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Introduction 

Decreased kidney function is associated with adverse 

outcomes in patients with heart failure (HF), and HF is a 

known risk factor for renal dysfunction [1,2]. Acute kidney 

injury (AKI) in patients with HF has been thought to be 

Decreased kidney function is associated with increased risk of cardiovascular events and mortality, and heart failure (HF) is a well-
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nal hypoperfusion and ischemia as a result of decreased cardiac output. Another such factor is reduction of absolute or relative circu-
lating blood volume, with the decrease in renal blood flow leading to renal hypoxia followed by a decrease in the glomerular filtration 
rate. However, renal congestion is increasingly being recognized as a potential cause of AKI in patients with HF. Increased central ve-
nous pressure and renal venous pressure lead to increased renal interstitial hydrostatic pressure and a reduction of the glomerular 
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therapies to reduce volume overload. However, these agents are associated with worsening renal function even though they are effec-
tive for improving congestive symptoms. There is growing interest in tolvaptan, which can improve renal congestion by increasing ex-
cretion of free water and decreasing the required dose of loop diuretic, thereby improving kidney function. This review summarizes re-
nal hemodynamics, the pathogenesis of AKI due to renal ischemia and renal congestion, and diagnosis and treatment options for re-
nal congestion. 
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caused by renal hypoperfusion due to reduced cardiac out-

put, decreased oxygen transport, and absolute or relative 

hypovolemia, which has a direct effect on renal autoregu-

lation. Furthermore, in HF, arterial underfilling stimulates 

vasoconstrictor neurohormones, including the renin-an-

giotensin system (RAS), vasopressin, and catecholamines, 
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leading to renal ischemia, hypoxia, and sodium retention 

and increasing volume overload. 

Renal congestion has also been recognized as a potential 

cause of AKI in patients with HF. It has been reported that 

development of AKI in patients with acute decompensated 

HF is more strongly associated with venous congestion 

than with low cardiac output [3]. Recent studies suggest 

that both decreased renal function and renal congestion 

are major prognostic factors in HF [4–6]. It is important to 

increase or maintain kidney function as well as alleviate 

congestion to improve the prognosis of patients with HF. 

The pathophysiological mechanisms, prognostic markers, 

and treatment options for renal congestion and decreased 

kidney function in HF have not been fully elucidated. This 

review summarizes renal hemodynamics, the pathogenesis 

of AKI due to renal ischemia and renal congestion, and di-

agnostics and treatment options for renal congestion. 

Renal hemodynamics 

Although the kidneys weigh only ~150 g, they are highly 

perfused, with ~25% of cardiac output flowing into the 

two kidneys. As shown in Fig. 1, the renal artery branches 

into multiple (generally five) segmental arteries that enter 

the kidney at the renal hilum [7]. The branches of these 

segmental arteries become the interlobar arteries, which 

run between the lobes. Each interlobar artery becomes an 

arcuate artery that runs along the boundary between the 

cortex and the outer layer of the medulla, and an inter-

lobular artery branches from each arcuate artery. Afferent 

arterioles branch off each interlobular artery and transport 

blood to the capillaries within the glomerulus, which is 

surrounded by Bowman’s capsule. Systemic blood pressure 

decreases gradually until it reaches the glomerulus. The 

largest pressure gradient occurs in the afferent arteriole. 

Under normotensive conditions, systemic blood pressure 

has been found to decrease by ~30% at the proximal end 

Figure 1. Renal hemodynamics. Blood vessels branching from the renal artery flow directly into the kidney with a systolic blood pres-
sure of 120 mmHg. In the renal parenchyma, blood flows into the interlobar arteries, the arcuate arteries, and then into the interlobular 
arteries. Blood then flows from the interlobular arteries into the afferent arterioles to supply the glomerulus. The intraglomerular pres-
sure is maintained at 60 mmHg.
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of the most superficial afferent arterioles in a rat model [8]. 

Furthermore, the fractional pressure drop relative to the 

systemic blood pressure decreases with decreasing perfu-

sion pressure, suggesting an autoregulatory mechanism 

in the afferent arterioles [8]. The calibers of the afferent 

arterioles, as well as their morphology and patterns of in-

nervation, suggest that the cortical interlobular arteries are 

the principal sites of renal vascular resistance. Given that 

the length of the cortical interlobular arteries in the outer 

cortical circuits is greater than that in the circuits supplying 

the deeper cortex, the total preglomerular resistance in 

the most superficial circuits may be expected to be greater 

than in the juxtamedullary circuits. The efferent arterioles 

then branch into multiple peritubular capillaries (PTC). 

Studies in humans have demonstrated that blood pressure 

decreases significantly to 10–20 mmHg in the postglo-

merular circulation [9,10]. Blood flows from the cortical 

capillaries into the arcuate veins via the interlobular veins 

and then flows from the juxtamedullary glomeruli near the 

corticomedullary junction directly into the PTC, through 

the venules, and into the arcuate veins. Blood in the arcu-

ate veins then flows through the interlobar veins, segmen-

tal veins, renal vein, and finally into the inferior vena cava 

(IVC). There is little further decrease in pressure, only 4–8 

mmHg between the small intrarenal veins and the main re-

nal vein [8]. The renal tubules consume significant oxygen 

when reabsorbing substances in the primary urine filtered 

by the glomerulus. Therefore, the capillaries after the effer-

ent arteriole circulate as feeding vessels for the renal tubu-

lar cells. The pressure profile along the renal vasculature is 

shown in Fig. 2 [11]. 

Although 25% of cardiac output flows into the kidney, the 

distribution of blood flow within the kidney is uneven. As 

a result of its vascular and tubular anatomy, the kidney is 

hypoxic, especially in the renal medulla, where blood flow 

is less than in the cortex. The medulla is actively rendered 

hypoxic by a countercurrent mechanism whereby oxygen 

diffuses from the arteries into veins that run parallel to 

Figure 2. Hemodynamics and renal vasculature in a healthy kidney. Mean arterial pressure (MAP) is 100 mmHg in the arcuate 
artery and decreases to 50–60 mmHg in the glomerulus. Blood from the efferent arterioles flows into the peritubular capillaries and 
circulates in the tubule-interstitial area. MAP in the peritubular capillaries is further decreased. Finally, MAP decreases to single digits 
in the renal vein and inferior vena cava.
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each other. Although the partial pressure of oxygen in the 

cortical renal tissue is 6.65–13.3 kPa (50–100 mmHg), it de-

creases with increasing depth, becoming as low as 1.3–2.9 

kPa (9.8–21.8 mmHg) in the medulla, which is extremely 

hypoxic because of the high oxygen consumption in the 

renal tubules [12]. The collecting ducts and thin limbs of 

the loop of Henle, which are major tubules in the inner 

medulla, require little oxygen because they do not actively 

transport sodium. In contrast, the proximal tubules and 

thick ascending limbs in the outer medulla actively trans-

port sodium and thus require large amounts of oxygen, in-

dicating that the outer medulla is the region in the kidney 

most vulnerable to hypoxia. Na-K-2Cl cotransporters are 

present on the luminal side of the thick ascending limbs, 

and their activity is dependent on the concentration of so-

dium, which is pumped out of the tubules by basolateral 

Na-K ATPase. The Na-K ATPase activity is determined by 

oxygen-consuming mitochondrial adenosine triphosphate 

production. Furthermore, medullary blood flow accounts 

for no more than 10% of the total renal blood flow (RBF), 

and even small changes in medullary blood flow can cause 

hypoxia in the medulla [13,14]. The afferent arterioles in 

the glomerulus have an autoregulatory ability that main-

tains a constant glomerular blood flow and glomerular fil-

tration rate (GFR) independent of renal perfusion pressure 

and is mediated by the myogenic response, tubuloglomer-

ular feedback, the sympathetic nervous system, and the 

RAS. 

Acute kidney injury caused by renal ischemia 

Prerenal AKI accounts for ~70% of out-of-hospital AKI 

cases and ~40% of hospital-onset AKI cases. It is often as-

sociated with decreased intravascular volume as a result of 

gastrointestinal disease and bleeding or septic shock [15–

17]. Therefore, it is important to confirm the dehydration 

status in the initial evaluation and to provide appropriate 

fluid replacement therapy. However, prerenal AKI is also 

present in pathologies in which RBF is reduced because 

of decreased cardiac output as a result of HF. Prerenal AKI 

associated with HF is classified as cardiorenal syndrome 

type 1 [18], which is thought to be caused by a decrease in 

RBF as a result of decreased cardiac output. However, no 

correlation has been found between the cardiac index and 

worsening renal function (WRF) during treatment of de-

compensated HF [3,4]. This finding suggests that a prerenal 

etiology of AKI, based on low forward flow, excessive diure-

sis, or excessive vasodilation, is unlikely to be the primary 

determinant of AKI. Patients with advanced HF and con-

ditions such as hypertension and diabetes that contribute 

to development of intrinsic renal disease and disrupt renal 

autoregulation may be at increased risk for adverse out-

comes [19]. In a study comparing the relationship between 

the cardiac index and GFR in patients with chronic HF, 

there was no significant difference in GFR between those 

with cardiac index of >2.0 L/min/m2 vs. 1.5–2.0 L/min/m2 

(62 mL/min/1.73 m2 vs. 67 mL/min/1.73 m2) [20]. The GFR 

in the group with a cardiac index of <1.5 L/min/m2 was 38 

mL/min/1.73 m2, which was significantly lower than that 

in the other groups. However, the filtration fraction, which 

is normally ~20%, increased to 35%, compensating for the 

decreased cardiac index and RBF in the group with a car-

diac index of 1.5–2.0 L/min/m2. This mechanism involved 

activation of the RAS by the juxtaglomerular apparatus and 

resistance in the efferent arterioles. However, a non-com-

pensatory filtration fraction response was observed in the 

group with a cardiac index of <1.5 L/min/m2, in which GFR 

was dependent on flow in the afferent arterioles despite 

stimulation of hemodynamic and hormonal pathways that 

would normally increase tone in the efferent arterioles [20]. 

Therefore, AKI in cardiorenal syndrome type 1 cannot be 

explained solely by decreases in the cardiac index and RBF. 

Indeed, GFR is maintained by renal autoregulation to some 

extent in response to changes in RBF. Even if the mean ar-

terial pressure (MAP) increases from 75 to 160 mmHg, the 

GFR changes by less than 10% [21]. 

Additionally, the concept of normotensive ischemic AKI 

has been proposed as a pathological condition in which 

GFR is reduced and prerenal AKI develops, even in the 

absence of obvious hypotension [22]. The mechanism is 

considered to involve failure of renal autoregulation be-

cause of severe arteriosclerosis. Furthermore, renal tubular 

tissue damage in sepsis-related AKI has been thought to be 

the result of acute tubular necrosis due to renal ischemia 

caused by hypotension or renal vasoconstriction. However, 

a discrepancy between its pathophysiology and renal his-

topathology has been reported, and analysis of renal tissue 

specimens in particular has identified many cases of only 

mild tubular degeneration with no necrosis. Therefore, it 

is now believed that the main causes of this type of renal 
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damage are functional changes in microvessels and renal 

tubules associated with inflammation rather than structur-

al changes [23]. Although blood pressure decreases in re-

sponse to vasodilatation in the early stages of septic shock 

(i.e., “warm shock”), cardiac output is maintained. Howev-

er, it has been confirmed that GFR decreases and RBF re-

mains essentially unchanged or increases in this situation 

[24]. Therefore, the GFR is not thought to be determined by 

RBF but by dilatation of the afferent and efferent arterioles. 

In patients with septic shock, guidelines for early goal-di-

rected therapy recommend that the MAP be maintained at 

>65 mmHg because of the rapid decline in GFR that occurs 

when MAP decreases to <65 mmHg (Fig. 3) [21,25–28]. 

However, in patients with normotensive ischemic AKI, 

the target MAP may be set to an even higher level. A mul-

ticenter, randomized, controlled study was conducted in 

which patients with septic shock were divided according to 

target MAP of 65–70 or 80–85 mmHg. In patients with a his-

tory of hypertension, the group with MAP of 80–85 mmHg 

had significantly better renal survival in terms of doubling 

of serum creatinine level and the need for renal replace-

ment therapy [29]. Therefore, even if the cardiac index and 

RBF decrease, GFR does not decrease, and a target MAP 

level of ≥65 mmHg is appropriate to prevent AKI. However, 

in patients with pre-existing severe atherosclerosis in the 

kidney, a target MAP of 80–85 mmHg may improve the re-

nal prognosis. 

Acute kidney injury caused by renal congestion 

Renal congestion is now the focus of attention as the 

mechanism of AKI in acute HF. Renal congestion is a con-

dition in which both central venous pressure (CVP) and 

intra-abdominal pressure (IAP) are elevated, resulting in 

retention of RBF because of elevated renal vein pressure. 

In a canine study in which the renal vein pressure was ar-

tificially increased from normal (4 mmHg) to a maximum 

of 25 mmHg, an increase in blood urea nitrogen level and 

a decrease in urine output were found when the renal vein 

pressure was increased to ≥20 mmHg. However, the blood 

urea nitrogen and urine output values returned to normal 

when the renal vein pressure was normalized [30]. Another 

study found that both CVP and renal vein pressure were 

higher in patients with congestive HF than in healthy sub-

jects. Furthermore, in that study, pressure applied to the 

abdomen to raise the IAP to a mean of 20 mmHg in healthy 

subjects resulted in an increase in renal vein pressure from 

5.8 to 18.3 mmHg and decreases in renal plasma flow, GFR, 

and urine output of 25%, 30%, and 50% from baseline, re-

spectively [31]. 

Previous research has shown that renal venous conges-

tion may contribute to the pathogenesis of cardiorenal 

failure [32]. Renal venous congestion has been shown to 

regulate RBF and sodium retention, with key factors of 

medullary blood flow and interstitial pressure. Renal inter-

stitial fluid is produced by the medullary tubules, and one 

of its upstream origins is reabsorption from the collecting 

ducts into the venous capillaries in the cortex. Expansion 

of the kidney is limited because it is surrounded by Gerota’s 

fascia. Congestion of renal interstitial flow and interstitial 

pressure can thus be increased by central or renal venous 

congestion [33,34]. An increase in interstitial hydrostatic 

pressure can lead to a reduction of medullary blood flow by 

Figure 3. Relationships between MAP and blood flow in the 
kidney, GFR, and urine volume. In the upper panel the x-axis 
shows MAP, and the left and right y-axes show blood flow in the 
kidney and GFR, respectively. Urine volume is plotted against 
MAP in the lower panel. Blood flow in the kidney is associated 
with the GFR. When the MAP is >65 mmHg, normal GFR is main-
tained. However, when the MAP decreases to <65 mmHg, there 
is a rapid decrease in blood flow in the kidney and GFR, with a 
progressive decrease in urine volume.
GFR, glomerular filtration rate; MAP, mean arterial pressure.
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compression of the venous capillaries, such as the vasa rec-

ta, and to a decrease in GFR by compression of the tubules. 

Therefore, the pressure in Bowman’s capsule is increased 

because of compression of the lumens of the tubules [35]. 

The net filtration pressure at the glomerulus is determined 

by glomerular hydrostatic pressure minus the glomerular 

colloid osmotic pressure and the pressure in Bowman’s 

capsule (Fig. 4). Thus, an increase in intratubular pressure 

causes an increase in Bowman’s capsule pressure, which 

reduces the pressure gradient in the arterioles within the 

glomerulus and lowers the net filtration pressure, reducing 

the GFR. 

Increased CVP is associated with a decrease in GFR and 

increased risk of mortality. A study in patients with cardio-

vascular disease found that the estimated GFR decreased 

when CVP exceeded 6 mmHg [4]. Another study involving 

145 patients with advanced decompensated HF found that 

the CVP values at admission and after intensive care were 

significantly higher in patients with WRF, and that patients 

with a CVP of >8 mmHg were significantly more likely to 

have WRF [3]. Moreover, a decrease in CVP contributed 

to suppression of subsequent WRF, and there was no as-

sociation of kidney function with impaired cardiac index 

at admission or improvement during hospitalization. The 

decline in GFR was not associated with systolic blood pres-

sure or pulmonary capillary wedge pressure. Furthermore, 

a retrospective study in 178 patients with HF found that 

WRF was determined more by passive congestion than 

by reduced cardiac output [35]. Another study in patients 

with sepsis found that the mean CVP level was significantly 

higher in those who developed AKI than in those who did 

not (11 mmHg vs. 8.5 mmHg) [36]. Furthermore, there was 

a linear relationship between CVP level and risk of new 

or persistent AKI, even after adjustment for multiple vari-

ables. Most recent studies have confirmed the importance 

and independence of venous congestion as the primary 

hemodynamic cause of WRF [37–39]. It was also reported 

that there is no correlation between the cardiac index and 

GFR in patients awaiting cardiac transplantation [40].  

Histopathological findings in an animal model of 
renal congestion 

Renal congestion cannot be observed in conventional re-

nal biopsy specimens because the blood vessels collapse 

during sample processing. Our group has examined the 

changes in the proximal tubules caused by renal conges-

tion in a rodent model using an in vivo cryotechnique, 

whereby living tissue that is fully connected to the blood 

circulation is rapidly frozen in vivo and then excised [41]. 

Renal congestion was induced in both kidneys by ligating 

the IVC just above the branching renal veins (Fig. 5A). As 

Figure 4. Glomerular hemodynamics. In the glomerulus, hydrostatic pressure is maintained at 60 mmHg, and colloid osmotic pres-
sure is 32 mmHg. Bowman’s capsule pressure, which is the internal pressure of the tubule, is 18 mmHg. Therefore, the net filtration 
pressure is 60 – 18 – 32 = 10 mmHg.
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shown in Fig. 5B, the proximal tubules consisted of swollen 

cells, and in most cases, the lumens were closed by the in 

vivo cryotechnique. Many vacuoles were seen in the cyto-

plasm of cells in the proximal tubule and often contained 

cell debris. The interstitium was wide with dilated capillar-

ies containing many erythrocytes, and marked basal stri-

ation was evident. However, as shown in Fig. 5C, the prox-

imal tubule cells were swollen with indistinct lumens, the 

basal striation was unclear, the interstitium was narrow, 

and the PTC area could not be observed by conventional 

methods. 

Fig. 5D shows the findings after 5 minutes of congestion 

followed by 10 minutes of recirculation. After removing the 

IVC clamp, the renal congestion resolved and can be seen 

progressing from top to bottom in Fig. 5D. The proximal 

tubules shown in the upper area of this image are partially 

closed and contain small amounts of cell debris. However, 

in the lower area of this image, swollen cells have returned 

to their cuboidal form, the cell debris has been removed 

from the tubular lumina, and the lumina are open. These 

data demonstrate the importance of hemodynamics and 

suggest that renal dysfunction is reversible in many pa-

tients if the hemodynamics can be improved. 

Rat models have demonstrated that elevated renal inter-

stitial hydrostatic pressure caused by ureteral obstruction 

or aortic stenosis leads to renal injury [42–44]. A major 

cause of renal injury in these models has been fibrogenesis 

resulting from epithelial-mesenchymal transition [44,45]. 

The findings of another study in a subacute rodent model 

have suggested that increased renal interstitial hydrostatic 

pressure leads to compression of the PTC and renal tubules 

and detachment of pericytes because of multiple factors, 

including mechanical pressure, hypoxia, and reactive 

oxygen species [46]. Detachment of pericytes might be 

a trigger for pericyte-myofibroblast transition and cause 

expansion of the extracellular matrix. Therefore, it has 

been proposed that hypoxia, reactive oxygen species, and 

mechanical pressure can induce a pericyte-myofibroblast 

transition. 

Pathophysiology of renal ischemia and renal 
congestion in acute kidney injury 

Renal autoregulation is compromised when systemic 

blood pressure is decreased and renal perfusion pressure is 

<80 mmHg [20]. Therefore, left ventricular HF is thought to 

be related to reduced renal perfusion via diminished cardi-

ac output, with underfilling of the arteries contributing to 

development of AKI in patients with HF [47]. Furthermore, 

Figure 5. Light micrographs of samples from a normal control 
kidney and a model of renal congestion (H&E staining). (A) 
Findings in a normal control after using the in vivo cryotechnique. 
(B) After 5 minutes of inferior vena cava (IVC) clamping by the in 
vivo cryotechnique, the lumina are obstructed by swollen cells 
and ischemia-associated cell debris, and the peritubular capil-
laries can be confirmed. (C) After 5 minutes of IVC clamping by 
the conventional method, the tubular lumina are obstructed by 
swollen cells and ischemia-associated cell debris. However, per-
itubular capillaries cannot be confirmed. (D) After removing the 
IVC clamp, the renal congestion resolves, as can be seen by pro-
gression from the upper area to the lower area of the image. In 
the lower area, swollen cells have returned to cuboidal form, the 
cell debris has been removed from the tubular lumina, and the 
lumina are open.
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renal medullary blood flow decreases while ischemia and 

hypoxia increase in the outer medulla. Decreased renal 

perfusion pressure upregulates the sympathetic nervous 

system and the RAS. Angiotensin II and catecholamines 

further reduce renal plasma flow by inducing vasoconstric-

tion of the glomerular arterioles [48]. However, angiotensin 

II constricts the efferent arterioles and increases intraglo-

merular pressure, maintaining GFR despite a decrease in 

renal plasma flow. Therefore, the filtration fraction and 

GFR are initially retained, although there is an eventual in-

crease in the concentrations of angiotensin II and catechol-

amines. These increases result in enhanced preglomerular 

vasoconstriction, including in afferent arterioles, and lead 

to a decline in GFR [49,50]. This process activates reabsorp-

tion of sodium and water in the proximal tubules and leads 

to fluid retention. 

In patients with right ventricular HF, increased CVP pro-

motes renal congestion. In healthy subjects without HF 

or chronic kidney disease, a transient hypervolemic state 

leads to increased fluid and salt excretion, which result in 

decreases in both blood volume and cardiac output and a 

return of blood pressure to normal. However, in patients 

with HF, the elevated right atrial pressure and CVP result-

ing from hypervolemic conditions affect salt excretion by 

the kidneys, resulting in sodium retention and volume ex-

pansion [51]. Furthermore, decreases in medullary blood 

flow and GFR affect excretion of sodium and water during 

volume overload, and renal venous congestion reduces 

sodium and water excretion. Therefore, elevated renal ve-

nous pressure initiates a vicious cycle by causing sodium 

retention, plasma volume expansion, and further elevation 

of venous pressure (Fig. 6). 

Higher systemic venous congestion leads to increased 

production of reactive oxygen species, tumor necrosis fac-

tor-α, endothelin-1, interleukin-6, vascular cell adhesion 

molecule-1, and intercellular adhesion molecule-1, which 

exacerbate endothelial dysfunction and dysregulation of 

nitric oxide, resulting in further neurohormonal activation 

and kidney injury [52–54]. Elevated IAP and congestion in 

the abdominal organs and interstitium may also contribute 

to renal congestion [55,56]. There is an inverse association 

between RBF and IAP. It has also been suggested that in-

tra-abdominal venous hypertension may cause systemic 

hypotension and a decline in cardiac output [57]. Further-

more, alterations in the gut microbiota may be associated 

with AKI and renal congestion in patients with HF [58]. En-

try of enterotoxins into the circulation may lead to further 

cardiac dysfunction and kidney injury because of intestinal 

barrier dysfunction resulting from congestion. 

How should we assess renal congestion? 

Renal congestion is often assessed by measurement of 

CVP [52,59]. The renal parenchyma is evaluated by ultra-

sonography, and a variety of indices of IVC diameter is 

used. However, no indices can be quantitatively evaluated 

with good reproducibility. Although we can use traditional 

markers, such as estimated GFR, and novel biomarkers, 

including cystatin C, neutrophil gelatinase-associated lipo-

calin, kidney injury molecule-1, and natriuretic peptides, 

which are useful for predicting the prognosis of HF and 

kidney dysfunction, none are specific for renal congestion. 

Natriuretic peptides are now routinely used, and high level 

of B-type natriuretic peptide (BNP) or N-terminal prohor-

mone of BNP is associated with high filling pressures fol-

lowing volume overload [52]. BNP value has been shown 

to correlate with capillary wedge pressure and to serve as 

an indirect marker of renal dysfunction during treatment of 

acute HF [60]. However, natriuretic peptides are not specif-

ic for renal congestion and may reflect congestion specifi-

cally associated with HF. 

Although there has long been a desire to use Doppler 

echocardiography for assessment of renal congestion, two 

studies have demonstrated that renal congestion can be 

assessed by intrarenal Doppler ultrasonography [61,62]. 

These studies assessed the arterial resistance index, venous 

impedance index, and intrarenal venous flow (IRVF) pat-

tern in the interlobar arteries and veins and found that it 

was associated with mean right atrial pressure, suggesting a 

correlation with renal congestion. Furthermore, there was 

a significant association of the IRVF pattern with 1-year 

mortality. In recent years, ultrasonography has also been 

reported to be useful for assessment of renal congestion. 

Real-time contrast-enhanced ultrasonography (CEUS) is a 

novel imaging technique that can be used to visualize per-

fusion of the microvascular bed [63]. CEUS confirmed that 

impairment of renal parenchymal perfusion is accompa-

nied by an increase in renal interstitial pressure in a rodent 

model of acute renal congestion. Furthermore, it has been 

reported that renal congestion can be evaluated by CEUS 
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Figure 6. Mechanisms and pathophysiology of renal ischemia and renal congestion in HF. Left ventricular HF is related to reduced 
renal perfusion via diminished cardiac output. Decreased renal perfusion pressure upregulates the RAS and SNS. These increases 
result in enhanced vasoconstriction of afferent arterioles, and lead to a decline in GFR. This in turn activates proximal tubular sodium 
and water reabsorption, leading to more systemic and renal congestion. Right ventricular HF increases CVP and renal venous pressure. 
Renal congestion leads to increased renal interstitial pressure. Tubular compression raises the luminal pressure, further attenuating 
the transglomerular pressure gradient, and lowering the GFR. Renal congestion reduces sodium and water excretion. Therefore, ele-
vated renal venous pressure initiates a vicious cycle by causing sodium retention, plasma volume expansion, and further elevation of 
venous pressure.
CVP, central venous pressure; GFR, glomerular filtration rate; HF, heart failure; RAS, renin-angiotensin system; SNS, sympathetic nerve 
system.

even in patients with HF, and that their renal congestion 

improves after treatment [64]. 

Treatment of renal congestion 

Conventional diuretics 

Water and salts filtered by the glomerulus are reabsorbed 

in several parts of the renal tubules, concentrating the 

urine. Approximately 70% of the filtered sodium is reab-

sorbed in the proximal tubules, 20% in the ascending loop 

of the limb of Henle, 7% in the distal tubules, and 3% in the 

collecting ducts. The effect of each diuretic is defined by 

sodium reabsorption at the active site of the renal tubules. 

From the viewpoint of natriuresis, loop diuretics have the 

strongest diuretic effect and are typically used to manage 

body fluid levels in patients with HF [65–68].  

Loop diuretics inhibit the Na-K-2Cl cotransporter in the 

thick ascending limb of the Henle loop and increase sodi-

um excretion. At the same time, loop diuretics increase the 

excretion of K+, Ca2+, Mg2+, and titratable acid [69]. Loop 

diuretics are excreted into the tubular lumen via organic 

anion transporters in the proximal tubules and exert their 

effects as organic acids. Loop diuretics are absorbed from 

the intestine, are bound mainly to albumin, and are trans-

ported to the kidney. These diuretics are then secreted into 

the renal tubular lumen where they act on transporters 

from the renal tubular lumen side. The effects of loop di-

uretics are attenuated in patients with hypoalbuminemia 

because of a decrease in the concentration of serum al-

bumin, which carries these agents to the proximal tubule. 

Furthermore, in patients with severe renal impairment 

and metabolic acidosis, excretion of loop diuretics into the 

lumen of the renal tubule via organic anion transporters is 

reduced, resulting in a decreased diuretic effect. 

Administration of loop diuretics suppresses sodium 

Left heart failure

↓ Cardiac output

↓ Renal perfusion pressure

↑ RAS, ↑ SNS

↓ GFR

Glomerular arteriolar
vasoconstriction

Renal ischemia/hypoxia

↓ Sodium and water 
excretion

Right heart failure

↑ CVP

↑ Renal venous pressure

↑ Renal interstitial hydrostatic 
pressure

Renal congestion

↑ Intratubular pressure

↑ Sodium and water 
retention



reabsorption in the loop of Henle, increasing the amount 

of sodium reaching the distal tubule and causing a com-

pensatory increase in sodium reabsorption in the distal 

tubule. The distal tubules are expanded in a compensatory 

manner, leading to hypertrophy, and Na-K-2Cl cotrans-

porter expression gradually increases [70]. As a result, the 

effects of loop diuretics are further decreased, and this is 

considered the main mechanism of diuretic resistance. 

Furthermore, loop diuretics increase the activity of vaso-

constrictive mediators, including RAS, vasopressin, and 

catecholamine [71–74]. Administration of loop diuretics 

generally reduces RBF, particularly in the renal medulla. 

Therefore, the outer area of the medulla becomes more 

ischemic and the venous capillaries collapse despite ongo-

ing renal congestion. 

Higher doses of loop diuretics are reported to be asso-

ciated with poor clinical outcomes, including WRF, in pa-

tients with HF [66,75]. Furthermore, it has been reported 

that the prognosis of patients with HF depends more on re-

nal function than on the presence or absence of a history of 

myocardial infarction [76]. Therefore, correction of excess 

body fluid with maintenance of renal function is important 

during treatment of chronic HF. 

There is controversy regarding whether administration 

of diuretics is harmful in patients with AKI. A recent report 

in 2022 suggested that use of diuretics was associated with 

worsening renal survival and mortality in patients with AKI 

[77]. In contrast, a meta-analysis found no association be-

tween use of diuretics and in-hospital mortality or need for 

renal replacement therapy in these patients [78]. However, 

higher doses of diuretics have been associated with in-

creased risk of ototoxicity, including transient hearing loss 

and tinnitus [79]. 

The frequency of administration of loop diuretics is an-

other issue. Theoretically, loop diuretics should be admin-

istered more frequently than twice a day or continuously. 

Furosemide has a short duration of action (<24 hours), and 

chronic administration leads to rebound sodium reabsorp-

tion. However, the Diuretic Optimization Strategies Evalua-

tion trial found no difference between continuous therapy 

and bolus therapy [75,80]. Treatment with agents other 

than loop diuretics (e.g., thiazides or potassium-sparing 

diuretics) may be beneficial for decreasing activation of the 

RAS and the sympathetic nervous system and for reabsorp-

tion of sodium in the distal tubules [65]. 

Tolvaptan 

Tolvaptan has been used in Japan for volume control in HF 

and decompensated cirrhosis with ascites. An aquaretic 

agent, tolvaptan has a mechanism of action that is different 

from that of the conventional natriuretics and is expect-

ed to overcome the disadvantages of loop diuretics. In 

patients with HF, furosemide decreases RBF and impairs 

renal function; switching to tolvaptan can attenuate the 

progression of renal dysfunction [78]. Unlike furosemide, 

tolvaptan does not cause a significant increase in plasma 

renin activity or vasopressin in patients with HF [81]. Intra-

vascular volume is defined by serum osmotic pressure and 

colloid osmotic pressure. Tolvaptan increases free water 

excretion and serum osmolarity and promotes uptake of 

water from the interstitial fluid into capillaries [14]. These 

factors might be associated with maintenance of RBF de-

spite a reduction in total body fluid. Therefore, tolvaptan 

can maintain RBF by preserving intracapillary volume. 

Furthermore, administration of tolvaptan has been shown 

to significantly reduce renal medullary pressure and CVP 

and improve renal dysfunction and renal fibrosis in Dahl 

salt-sensitive rats [82,83]. Tolvaptan blocks V2 receptors in 

the collecting ducts and inhibits reabsorption of water via 

aquaporin upstream of the interstitial fluid, which increas-

es the renal interstitial hydrostatic pressure. Therefore, tol-

vaptan can reduce renal interstitial hydrostatic pressure by 

reducing interstitial fluid both upstream and downstream 

and may improve renal congestion by reducing volume. 

A study in patients with HF and chronic kidney disease 

that included bioimpedance analysis has demonstrated 

that tolvaptan induces movement of water from inside cells 

to the extracellular space [84]. Therefore, there is increasing 

interest in tolvaptan as a treatment option for congestive 

HF, and positive effects on renal function have been report-

ed in patients with advanced HF [85–87]. A randomized 

study that compared patients with new-onset acute HF re-

ceiving furosemide alone and those receiving furosemide 

with add-on tolvaptan has found a significantly lower inci-

dence of WRF in the group that received add-on tolvaptan, 

especially in patients who had HF with reduced ejection 

fraction and renal impairment on admission [88]. Another 

randomized controlled study of 50 patients with HF and 

preserved ejection fraction has found greater improvement 

in congestive symptoms and better suppression of deteri-
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oration of renal function in patients who received a com-

bination of tolvaptan and loop diuretics than in those who 

received loop diuretics alone [89]. Therefore, many studies 

have demonstrated that tolvaptan has renoprotective ef-

fects in patients with HF regardless of whether ejection 

fraction. A meta-analysis has revealed that short-term add-

on tolvaptan therapy can increase urine output, significant-

ly reduce dyspnea, reduce body weight and edema, and 

increase serum sodium level compared to conventional 

diuretic therapy alone [90]. Furthermore, add-on tolvaptan 

therapy can significantly attenuate WRF and, when used 

in a low dose as add-on therapy (7.5–15 mg), significantly 

decrease the risk of WRF [90]. Tolvaptan is thought to ex-

ert a renoprotective effect by decreasing organ congestion 

while maintaining RBF without a significant reduction in 

circulating blood volume. Even in patients with stage G3–

G5 chronic kidney disease, when the diuretic effect was not 

sufficient, use of add-on tolvaptan with regular furosemide 

was significantly associated with not only an increase in 

urine volume, but also a lower likelihood of developing AKI 

in comparison with only an increased dose of furosemide 

[91,92]. However, some studies have found that tolvaptan 

increases the incidence of WRF. The EVEREST (Efficacy of 

Vasopressin Antagonism in Heart Failure Outcome Study 

with Tolvaptan) study has found that tolvaptan mildly in-

creased creatinine level, and the TACTICS (Targeting Acute 

Congestion with Tolvaptan in Congestive Heart Failure) 

study has reported that tolvaptan increased WRF [87,93,94]. 

Most studies of tolvaptan have been conducted in North 

America or Japan, and there are clear geographic dispar-

ities in the findings of these randomized controlled trials. 

The studies in Japan were carried out using low doses of 

tolvaptan (7.5–15 mg), whereas the North American stud-

ies used high doses [90,95]. A clear renoprotective effect 

has been observed at low doses but not at high doses. 

Conventional diuretics can improve congestion rapidly 

but decrease the circulating blood volume, which leads to 

decreased RBF and impaired renal function and further 

activates the RAS and sympathetic nervous system [96]. 

There is a positive correlation between WRF and the dose 

of furosemide [97]. Therefore, the improvement in renal 

function resulting from add-on tolvaptan therapy can be 

attributed to a reduced dose of loop diuretic. Given that 

tolvaptan acts at the collecting duct, it is important to use 

a loop diuretic that suppresses reabsorption of water and 

sodium upstream (i.e., in the loop of Henle), allowing more 

primary urine to reach the collecting duct. 

Ultrafiltration 

Several guidelines state that ultrafiltration is a reasonable 

approach for patients with congestion refractory to diuret-

ic therapy [98,99]. The UNLOAD (Ultrafiltration Versus 

Intravenous Diuretics for Patients Hospitalized for Acute 

Decompensated Heart Failure) trial compared the efficacy 

of diuretics with that of ultrafiltration in patients with con-

gestive HF and found no significant between-group differ-

ence in congestive symptoms, prognosis, electrolytes other 

than potassium, or renal function [100]. However, after 48 

hours, loss of body weight and fluid was significantly great-

er in the ultrafiltration group than in the diuretic group. 

Furthermore, there were fewer rehospitalizations and 

unscheduled hospital visits in the ultrafiltration group. Hy-

pokalemia was significantly more common in the diuretic 

group. Another randomized controlled trial (CARRESS-HF 

[Cardiorenal Rescue Study in Acute Decompensated Heart 

Failure]) compared the efficacy of ultrafiltration with that 

of diuretics in patients with acute decompensated HF and 

WRF [101]. Although there was no between-group differ-

ence in changes in body weight, rehospitalization rate, or 

prognosis after 96 hours, there was less deterioration of 

renal function in the diuretic group. However, the average 

changes in serum creatinine levels was −0.04 mg/dL in the 

diuretic group and +0.23 mg/dL in the ultrafiltration group, 

and whether this difference is clinically significant requires 

further consideration. Furthermore, in CARRESS-HF, ef-

ficient stepwise pharmacologic therapy was less reason-

ably applied and compared with ultrafiltration delivered 

at a fixed rate of 200 mL/hr. The results of the subsequent 

CUORE (Continuous Ultrafiltration for Congestive Heart 

Failure) trial, which is the longest follow-up study of ultra-

filtration in patients with congestive HF, were consistent 

with those of the UNLOAD trial [100]. In the CUORE trial, 

renal function was more stable in older patients with more 

severely depressed GFR in the ultrafiltration group than in 

their counterparts in the diuretic group. Furthermore, the 

incidence of readmission for HF was significantly lower in 

the ultrafiltration group [102]. 

It has also been reported that super high-flux membrane 

dialyzers can remove cytokines and inflammatory medi-
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ators and improve cardiac function [103–105]. In Japan, 

continuous renal replacement therapy (CRRT) with a super 

high-flux dialyzer is used for acute blood purification [106]. 

Further research is needed to determine whether this mo-

dality is indicated in patients with HF. 

Which should be prioritized–improvement of 
renal ischemia or relief of renal congestion? 

The most common cause of right HF is prolonged left HF. 

Therefore, bilateral HF may be complicated by both re-

nal ischemia and renal congestion. However, when renal 

ischemia and renal congestion coexist, it is unclear which 

should be prioritized. In patients with low cardiac output, 

CVP is an independent predictor of AKI. Furthermore, 

development of AKI in patients with HF is more strongly 

associated with venous congestion than with low cardiac 

output. Therefore, priority should be given to renal conges-

tion. GFR can be increased by decreasing the renal intersti-

tial pressure, which will decompress vessels and tubules in 

the renal medulla. Even at a low renal perfusion pressure, 

blood flow can resume in the PTC region, suggesting the 

possibility of recovery of kidney function. 

Patients with HF and AKI who are resistant to diuretics 

are often treated by CRRT, in which a double-lumen dial-

ysis catheter is inserted into the femoral vein or internal 

jugular vein. Although CRRT is administered on the as-

sumption that treatment will be continued for 24 hours 

or longer, some patients show an increase in urine output 

several hours after initiation. The mechanism of this effect 

is thought to be relief of renal congestion when the blood 

in the IVC is moved to the extracorporeal circuit. In such 

patients, CRRT with a fixed fluid removal rate needlessly 

induces renal ischemia, which leads to prerenal kidney in-

jury and a prolonged time until renal recovery. Therefore, 

CRRT could be discontinued in patients with an increased 

urine output a few hours after initiation of CRRT. 

Future perspective for diagnosis and treatment of 
renal congestion 

Renal congestion is a major factor in AKI in patients with 

HF and worsens the outcome of patients with HF. However, 

because renal congestion cannot be measured directly, 

it is difficult to detect and treat rapidly. It is necessary, 

therefore, to establish an easier approach than CVP mea-

surement, such as using biomarkers and image diagno-

sis. Although a variety of therapeutic strategies for renal 

congestion has been used alone and in combination, no 

specific treatment strategies have been established. The 

pathophysiology of renal congestion is not fully under-

stood. Multiple pathways are involved in renal congestion, 

and the factors may vary between patients. Therefore, an 

individualized diagnosis that focuses on prevention of AKI 

and improvement of renal congestion may be necessary. 

Further randomized clinical trials are needed to investigate 

the feasibility of diagnostic imaging and biomarkers for 

detection of renal congestion, determination of optimal 

treatment options, and individualization of treatment strat-

egies. 

Conclusions 

First, patients with HF and AKI should be evaluated for 

fluid overload status. Appropriate fluid correction with di-

uretics may be effective in patients with congestion. Renal 

ischemia is the main cause of AKI in patients with HF, in 

whom administration of diuretics leads to a decrease in 

kidney function. However, when kidney function improves 

in patients with HF after administration of diuretics, the 

main cause of AKI is renal congestion. Loop diuretics are 

likely to cause hyponatremia, whereas tolvaptan alone is 

likely to cause hypernatremia. However, tolvaptan is usu-

ally administered with loop diuretics, so abnormal serum 

sodium concentration is unlikely to be encountered in 

clinical practice. In view of its ability to decrease renal con-

gestion and improve renal hypoxia, tolvaptan may have an 

important role in reducing the risk of AKI in patients with 

HF. 
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