \{X_j\}$ of sets/manifolds (**not** vector spaces) such that:

$$X_0 \subset X_1 \subset ... \subset X_n \subset ... \subset X$$
,

 $aX_j = X_j \ (\forall a \in \mathbb{R})$ and

$$X_n + X_n = \{x + y : x, y \in X_n\} \subset X_{cn}$$

some fixed $c \in \mathbb{N}$ (bounded nonlinearity)

As before,

$$E_n(f)_X = E_n(f,\mathcal{F})_X = \inf_{g \in X_n} \|f - g\|_X$$

Martin Lind (Karlstad)

 $\Psi = \{\psi_k\}$ a sequence of functions (think of as basis)

 $\Psi = \{\psi_k\}$ a sequence of functions (think of as basis)

$$X_N = \left\{ g = \sum_{k \in \Lambda} c_k \psi_k : \sharp \Lambda \le N \right\}$$

 $\Psi = \{\psi_k\}$ a sequence of functions (think of as basis)

$$X_N = \left\{ g = \sum_{k \in \Lambda} c_k \psi_k : \sharp \Lambda \le N \right\}$$

Scheme: approximate f with superpos. of at most N elements from Ψ

 $\Psi = \{\psi_k\}$ a sequence of functions (think of as basis)

$$X_N = \left\{ g = \sum_{k \in \Lambda} c_k \psi_k : \sharp \Lambda \le N \right\}$$

Scheme: approximate f with superpos. of at most N elements from Ψ

$$X_N \subset X_{N+1}, \quad X_N + X_N \subset X_{2N}$$

Martin Lind (Karlstad)

 $\Psi = \{\psi_k\}$ a sequence of functions (think of as basis)

$$X_N = \left\{ g = \sum_{k \in \Lambda} c_k \psi_k : \sharp \Lambda \le N \right\}$$

Scheme: approximate f with superpos. of at most N elements from Ψ

$$X_N \subset X_{N+1}, \quad X_N + X_N \subset X_{2N}$$

Compression: approximate a signal having $\sharp(spectrum) = M$ by using $N \ll M$ frequencies.

Martin Lind (Karlstad)

Nonlinear Approximation

Example: Free knot spline approximation

Set of points ("knots")

$$\mathcal{T} = \{ 0 = x_0 < x_1 < \dots < x_n = 1 \}$$
Set of points ("knots")

$$\mathcal{T} = \{ 0 = x_0 < x_1 < \dots < x_n = 1 \}$$

A *k*-th order spline on \mathcal{T}

=function s such that s is a polynomial of degree $\leq k$ on each (x_j, x_{j+1}) .

Set of points ("knots")

$$\mathcal{T} = \{ 0 = x_0 < x_1 < \dots < x_n = 1 \}$$

A *k*-th order spline on \mathcal{T}

=function s such that s is a polynomial of degree $\leq k$ on each (x_j, x_{j+1}) .

 $S_k(\mathcal{T}) =$ space of all k-th order splines on \mathcal{T}

Set of points ("knots")

$$\mathcal{T} = \{0 = x_0 < x_1 < \dots < x_n = 1\}$$

A *k*-th order spline on \mathcal{T}

=function s such that s is a polynomial of degree $\leq k$ on each (x_j, x_{j+1}) .

 $S_k(\mathcal{T}) =$ space of all k-th order splines on \mathcal{T}

Example k = 0, $T = \{j/n : 0 \le j \le n\}$

Set of points ("knots")

$$\mathcal{T} = \{ 0 = x_0 < x_1 < \dots < x_n = 1 \}$$

A *k*-th order spline on \mathcal{T}

=function s such that s is a polynomial of degree $\leq k$ on each (x_j, x_{j+1}) .

 $S_k(\mathcal{T}) =$ space of all k-th order splines on \mathcal{T}

Example k = 0, $\mathcal{T} = \{j/n : 0 \le j \le n\}$ $S_0(\mathcal{T})=$ all step functions (uniform step 1/n)

Spline manifolds

 $X_n = \mathcal{S}(n,k) = \{s : \exists \mathcal{T} \text{ such that } s \in S_k(\mathcal{T}) \text{ and } \sharp(\mathcal{T}) \leq n+1\}$

Spline manifolds

$$X_n = \mathcal{S}(n,k) = \{s : \exists \mathcal{T} \text{ such that } s \in S_k(\mathcal{T}) \text{ and } \sharp(\mathcal{T}) \leq n+1\}$$

$$X_n \subset X_{n+1}, \quad X_n + X_n \subset X_{2n}$$

Spline manifolds

$$X_n = \mathcal{S}(n,k) = \{s : \exists \mathcal{T} \text{ such that } s \in S_k(\mathcal{T}) \text{ and } \sharp(\mathcal{T}) \leq n+1\}$$

$$X_n \subset X_{n+1}, \quad X_n + X_n \subset X_{2n}$$

What is the point?! Point is that partitions are allowed to adapt to target function \Rightarrow better approximating power

Martin Lind (Karlstad)

Nonlinear Approximation

KAAS Colloquium 12 / 22

Example: $f(x) = x^{\alpha}$, 0 < x < 1, $0 < \alpha < 1$.

Example: $f(x) = x^{\alpha}$, 0 < x < 1, $0 < \alpha < 1$. Oth order spline approximation in $L^{\infty}(0, 1)$

(i.e. approximation with piecewise constants)

Example: $f(x) = x^{\alpha}$, 0 < x < 1, $0 < \alpha < 1$. Oth order spline approximation in $L^{\infty}(0, 1)$

(i.e. approximation with piecewise constants)

Linear approximation equidistant knots $x_i = i/n$ ($0 \le i \le n$)

Example: $f(x) = x^{\alpha}$, 0 < x < 1, $0 < \alpha < 1$. Oth order spline approximation in $L^{\infty}(0, 1)$ (i.e. approximation with piecewise constants)

Linear approximation equidistant knots $x_i = i/n$ ($0 \le i \le n$)

Case $\alpha = 1/2$, n = 10

Example: $f(x) = x^{\alpha}$, 0 < x < 1, $0 < \alpha < 1$. Oth order spline approximation in $L^{\infty}(0, 1)$ (i.e. approximation with piecewise constants)

Linear approximation equidistant knots $x_i = i/n$ ($0 \le i \le n$)

Case $\alpha = 1/2$, n = 10

Example: $f(x) = x^{\alpha}$, 0 < x < 1, $0 < \alpha < 1$. Oth order spline approximation in $L^{\infty}(0, 1)$ (i.e. approximation with piecewise constants)

Linear approximation equidistant knots $x_i = i/n$ ($0 \le i \le n$) **Nonlinear approximation** knots $t_i = (i/n)^{1/\alpha}$ ($0 \le i \le n$)

Case $\alpha = 1/2$, n = 10

Example: $f(x) = x^{\alpha}$, 0 < x < 1, $0 < \alpha < 1$. Oth order spline approximation in $L^{\infty}(0, 1)$ (i.e. approximation with piecewise constants)

Linear approximation equidistant knots $x_i = i/n$ ($0 \le i \le n$) **Nonlinear approximation** knots $t_i = (i/n)^{1/\alpha}$ ($0 \le i \le n$)

Case $\alpha = 1/2$, n = 10

Example: $f(x) = x^{\alpha}$, 0 < x < 1, $0 < \alpha < 1$. Oth order spline approximation in $L^{\infty}(0, 1)$ (i.e. approximation with piecewise constants)

Linear approximation equidistant knots $x_i = i/n$ ($0 \le i \le n$) **Nonlinear approximation** knots $t_i = (i/n)^{1/\alpha}$ ($0 \le i \le n$)

Case $\alpha = 1/2$, n = 10

Philosophy: place the knots where they are useful! (\approx equidistribute error/local variation)

Philosophy: place the knots where they are useful! (\approx equidistribute error/local variation)

Error rates for approximation of $f(x) = x^{\alpha}$ (0th order spline, L^{∞} -norm):

$$E_n^L(f)_{\infty} \asymp rac{1}{n^{lpha}} \quad ext{and} \quad E_n^{NL}(f)_{\infty} = rac{1}{n}$$

Nonlinear method has faster convergence!

Philosophy: place the knots where they are useful! (\approx equidistribute error/local variation)

Error rates for approximation of $f(x) = x^{\alpha}$ (0th order spline, L^{∞} -norm):

$$E_n^L(f)_{\infty} \asymp rac{1}{n^{lpha}} \quad ext{and} \quad E_n^{NL}(f)_{\infty} = rac{1}{n}$$

Nonlinear method has faster convergence!

Direct and inverse theorem (0th order spline, L^{∞})

$$E_n^L(f)_{\infty} = \mathcal{O}(1/n) \iff f' \text{ bounded}$$

 $E_n^{NL}(f)_{\infty} = \mathcal{O}(1/n) \iff f \text{ bounded variation}$

Philosophy: place the knots where they are useful! (\approx equidistribute error/local variation)

Error rates for approximation of $f(x) = x^{\alpha}$ (0th order spline, L^{∞} -norm):

$$E_n^L(f)_{\infty} \asymp rac{1}{n^{lpha}} \quad ext{and} \quad E_n^{NL}(f)_{\infty} = rac{1}{n}$$

Nonlinear method has faster convergence!

Direct and inverse theorem (0th order spline, L^{∞})

$$E_n^L(f)_{\infty} = \mathcal{O}(1/n) \iff f' \text{ bounded}$$

 $E_n^{NL}(f)_{\infty} = \mathcal{O}(1/n) \iff f \text{ bounded variation}$

General Optimal rate attained for wider class of functions.

Martin Lind (Karlstad)

Nonlinear Approximation

Extended example (applications)

Extended example (applications)

Let $\Omega \subset \mathbb{R}^2$ and consider Dirichlet problem for Poisson's equation:

$$(\star) \qquad \left\{ \begin{array}{rrr} -\Delta u &= f \quad \text{in} \quad \Omega \\ u &= 0 \quad \text{on} \quad \partial \Omega \end{array} \right.$$

Extended example (applications)

Let $\Omega \subset \mathbb{R}^2$ and consider Dirichlet problem for Poisson's equation:

$$(\star) \qquad \left\{ \begin{array}{rrr} -\Delta u &= f \quad \mathrm{in} \quad \Omega \\ u &= 0 \quad \mathrm{on} \quad \partial \Omega \end{array} \right.$$

Weak formulation of (\star)

$$(\star\star)$$
 $\int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx$ all $v \in H^1_0(\Omega)$

Extended example (applications)

Let $\Omega \subset \mathbb{R}^2$ and consider Dirichlet problem for Poisson's equation:

$$(\star) \qquad \left\{ \begin{array}{rrr} -\Delta u &= f \quad \mathrm{in} \quad \Omega \\ u &= 0 \quad \mathrm{on} \quad \partial \Omega \end{array} \right.$$

Weak formulation of (\star)

$$(\star\star) \quad \int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx \quad \text{all} \quad v \in H^1_0(\Omega)$$

Galerkin method solve $(\star\star)$ in a finite-dimensional subspace $V \subset H^1_0(\Omega)$

Extended example (applications)

Let $\Omega \subset \mathbb{R}^2$ and consider Dirichlet problem for Poisson's equation:

$$(\star) \qquad \left\{ \begin{array}{rrr} -\Delta u &= f \quad \mathrm{in} \quad \Omega \\ u &= 0 \quad \mathrm{on} \quad \partial \Omega \end{array} \right.$$

Weak formulation of (\star)

$$(\star\star) \quad \int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx \quad \text{all} \quad v \in H^1_0(\Omega)$$

Galerkin method solve $(\star\star)$ in a finite-dimensional subspace $V \subset H_0^1(\Omega)$ How to choose V?

- \mathcal{T} =triangulation of Ω , i.e. $\Omega \approx \bigcup_{\Delta \in \mathcal{T}} \Delta$
- $\bullet \, \mathcal{V}{=}\mathsf{vertices}$ of triangles of \mathcal{T}

- $\mathcal{T}{=}\mathsf{triangulation}$ of $\Omega,$ i.e. $\Omega\approx\bigcup_{\Delta\in\mathcal{T}}\Delta$
- $\bullet \, \mathcal{V}{=}\mathsf{vertices}$ of triangles of \mathcal{T}

Courant elements: for each $P \in \mathcal{V}$, define a continuous function φ_P by

1.
$$\varphi_P(P) = 1;$$

2.
$$\varphi_P(Q) = 0$$
 for $Q \in \mathcal{V} \setminus \{P\}$;

3. the restriction of φ_P to each $\Delta \in \mathcal{T}$ is affine

- $\mathcal{T}{=}\mathsf{triangulation}$ of $\Omega,$ i.e. $\Omega\approx\bigcup_{\Delta\in\mathcal{T}}\Delta$
- $\bullet \, \mathcal{V}{=}\mathsf{vertices}$ of triangles of \mathcal{T}

Courant elements: for each $P \in \mathcal{V}$, define a continuous function φ_P by

1.
$$\varphi_P(P) = 1;$$

2.
$$\varphi_P(Q) = 0$$
 for $Q \in \mathcal{V} \setminus \{P\}$;

3. the restriction of φ_P to each $\Delta \in \mathcal{T}$ is affine

$$V := S_1^0(\mathcal{T}) = \operatorname{span}\{\varphi_P : P \in \mathcal{V}\},\$$

1st degree splines (restrictions to Δ 's have degree ≤ 1) with smoothness 0 (i.e. continuous).

Why is this choice of V good?

Why is this choice of V good?

Quasi-uniform triangulation $\mathcal{T} = \{\Delta\}$: $|\Delta| \approx |\Delta'|$.

Why is this choice of V good?

Quasi-uniform triangulation $\mathcal{T} = \{\Delta\}: \quad |\Delta| \approx |\Delta'|.$

 $h = \max(\operatorname{diam}\Delta)$, coarseness parameter

Why is this choice of V good?

Quasi-uniform triangulation $\mathcal{T} = \{\Delta\}$: $|\Delta| \approx |\Delta'|$.

 $h = \max(\operatorname{diam}\Delta)$, coarseness parameter

 $\mathcal{T} := \mathcal{T}_h$, Galerkin method gives approximate solution

$$u_h \in V_h := S_1^0(\mathcal{T}_h)$$

Why is this choice of V good?

Quasi-uniform triangulation $\mathcal{T} = \{\Delta\}$: $|\Delta| \approx |\Delta'|$.

 $h = \max(\mathrm{diam}\Delta)$, coarseness parameter

 $\mathcal{T} := \mathcal{T}_h$, Galerkin method gives approximate solution

$$u_h \in V_h := S_1^0(\mathcal{T}_h)$$

A priori estimate: u exact solution to (\star)

$$||u - u_h||_{H^1_0(\Omega)} \le Ch||u||_{H^2(\Omega)} \le Ch||f||_{L^2(\Omega)}$$

if $\partial \Omega$ smooth.

Adaptive FEM: quasi-uniform triangulations not always suitable.

Adaptive FEM: quasi-uniform triangulations not always suitable.

Adaptive FEM: quasi-uniform triangulations not always suitable.

Scheme Use a posteriori error estimator to refine triangulation at necessary places

Adaptive FEM: quasi-uniform triangulations not always suitable.

Scheme Use a posteriori error estimator to refine triangulation at necessary places

 $h = \max(\operatorname{diam}\Delta)$ loses its value as measure of coarseness
Adaptive FEM: quasi-uniform triangulations not always suitable.

Scheme Use a posteriori error estimator to refine triangulation at necessary places

 $h = \max(\operatorname{diam}\Delta)$ loses its value as measure of coarseness

Substitute: *n*=number of triangles

Nonlinear approximation and computations: AFEM Adaptive schemes 'seems' reasonable, but rigorous derivation?

Nonlinear approximation and computations: AFEM Adaptive schemes 'seems' reasonable, but rigorous derivation?

For any Galerkin solution $U(S_1^0$ -spline on *n* triangles)

$$E_n(u)_{H_0^1(\Omega)} \leq ||u - U||_{H_0^1(\Omega)}$$

but $\|u - U\|_{H^1_0(\Omega)}$ may be much larger

Nonlinear approximation and computations: AFEM Adaptive schemes 'seems' reasonable, but rigorous derivation?

For any Galerkin solution $U(S_1^0$ -spline on *n* triangles)

 $E_n(u)_{H_0^1(\Omega)} \leq ||u - U||_{H_0^1(\Omega)}$

but $||u - U||_{H^1_0(\Omega)}$ may be much larger

Theorem (Binev, Dahmen, DeVore '04)

Let u be the solution to (\star) . If u can be approximated (nonlinearly) by 1st order continuous splines with rate

$$E_n(u)_{H^1_0(\Omega)} = \mathcal{O}(n^{-\gamma})$$

Nonlinear approximation and computations: AFEM Adaptive schemes 'seems' reasonable, but rigorous derivation?

For any Galerkin solution $U(S_1^0$ -spline on *n* triangles)

 $E_n(u)_{H_0^1(\Omega)} \leq ||u - U||_{H_0^1(\Omega)}$

but $||u - U||_{H^1_0(\Omega)}$ may be much larger

Theorem (Binev, Dahmen, DeVore '04)

Let u be the solution to (\star) . If u can be approximated (nonlinearly) by 1st order continuous splines with rate

$$E_n(u)_{H^1_0(\Omega)} = \mathcal{O}(n^{-\gamma})$$

then there is an explicit adaptive algorithm that in $\mathcal{O}(n)$ steps constructs a triangulation \mathcal{T}_n with $\sharp \mathcal{T}_n = \mathcal{O}(n)$ and a Galerkin solution $u_n \in S_1^0(\mathcal{T}_n)$ s.t.

$$\|u-u_n\|_{H^1_0(\Omega)}=\mathcal{O}(n^{-\gamma})$$

Martin Lind (Karlstad)

Nonlinear Approximation

Program: from approximation to computation

Program: from approximation to computation

1. Determine which functions have $E_n(u)_{H_0^1(\Omega)} = O(n^{-\gamma})$ (inverse theorem; how smooth must u be?)

Program: from approximation to computation

- 1. Determine which functions have $E_n(u)_{H_0^1(\Omega)} = O(n^{-\gamma})$ (inverse theorem; how smooth must u be?)
- 2. Use regularity theory for PDE's to ensure that the exact solution u has correct smoothness (play with f and Ω).

Program: from approximation to computation

- 1. Determine which functions have $E_n(u)_{H_0^1(\Omega)} = O(n^{-\gamma})$ (inverse theorem; how smooth must u be?)
- 2. Use regularity theory for PDE's to ensure that the exact solution u has correct smoothness (play with f and Ω).
- 3. Previous theorem guarantees that Galerkin's method effectively computes u.

Program: from approximation to computation

- 1. Determine which functions have $E_n(u)_{H_0^1(\Omega)} = O(n^{-\gamma})$ (inverse theorem; how smooth must u be?)
- 2. Use regularity theory for PDE's to ensure that the exact solution u has correct smoothness (play with f and Ω).
- 3. Previous theorem guarantees that Galerkin's method effectively computes u.

Moral of the story: nontrivial computational information obtained from rate of approximation.

Highly nonlinear spline approximation Besov space $B^s_{\tau,\tau}$ ($0 < \tau, s < \infty$)

Besov space $B^s_{ au, au}$ $(0 < au, s < \infty)$

Roughly: $f \in B^s_{\tau,\tau}$ means that f has partial derivatives up to order s in $L^{\tau}(\Omega)$.

Since *s* may be fractional, definition is not so simple.

Besov space $B^s_{ au, au}$ $(0 < au, s < \infty)$

Roughly: $f \in B^s_{\tau,\tau}$ means that f has partial derivatives up to order s in $L^{\tau}(\Omega)$.

Since *s* may be fractional, definition is not so simple.

 $B^s_{ au, au}$ closely related to nonlinear approximation in $L^p(\Omega)$ $(\Omega\subset\mathbb{R}^d)$ when

$$\frac{1}{\tau} = \frac{s}{d} + \frac{1}{p}$$

(Critical line; Sobolev embedding theorem $B^s_{\tau,\tau} \hookrightarrow L^p(\Omega)$.)

Besov space $B^s_{ au, au}$ $(0 < au, s < \infty)$

Roughly: $f \in B^s_{\tau,\tau}$ means that f has partial derivatives up to order s in $L^{\tau}(\Omega)$.

Since *s* may be fractional, definition is not so simple.

 $B^s_{ au, au}$ closely related to nonlinear approximation in $L^p(\Omega)$ $(\Omega\subset\mathbb{R}^d)$ when

$$rac{1}{ au} = rac{s}{d} + rac{1}{p}$$

(Critical line; Sobolev embedding theorem $B^s_{\tau,\tau} \hookrightarrow L^p(\Omega)$.)

Notation S(n, 1, 0): set of continuous functions S on Ω such that there exists a 'triangulation' $T = {\Delta}$ with

$$S|_{\Delta}$$
 is affine and $\sharp \mathcal{T} \leq n$

Martin Lind (Karlstad)

Nonlinear Approximation

For continuous piecewise linear spline approximation on 'triangles' and parameters satisfying

$$rac{1}{ au} = rac{s}{d} + rac{1}{p}, \quad 0 < s \leq d(1+1/p)$$

For continuous piecewise linear spline approximation on 'triangles' and parameters satisfying

$$rac{1}{ au} = rac{s}{d} + rac{1}{p}, \quad 0 < s \leq dig(1+1/pig)$$

Direct estimate For any *f* we have

$$E_n(f)_p \leq cn^{-s/d}|f|_{B^s_{\tau,\tau}}$$

For continuous piecewise linear spline approximation on 'triangles' and parameters satisfying

$$rac{1}{ au} = rac{s}{d} + rac{1}{p}, \quad 0 < s \leq d(1+1/p)$$

Direct estimate For any *f* we have

$$E_n(f)_p \leq cn^{-s/d}|f|_{B^s_{\tau,\tau}}$$

Inverse estimate Assume that $S_1 \in S(n, 1, 0)$ and $S_2 \in S(Kn, 1, 0)$, then

$$|S_2|_{B^s_{ au, au}} \le |S_1|_{B^s_{ au, au}} + cn^{s/d} \|S_1 - S_2\|_p$$

Martin Lind (Karlstad)

For continuous piecewise linear spline approximation on 'triangles' and parameters satisfying

$$rac{1}{ au} = rac{s}{d} + rac{1}{p}, \quad 0 < s \leq d(1+1/p)$$

Direct estimate For any *f* we have

$$E_n(f)_p \leq cn^{-s/d}|f|_{B^s_{ au, au}}$$

Inverse estimate Assume that $S_1 \in \mathcal{S}(n, 1, 0)$ and $S_2 \in \mathcal{S}(Kn, 1, 0)$, then

$$|S_2|_{B^s_{ au, au}} \leq |S_1|_{B^s_{ au, au}} + cn^{s/d} \|S_1 - S_2\|_p$$

 $S_1 \in B^s_{\tau,\tau}$ 'simple' function, S_2 'complex' function; If error $\|S_2 - S_1\|_p = \mathcal{O}(n^{-s/d})$, then

$$|S_2|_{B^s_{\tau,\tau}} \leq |S_1|_{B^s_{\tau,\tau}} + cn^{s/d} \times n^{-s/d} < \infty.$$

Martin Lind (Karlstad)

Nonlinear Approximation