Physical and numerical modelling of sub-facet surface temperature variability

Fred Meier ⁽¹⁾, Scott Krayenhoff ⁽²⁾, Atsushi Inagaki ⁽³⁾, Dieter Scherer ⁽¹⁾, Andreas Christen ⁽²⁾, Manabu Kanda ⁽³⁾

⁽¹⁾ Department of Ecology, Technische Universität Berlin, Berlin, Germany
⁽²⁾ Department of Geography, University of British Columbia, Vancouver, BC, Canada
⁽³⁾ Department of International Development Engineering, Tokyo Institute of Technology, Tokyo, Japan

Fred Meier, August 10, 2012

Motivation

Progress has been made in micro-scale modelling of urban climates but validations of surface temperatures at the subfacet scale have been limited by the lack of observations

Objective

to compare the variability of surface temperatures at the sub-facet scale by means of outdoor scale model observations and numerical simulations

ICHC.

Fred Meier, August 10, 2012

Comprehensive Outdoor Scale Model COSMO

Kanda M., Kanega M., Kawai T., Sugawara H. & Moriwaki R. (2007): Roughness lengths for momentum and heat derived from outdoor urban scale models. Journal of Applied Meteorology and Climatology, 46, 1067-1079.

TUF-3D Temperature of Urban Facets in 3D

Krayenhoff E. S. & Voogt J. A. (2007): A microscale three-dimensional urban energy balance model for studying surface temperatures. Boundary-Layer Meteorology, 123, 433-461.

TUF-3D simulation: 07.07.2009 00:30

Resolution: 10 cm Spin up time: 24 h

TUF-3D simulation Variability of sub-facet surface temperature

30.4

TUF-3D simulation vs. COSMO measurements (roof)

TUF-3D simulation vs. COSMO measurements (roof)

TUF-3D model output vs. COSMO measurements (NE-facing wall)

TUF-3D model output vs. COSMO measurements

wall

		NE pa	itch TIF	R mear	n	
31.0	31.5	32.0	32.5	33.0	33.5	34.0

TUF-3D model output vs. COSMO measurements

TUF-3D model output vs. COSMO measurements

08. Jul

Why is the observed temperature variability so high in comparison to the simulation?

The role of conduction (2D) in terms of surface temperature variability

The role of convection in terms of surface temperature variability

Higher fluctuations of surface temperatures close to edges

High-frequency Time-Sequential Thermography (1Hz)

Christen A., Meier F. & Scherer D. (2012): High-frequency fluctuations of surface temperatures in an urban environment. Theoretical and Applied Climatology, 108, 301-324.

Conclusions (take home points)

Take care of your scale model and avoid changes in material properties! Be aware of edge effects in scale models in terms of convection and conduction! TUF-3D produces less sub-facet temperature variability but shows a good correlation with the measurements

Acknowledgements: Aya Hagishima Ken-ichi Narita Jochen Richters Hiroshi Takimoto

Experimental Setup

96 m

Meteorological forcing data Radiation fluxes at COSMO site

Meteorological forcing data Air temperature (JMA Kuki Station)

Meteorological forcing data Windsped (JMA Kuki Station)

COSMO material properties

	Unit	Value
Geometric parameters	_	_
Plane area index (λ_p)	_	0.25
Frontal area index (λ_f)	_	0.25
Obstacle height (H)	m	1.5
Wall thickness	m	0.1 ^a
Street direction $(\omega)^{b}$	Degree	47
Radiative properties ^c	-	
Facet albedo of direct		
short-wave radiation	_	Equation (18)
Facet emissivity	_	0.89
Thermal properties ^c		
Thermal conductivity $(\lambda_m(i))$	$W m^{-1} K^{-1}$	1.06
Volumetric heat capacity		
$(c_m(i)\rho_m(i))$	$MJ m^{-3} K$	2.34
Aerodynamic parameters		
Zero-plane displacement		
height (z_d/H)	_	0.46 ^d
Roughness length for		
momentum (z_0/H)	_	0.08^{d}
Roughness length for		
heat (z_T/H)	_	Equation (19)
		with $a = 1.29$
Bulk transfer coefficient of		
face $i (C_H(i)/C_H(roof))^e$	_	1
Reference height (depth)		
Input forcing data height (z_a)	m	3
Zero flux conduction depth	m	1

Thermal inertia $\mu = \sqrt{1.06 * 2.34e6}$ $\mu = 1575 \text{ Jm-2 K-1 s-0.5}$

Kawai, T., Kanda, M., Narita, K., and Hagishima, A. (2007): Validation of a numerical model for urban energy-exchange using outdoor scale-model measurements. International Journal of Climatology, 27, 1931-1942.

