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1. INTRODUCTION

This work is based on a talk given by the author at the RIMS seminar “Represen-
tation spaces, twisted topological invariants and geometric structures of 3-manifolds”,
held in Hakone from May 28th to June lst, 2012, and is intended to provide a digest of
known results conceming the problems of classifying topological or geometric spaces up
to commensurability, and of understanding their commensurators. Given the extent of
the matter at hand, it is obviously unreasonable to try and cover all the possible domains
in which these concepts appear, so choices had to be made which only reflect the personal
taste of the author, and certainly not the interest of the subject. Similarly, even in those
areas that will be touched upon here, only alimited selection of results will be mentioned.
Hopefully, the reader will find something to stimulate his or her curiosity, and will be
induced to investigate further the references listed in the bibliography.

Originally, the concept of commensurability comes from elementary group theory: Two
subgroups $H_{1}$ and $H_{2}$ of the same group $G$ are said to be commensurable if their intersec-
tion $H_{1}\cap H_{2}$ is of finite index in both of them. $A$ basic exercise in group theory shows that
the intersection of two finite-index subgroups is again a finite index subgroup. It follows
that being commensurable is an equivalence relation on the set of subgroups of a given
group. For instance, if $G$ is a finite group, all its subgroups are commensurable, while if
$G=\mathbb{Z}$ its subgroups belong to two commensurability classes according to whether they
are trivial or infinite cyclic. Note also that, if $G=\mathbb{R}$ , two infinite cyclic subgroups $H_{1}$

and $H_{2}$ , generated by positive elements $x_{1}$ and $x_{2}$ respectively, are commensurable if and
only if the lengths $x_{1}$ and $x_{2}$ are commensurable in the sense of Euclid.

As it is, this notion does not seem particularly interesting, but translating it into more
topological terms suggests ways to generalise the initial restrictive definition in order to
make it more exploitable in a topological or geometric setting. Roughly speaking, the
algebraic notion of being commensurable” can be translated into the geometric notion of
“having a common finite-sheeted cover” One way to see this is the following. Assume $G$

is the fundamental group of some connected space $X$ admitting a universal cover. In this
context, $H_{1}$ and $H_{2}$ are the fundamental groups of two spaces, $Y_{1}$ and $Y_{2}$ , which cover $X,$

and there is a space $Y$ with fundamental group $H_{1}\cap H_{2}$ which is a finite-sheeted cover of
both $Y_{1}$ and $Y_{2}.$

This will be made more precise in the next section, where the definitions of weak
commensurability and abstract commensurability will be given and motivations as why
one would introduce these new definitions will also be provided. The main inspiration
here will come from hyperbolic geometry in dimensions 2 and 3, although we shall try to
stress that these notions apply in much larger settings.
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In Section 3, we will introduce the definition of weak commensurators and abstract
commensurators and discuss some of their straightforward properties. Some results con-
ceming the structure of (abstract) commensurators will also be discussed here.

In the following sections we will move into a more geometric world. We shall start by
recalling some classical results about the classification of finite-volume hyperbolic mani-
folds (or orbifolds) up to commensurability (Section 4) with a special focus on the case of
hyperbolic knots (Section 5) which have recently received a great deal of attention giving
rise to several new results.

The last part of this work will be devoted to geometric group theory. The relationship
between abstract commensurability and quasi-isometry will be discussed here (Section 6)
before some classification results will be recalled (Section 7).

2. WEAK AND ABSTRACT COMMENSURABILITY

As we have already seen in Section 1, the algebraic notion of commensurability trans-
lates geometrically into having a common finite-sheeted cover. $A$ slightly different way
to transpose commensurability into geometry is by assuming that the group $G$ is itself
endowed with some kind of geometric structure or, at least, acts geometrically on some
space. Assume, for instance, that $G$ is a Lie group. In this case it is convenient to choose
$H_{1}$ and $H_{2}$ to be discrete subgroups of $G$ , or even lattices. In what follows we will mainly
be interested in the case where $G$ is $PSL_{2}(\mathbb{C})$ or $PSL_{2}(\mathbb{R})$ acting on the hyperbolic 3-space
and plane respectively, while $H_{1}$ and $H_{2}$ are fundamental groups of oriented finite-volume
hyperbolic orbifolds of dimension 3 or 2. It is again clear that commensurable subgroups
of $G$ are (orbifold) fundamental groups of orbifolds admitting a common finite-sheeted
orbifold cover. Readers who are not at ease with orbifolds can think of manifolds instead:
we will see in a little while that this is not a major assumption.

If one wishes to go back from geometry to algebra, though, there are some ambiguities
that have to be taken into account. Indeed, for a fixed hyperbolic manifold or orbifold
there are several ways to represent its fundamental group as a discrete subgroup of the
isometry group of the hyperbolic space. These depend basically on the choice of a base-
point and developing map, and differ by conjugacy in $G$ , the isometry group. The natural
definition of commensurability in a geometric setting is thus a weaker one, namely com-
mensurabihty up to conjugacy:

Definition 2.1. Let $H_{1}$ and $H_{2}$ be two subgroups of a group $G$ . We say that $H_{1}$ and
$H_{2}$ are weakly commensurable if there is an element $g\in G$ such that $H_{1}$ and $gH_{2}g^{-1}$ are
commensurable in the strict sense.
Remark 2.2. It is straightforward to see that being weakly commensurable is again
an equivalence relation on the subgroups of a given group $G$ . This equivalence relation
also makes sense in a geometric setting. Indeed, consider two hyperbolic orbifolds $Y_{1}$

and $Y_{2}$ of the same dimension and of finite volume. By the very definition of weak
commensurability, $Y_{1}$ and $Y_{2}$ have a common finite orbifold cover if and only if the images
of their fundamental groups in any holonomy representation are weakly commensurable in
the isometry group of the hyperbohc space. As a consequence, weak commensurability is
an equivalence relation on the hyperbolic orbifolds of given dimension and finite volume.

Before exploring further the notion of commensurability from a geometric and topolog-
ical viewpoint, let us observe that, as a consequence of Selberg’s lemma (see, for instance,
[27] $)$ , fundamental groups of finite volume hyperbolic orbifolds are virtually torsion free.
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It follows that each hyperbolic orbifold is finitely covered by a hyperbolic manifold, so
when considering commensurability it is not restrictive to consider only manifolds. In-
deed, each commensurability class of orbifolds contains a manifold, and two manifolds are
obviously commensurable as such if and only if they are commensurable as orbifolds. On
the other hand note that, although each manifold is finitely covered by an oriented one,
so that we can only take into account orientable manifolds, commensurability classes can
change if we consider orientable manifolds or oriented ones. This comes from the fact that
subgroups of the isometry group of the hyperbolic space can be weakly commensurable
in the full group of isometries but not in the group of orientation preserving isometries.

Restricting now our attention to the cases of dimension 2 and 3 we will see that this
notion of commensurability is well-adapted to geometry, but is not supple enough for
topology. Assume $H_{1}$ and $H_{2}$ are fundamental groups of two 3-manifolds. Assume, more-
over, that the first manifold admits a hyperbohc structure and the two manifolds admit
a common finite-sheeted cover. In this case, it follows from Mostow’s rigidity theorem
(see [27]) that the second manifold is also hyperbolic and that $H_{1}$ and $H_{2}$ are weakly
commensurable when viewed as discrete subgroups of the isometry group of hyperbohc
-space, regardless of the (faithful and discrete) representation chosen.
In dimension 2, though, one topological surface supports several metric structures. So,

although any two (topological) closed surfaces of negative Euler characteristic have a
common finite-sheeted cover, once they are equipped with hyperbolic structures this may
no longer be true. In other words, two uniform lattices of $PSL_{2}(\mathbb{R})$ , which are virtual
surface groups, are not weakly commensurable in general. This is easily seen by noticing
that a hyperbolic surface admits uncountably many hyperbolic structures, while there are
only countably many surfaces in a commensurability class.

This suggests an even weaker and more flexible definition which seems better adapted
to topology or, rather, large-scale geometry:

Definition 2.3. Two groups $H_{1}$ and $H_{2}$ are abstractly commensumble if there are finite-
index subgroups $K_{i}\subset H_{i},$ $i=1,2$ , which are isomorphic.

For instance, all finite groups are abstractly commensurable, as are all (hyperbolic)
surface groups, and all free groups of finite rank $r$ , with $r\geq 2$ . On the other hand, two
free abelian groups are abstractly commensurable if and only if they are isomorphic. Note
also that two closed surface groups are abstractly commensurable if and only if the two
surfaces admit the same type of geometry, that is spherical, Euclidean or hyperbolic.

Remark that on any given set of groups the relation “being abstractly commensurable”
is reflexive, symmetric, and transitive.

3. COMMENSURATORS

This section will be devoted to discuss some properties of commensurators and abstract
commensurators. These can be seen as invariants of a weak or abstract commensurability
class respectively. We will start by giving their definitions.

Definition 3.1. Let $H$ a subgroup of a group $G$ . The commensurator of $H$ in $G$ , noted
$Comm_{G}(H)$ , is the set of elements $g\in G$ such that $H$ and $gHg^{-1}$ are commensurable.

It is not very difficult to see that $Comm_{G}(H)$ is a subgroup of $G$ which can be seen
as a sort of generalised normaliser of $H$ . Indeed, $Comm_{G}(H)$ can be thought of as the
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stabihser of the commensurability class of $H$ for the conjugacy action of $G$ on the set of
commensurability classes of its subgroups. The following inclusions are easy to verify:

$\mathcal{Z}(G)\subset C_{G}(H)\subset \mathcal{N}_{G}(H)\subset Comm_{G}(H)$

where $Z(G)$ denotes the centre of $G$ , while $C_{G}(H)$ and $\mathcal{N}_{G}(H)$ denote the centraliser and
normahser of $H$ in $G$ respectively. Of course one has

$H\subset \mathcal{N}_{G}(H)\subset Comm_{G}(H)$ .
Note that commensurable subgroups in the strong sense have the same commensurator
while weakly commensurable ones have conjugate commensurators.

If commensurators can be seen as generalised normalisers, abstract commensurators
generalise the notion of group of automorphism. The definition is a bit involved. Let $H$

be a group. Consider the set of all isomorphisms $f$ : $K_{1}arrow K_{2}$ between any two finite-
index subgroups $K_{1}$ and $K_{2}$ of $H$ . Define an equivalence relation on this set by imposing
that two isomorphisms $f$ and $f’$ are equivalent if there exist a finite-index subgroup of $H$

on which $f$ and $f’$ coincide. Let Comm$(H)$ be the set of equivalence classes with respect
to this relation.

Definition 3.2. The set Comm$(H)$ is called the abstmct commensurator of $H$ . It is
endowed with a group structure induced by partial composition.

Observe that abstractly commensurable groups have isomorphic abstract commensu-
rators. To see this, it suffices to observe that if $K$ is a finite-index subgroup of $H$ then
Comm$(K)\cong Comm(H)$ .
Remark 3.3. Given a group $H$ , there is a natural group morphism from its automorphism
group $Aut(H)$ to its commensurator group Comm$(H)$ . Similarly, if $H$ is the subgroup of
some group $G$ , there is a natural morphism from $Comm_{G}(H)$ to Comm$(H)$ .

Clearly, these natural group homomorphisms need not be injective. For instance, the
latter morphism always factorises through $Comm_{G}(H)/C_{G}(H)$ . The following result can
be found in [3] and gives a sufficient condition for the former natural morphism to be
injective.

Proposition 3.4. Let $H$ be a group with the unique root property. We have that $Aut(H)$
injects into Comm$(H)$ .

Before passing to the elementary proof of this result, we recall the definition of unique
root property:

Definition 3.5. $A$ group $H$ has the unique root property if the equality $h_{1}^{n}=h_{2}^{n}$ , for
elements $h_{1}$ and $h_{2}$ in $H$ and $n\in \mathbb{N}^{*}$ , imphes $h_{1}=h_{2}.$

Proof. Let $f\in Aut(H)$ be an automorphism which is in the kemel of the natural morphism
between $Aut(H)$ and Comm$(H)$ . This means that there is a finite-index subgroup $K$ of
$H$ on which $f$ acts as the identity. Since every finite-index subgroup contains a normal
finite-index subgroup, without loss of generality, we can assume that $K$ is normal in $H.$

The group $H/K$ is finite and, by Lagrange’s theorem, there is positive integer $n$ such
that, for each $h\in H,$ $h^{n}\in K$ . We have $h^{n}=f(h^{n})$ , because $f$ acts ae the identity on
the elements of $K$ , and thus $h^{n}=f(h)^{n}$ . The unique root property assures that $h=f(h)$
which implies that $f$ is the identity of $H.$ $\square$
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The above result apphes, for instance, to free groups and free abehan groups. For free
abelian groups it is not difficult to determine the commensurators groups:

$GL_{n}(\mathbb{Z})\cong Aut(\mathbb{Z}^{n})\subset Comm(\mathbb{Z}^{n})\cong GL_{n}(\mathbb{G})$ .
In general, though, abstract commensurators are not easily computed (some more exam-
ples will be provided later in this section). In their paper [3], Bartholdi and Bogopolski
opt for a different approach, that is to provide information on the structure of these groups
under the unique root property assumption. They establish a criterion for abstract com-
mensurators to be non-finitely generated:

Theorem 3.6 (Bartholdi-Bogopolski). Let $H$ be a group with the unique root property.
Assume that for infinitely many primes $p$ there are a normal subgroup $K$ of $H$ of index
$p$ , and an automorphism $f_{K}$ of $K$ which is not the restriction of some automorphism of
H. Under these hypotheses Comm$(H)$ is not finitely genemted.

The above result apphes in particular to free groups, showing that Comm$(F_{n})$ is
not finitely generated. It also applies to free abelian groups and indeed Comm$(\mathbb{Z}^{n})$ is
not finitely generated. For the interested reader, we mention that, in the same paper,
Bartholdi and Bogopolski use this main result to deduce criteria for abstract commen-
surators not to be finitely generated in a variety of situations (free products of certain
groups, as well as free products with amalgamation or HNN-extensions, both over $\mathbb{Z}$).

Among the groups whose abstract commensurators are known are the braid groups [25]:

Theorem 3.7 (Leininger-Margalit). For $n\geq 4$ one has

Comm$(B_{n})\cong Mod(S_{n+1})\ltimes(\mathbb{Q}^{*}\ltimes \mathbb{Q}^{\infty})$ ,

where Mod$(S_{n+1})=\pi_{0}(Homeo(S_{n+1}))$ is the extended mapping class group of the sphere
with $n+1$ punctures, $\mathbb{Q}^{*}$ is the multiplicative group of non-zero mtionals, while $\mathbb{Q}^{\infty}$ is the
product of countably many copies of the additive mtionals.

For braid groups, commensurators of $B_{n}$ seen as the natural subgroup of $B_{m},$ $n\leq m,$

of the braids acting trivially on the last $m-n$ strands are also known [36]:

Theorem 3.8 (Rolfsen). For $1\leq n\leq m\leq+\infty$ one has
$Comm_{B_{m}}(B_{n})=\mathcal{N}_{B_{m}}(B_{n})=\langle B_{n},C_{B_{m}}(B_{n})\rangle\cong B_{n}\cross(B_{m-n+1})_{1}$

where $B_{n}$ acts on the first $n$ stmnds while $B_{m-n+1}$ acts on the last $m-n+1$ stmnds, and
$(B_{m-n+1})_{1}$ denotes the stabiliser of the first of the $m-n+1$ stmnds (corresponding to
the $nth$ strand of the $m$).

Although the abstract commensurators we have met so far are quite large since they are
all non finitely generated, they are not necessarily this way all the time, even for groups
which are closely related to free groups and braid groups [18]:

Theorem 3.9 (Farb-Handel). For $n\geq 4$ one has

Comm$(Out(F_{n}))\cong Out(F_{n})$ ,

where Out $(F_{n})$ denotes the outer automorphism group of the free group of rank $n.$

Note that the braid group $B_{n}$ injects into $Aut(F_{n})$ and $B_{n}/Z(B_{n})$ injects into Out$(F_{n})$ .
Remark, moreover, that for a whole large class of Artin groups Crisp proved that the
abstract commensurators coincide with the automorphism groups [14].
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We end this section by mentioning a result which provides some insight on the algo-
rithmic complexity of abstract commensurators [2]:

Theorem 3.10 (Arzhantseva-Lafont-Minasyan). There are
(i) a class offinite presentations of gmups in which the isomorphism pmblem $\dot{u}$ solv-

able but the abstmct commensumbility pmblem is not
and, conversely,

(ii) a class of finite presentation of groups in which the abstmct commensumbility
problem is solvable but the isomorphism problem is not.

4. COMMENSURABILITY OF HYPERBOLIC 3-MANIFOLDS

We will now turn our attention to the study of commensurability of hyperbohc 3-
manifolds. As we have seen, from an algebraic point of view this boils down to studying
commensurability of lattices in $PSL_{2}(\mathbb{C})$ . The contents of this section and the next one
are mainly based on Walsh’s survey on the commensurability of hyperbolic 3-orbifolds
[38], although her approach is perhaps more geometric than the one proposed here. Some
considerations on the commensurability of arbitrary 3-manifolds will also be found in this
section.

The first remarkable result on the structure of the commensurability classes of lattices
in $PSL_{2}(\mathbb{C})$ was obtained by Margulis in [28]. It establishes a dichotomy in behaviour for
the classes of irreducible lattices $H$ in connected semi-simple Lie groups $G$ with trivial
centre. When $G=PSL_{2}(\mathbb{C})$ Margulis results can be stated as follows:

Theorem 4.1 (Margulis). Let $H$ be a discrete subgroup of $G=PSL_{2}(\mathbb{C})$ offinite covol-
ume. Then either $H$ is offinite index in $Comm_{G}(H)$ or $Comm_{G}(H)$ is dense in G. This
second situation happens if and only if $H$ is arithmetic.

Recall that a lattice in $PSL_{2}(\mathbb{C})$ is arithmetic if the trace field of $H$ is a number
field with exactly one complex place. For the definition of arithmetic lattice in a generic
connected semi-simple Lie group the reader is referred to [27]. $A$ fundamental class of
examples of arithmetic subgroups of $PSL_{2}(\mathbb{C})$ is that of Bianchi groups, i.e. subgroups
of the form $PSL_{2}(\mathcal{O}_{d})$ , where $\mathcal{O}_{d}$ is the ring of integers of the number field $\mathbb{Q}(\sqrt{-d})$ ,
with $d\in \mathbb{N}$ square-free. In fact, these are basically the only examples of non-uniform
arithmetic lattices, for any non-uniform arithmetic lattice is weakly commensurable to a
Bianchi group.

A straightforward consequence of Marguhs’s result is that the commensurability class of
a non-arithmetic manifold, that is a manifold whose fundamental group is a non-arithmetic
lattice, contains a minimal element. In other words, there is an orbifold which is finitely
covered by any other manifold and orbifold in the class. The fundamental group of such
orbifold is precisely the commensurator of any group of the class. This suggests that
commensurability classes of non-arithmetic manifolds are relatively easy to understand.
On the other hand, for arithmetic manifolds one has [8]:

Theorem 4.2 (Borel). The commensumbility class of an arithmetic 3-orbifold contains
infinitely many minimal elements.

Here a minimal element is an orbifold which does not cover any other orbifold in the
commensurability class, apart from itself.
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The above results provide a description of the structure of the commensurability classes
of hyperbolic manifolds, but it is of course interesting to investigate other aspects of com-
mensurability. For instance, one might want to classify manifolds up to commensurability
or understand how certain particular classes of manifolds are distributed in the commen-
surability classes.

A possible way to answer the first question is to produce commensurabihty invariants.
As we have seen, the arithmeticity (or non-arithmeticity) of a hyperbohc manifold is a
very rough commensurabihty invariant. Of course, hyperbolic volume can also be used
as a commensurability invariant: two commensurable manifolds have necessarily com-
mensurable volumes. The converse is not true in general, though. For instance, the
complements of two hyperbolic mutant hnks have the same volume (as well as same trace
field and Bloch invariant) but need not be isometric; moreover, in the case where they
are not isometric, the two complements may or may not be commensurable (see [13]).

The commensurator of the fundamental group is yet another invariant, albeit hard to
handle. Other algebraic invariants are also known, hke the invariant trace field, [27, 33],
that is the smallest field containing the traces of the elements of the group which are
products of squares, and, in the case of cusped manifolds, the cusp field generated by
the cusp parameter or cusp shape, see for instance [31], where other commensurability
invariants are also discussed.

The interest of the second question hes in the fact that this could have been a way to
address Thurston’s virtual fibering conjecture, now proved in the positive by Agol. The
strategy consists in establishing whether each commensurability class contains a fibred
manifold. This is, for instance, the spirit of a paper by Calegari and Dunfield [11], where
they show that there are non-fibred knot complements in rational homology spheres which
are not commensurable to any fibred knot complement in a rational homology sphere.
More specifically, Hoste and Shanahan proved that any non-fibred twist knot (in the 3-
sphere) is not commensurable to a fibred knot in a $\mathbb{Z}$/2&homology sphere [23]. Of course
these results underhne some difficulties that one may encounter when trying to prove the
virtual fibring conjecture this way.

In a similar vein, the problem of understanding the distribution of knots complements
in the commensurability classes has been considered initially by Reid and Walsh and has
since received a good deal of attention. The state of the art in the subject will be discussed
in detail in the next section.

We end this section with some comments about the commensurability classification of
other 3-manifolds admitting a geometric structure. This is well-known and can be found
in [30] where the case of graph manifolds is also studied:

Proposition 4.3. All compact orientable manifolds admitting a fixed geometry which is
neither hyperbolic nor $Sol$, i.e. Seifert manifolds, belong to one commensumbility class,
with respect to the global gmup of isometries of the geometry.

The commensumbility classes of compact $Sol$ manifolds are in one-to-one correspon-
dence with real quadmtic number fields, genemted by the eigenvalues of the monodromy
of a torus bundle in the class.

All manifolds which are cusped but not hyperbolic belong to a unique commensumbility
class.

The reader interested in the case of graph manifolds can also check [5].
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5. THE CASE OF KNOTS

A consequence of Proposition 4.3 is that all torus-knot complements are commensu-
rable. According to what is known so far, the situation for hyperbolic knots seem to be
completely different. The first result conceming the commensurability of hyperbolic knot
complements can be deduced from a theorem obtained by Reid in [34]:

Theorem 5.1 (Reid). There is a unique arithmetic knot (in $S^{3}$), that is the figure-eight.

It follows that no other knot is commensurable to the figure-eight. Note that, by abuse
of language, we say that two knots are commensurable to mean that so are their com-
plements. This does not pose a problem, for knots are determined by their complements
(see [21]). Ried’s result is extremely striking if one considers that there are lots of arith-
metic links. Indeed, it is trivial to observe that there are infinitely many links with two
components whose complements are arithmetic, simply because there are infinitely many
links whose complements are homeomorphic to that of the Whitehead link. More to the
point, though, Reid observes that there are infinitely many two-component links whose
complements are arithmetic and pairwise non-homeomorphic [34].

Since Ried’s result other knots have been proved to be alone in their commensurability
class. This is the case of all 2-bridge knots [35] and of all hyperbolic $(-2,3, n)$-pretzel
knots, with $n\in \mathbb{Z}\backslash \{7\},$ $[26]$ . On the other hand, Ried and Walsh determined that
there are precisely three knots in the commensurability class of the $(-2,3,7)$-pretzel knot
[35]. Besides the $(-2,3,7)$-pretzel knot, infinitely many hyperbolic knots are known to
be commensurable to two other knots [22].

Again in $[35]$ , Ried and Walsh conjectured that a commensurability class of hyperbohc
manifolds contains at most three knot $complements’$. The conjecture has been recently
proved for a large class of knots [7]:

Theorem 5.2 (Boileau-Boyer-Cebanu-Walsh). If a hyperbolic knot has no hidden sym-
metries then its commensurability class contains at most two other knots.

There are several equivalent ways to express the condition on the knot that appears
in the statement of the theorem: $A$ hyperbolic knot has no hidden symmetries if its
fundamental group is normal in its commensurator. Equivalently, the knot complement
is a finite regular cover of the minimal element in its commensurabihty class. Different
known facts about knots with hidden symmetries seem to provide evidence that knots of
this type must be rare. Indeed, besides the figure-eight knot, only two (non-arithmetic)
knots with hidden symmetries are known so far. These are the two dodecahedral knots
constructed by Aitchison and Rubinstein in [1]. Moreover, if a non-arithmetic knot has
hidden symmetries, the minimal element in its commensurability class has a rigid cusp,
i.e. a Euchdean tumover, and in particular its cusp shape belongs either to $\mathbb{Q}[\cap-3$ , hke
the figure-eight’s, or to $\mathbb{Q}[i]$ (see [31]). Note that the cusp shape of the two dodecahedral
knots belongs to $\mathbb{Q}[\sqrt{-3}]$ , while just one knot with cusp shape in $\mathbb{Q}[i]$ is known and it has
no hidden symmetries (see $[20]$ ). Conjecturally, besides the dodecahedral knots there are
no other non-arithmetic knots with hidden symmetries (see [7, 31]).

From Boileau, Boyer, Cebanu, and Walsh’s work it also emerges that a knot must satisfy
several properties in order to be cyclically commensurable to another knot. By cyclically
commensurable one means that the complements of the two knots have a common finite-
sheeted cychc cover or, equivalently, a common cychc finite quotient.
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Theorem 5.3 (Boileau-Boyer-Cebanu-Walsh). Let $K$ be a hyperbolic knot cyclically com-
mensumble to another knot $K’$ . Then

(i) $K$ and $K’$ are fibred,$\cdot$

(ii) $K$ and $K’$ have the same genus,$\cdot$

(iii) $K$ and $K’$ have different volume, in particular $K$ and $K’$ are not mutants;
(iv) $K$ and $K’$ are chiral and not commensumble with their mirror images.

Note that two commensurable knots with no hidden symmetries are in fact cyclically
commensurable.

Remark 5.4 (Boileau-Boyer-Cebanu-Walsh). In contrast to what happens to cychcally
commensurable knots according to Theorem 5.3, the two dodecahedral knots, which be-
long to the same commensurability class but are not cychcally commensurable,

(i) are one fibred and the other not;
(ii) have different genera;
(iii) have the same volume;
(iv) are both amphicheiral.

To provide some insight on Boileau, Boyer, Cebanu, and Walsh’s result as well as to
stress its connection with the cychc surgery theorem [16], which also explains the expected
bound on the number of knots in a commensurability class, we will prove a much weaker
version of their result under several simphfying assumptions (see also $[35]$ ):

Proposition 5.5. Let $K$ be a hyperbolic knot with no hidden symmetries and with no sym-
metries. Assume that all knots in its commensumbility class have no hidden symmetries.
The commensumbility class of $K$ contains at most three knots.

Proof. The fact that $K$ has no hidden symmetries and no symmetries implies that its
complement is the minimal element in its commensurability class. Let $K’$ be another
knot whose complement is commensurable to $K$ . Since $K’$ has no hidden symmetries, its
complement must be a finite regular cover of $S^{3}\backslash K$ . Of course, since the covering induces
a covering of the peripheral tori, it must be cychc. The covering transformation group
extends to the whole -sphere containing $K’$ . The extended action is free, according to
Smith’s conjecture [29]. The quotient by this action is a lens space obtained by Dehn
surgery on $K$ . The cychc surgery theorem imphes that, besides the meridian, at most
two other slopes on the boundary of the exterior of $K$ can produce a lens space. As a
consequence, this hmits the number of possible covers to two. Notice that, for a given
slope, the order of the covering is determined by the type of lens space obtained. $\square$

6. COMMENSURABILITY AND $QUASI-ISOMETRY$

The considerations made in Section 2 suggested that abstractly commensurable man-
ifolds shared similar large-scale geometry properties. Indeed, abstractly commensurable
manifolds are quasi-isometric. We recall the definition [10]:

Definition 6.1. Let $(X, d_{X})$ and $(Y, d_{Y})$ be metric spaces. $A$ map $\phi$ : $Xarrow Y$ is a
quasi-isometry if there exist constants $L\geq 1$ and $C\geq 0$ such that

$L^{-1}d_{X}(x, x’)-C\leq d_{Y}(\phi(x), \phi(x’))\leq Ld_{X}(x, x’)+C$

for all $x,$ $x’\in X$ , and for all $y\in Y$ there is $x\in X$ such that
$d_{Y}(y, \phi(x))\leq C.$
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Recall that given a finitely generated group $H$ and a finite generating set it is possible
to define a natural metric structure, called word metric, on $H$ induced by the natural
embedding of $H$ as the set of vertices of its Cayley graph. One can prove that the identity
map on $H$ is a quasi-isometry with respect to any two metric structures associated to two
finite sets of generators for $H$ . Similarly, the inclusion map of a finite index subgroup
into a finitely-generated group is a quasi-isometry (with respect to any word metric). It
follows that two finitely-generated, abstractly-commensurable groups are quasi-isometric.

The converse is not true in general. Indeed, recall that, if $H$ is a finitely generated
group of isometries of a simply-connected metric space $X$ , such that the action of $H$ is
properly discontinuous and cocompact, then $X$ and $H$ (with any fixed word metric) are
quasi-isometric. As a consequence, all uniform lattices in $PSL_{2}(\mathbb{C})$ are quasi-isometric, for
they are quasi-isometric to hyperbolic 3-space, although they are not all commensurable.
Note also that, as a consequence of Mostow’s rigidity, two uniform lattices of $PSL_{2}(\mathbb{C})$

are weakly commensurable if and only if they are abstractly commensurable.
On the other hand, for non uniform lattices, which are not quasi-isometric to $H^{3}$ , the

two notions coincide [37]:
Theorem 6.2 (Schwartz). Non uniform lattices of $PSL_{2}(\mathbb{C})$ are commensumble if and
only if they are quasi-isometric.

As we have already seen, the two notions coincide also for lattices of $PSL_{2}(\mathbb{R})$ . Indeed,
all uniform lattices are virtual hyperbolic surface groups and all hyperbolic surface groups
are abstractly commensurable while all non uniform lattices are virtually non-abehan free
groups of finite rank which are again all commensurable.

More surprisingly, if $H_{1}$ is any finitely generated group which is quasi-isometric to a
uniform lattice $H_{2}$ of $PSL_{2}(\mathbb{R})$ , then $H_{1}$ and $H_{2}$ are abstractly commensurable. This is a
consequence of two very deep results. The first one is due to Bowditch and gives a topo-
logical characterisation of hyperbohc groups as groups that act as uniform convergence
groups on a compactum, which is their boundary [9]. The second result shows that a
group of homeomorphisms of the circle is conjugate to a lattice in $PSL_{2}(\mathbb{R})$ if and only if
the group is a convergence group and is due to Casson-Jungreis [12] and Gabai [19].

For the readers convenience, we recall one of the possible equivalent definitions of
convergence groups:
Definition 6.3. Let $H$ be a group acting on a space X. $H$ is a convergence group if the
induced diagonal action on the set of triples of pairwise distinct points of $X$ is properly
discontinuous. If moreover the induce action is cocompact, $H$ is a uniform convergence
group.

Cannon’s conjecture claims that the above result holds true in dimension 3 as well,
that is, a group which is quasi-isometric to a uniform lattice of $PSL_{2}(\mathbb{C})$ should be
also commensurable to it. Cannon’s conjecture is definitely one of the paramount open
problems relating geometric group theory and low dimensional topology and geometry.

We end this section by observing that if $H$ is any group which is abstractly commen-
surable to a uniform lattice in $PSL_{2}(\mathbb{R})$ or $PSL_{2}(\mathbb{C})$ then $H$ is an extension of a uniform
lattice by a finite group. To see this in the case of dimension 2, it is enough to consider
the convergence action on the boundary: $H$ is the extension of its image in $PSL_{2}(\mathbb{R})$ by
the kemel of the action. In dimension 3, one reasons similarly by considering a uniform
lattice $K$ of $PSL_{2}(\mathbb{C})$ which is a normal subgroup of finite index inside $H$ and mapping
$H$ to $Aut(K)\subset PSL_{2}(\mathbb{C})$ .
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7. SOME CLASSIFICATION RESULTS IN GEOMETRIC GROUP THEORY

In this section we will present some results of classification up to abstract $commensura_{r}$

bility of some families of groups. When possible, a comparison with the classification up
to quasi-isometry for the same family will be given. We will mainly be interested in Artin
and Coxeter groups. Artin groups are defined by the specific form of their presentations
which are encoded by non-oriented labelled graphs. The vertices of the graph correspond
to the generators of the group, and there is precisely one relation for each edge in the
graph: If $v_{1}$ and $v_{2}$ are generators corresponding to two vertices connected by an edge
labelled $m\in \mathbb{N}\backslash \{0,1\}$ , the relation associated to the edge is $v_{1}v_{2}\cdots=v_{2}v_{1}\ldots$ , where
the two alternating words in the letters $v_{1}$ and $v_{2}$ on both sides of the equahty have
length $m^{1}$ . To each Artin group one can associate a Coxeter group whose presentation is
obtained by the one for the Artin group by imposing that all generators have order 2. As
a consequence, Coxeter groups can, too, be encoded by a labelled graph.

Artin groups constitute a large class of groups and some of the groups we have already
encountered are in fact Artin groups. Among these, braid groups are probably the most
well-known family of Artin groups. Other Artin groups we have already seen are free
groups, corresponding to graphs without edges, and free abelian groups, corresponding to
complete graphs all of whose edges are labelled with a 2. These are moreover examples of
right-angled Artin groups, that is Artin groups associated to graphs all of whose labels are
equal to 2 (and, as a consequence, all labels can be omitted). Free products of free abehan
groups provide another example of right-angled Artin groups. These groups correspond
to graphs which are disjoint unions of complete graphs. The classification of (non trivial)
free products of free abelian groups up to quasi-isometry was obtained by Papasoglu and
Whyte [32] and that up to commensurability by Behrstock, Januszkiewicz, and Neumann
[4]. It turns out the two classifications coincide:

Theorem 7.1 (Behrstock-Januszkiewicz-Neumann$+Papasoglu$-Whyte). Let $H=H_{1}*$

.. $.*H_{n}$ and $H’=H_{1}’*\cdots*H_{m}’$ be two non-trivial $(i.e. n, m>1)$ free products offinitely
genemted non-trivial abelian groups. Assume $H,$ $H’\neq \mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$ . The following are
equivalent:

(i) $H$ and $H’$ are commensumble;
(ii) $H$ and $H’$ are quasi-isometric;
(iii) {rk $(H_{1}),$

$\ldots$ , rk$(H_{n})$ } $\backslash \{0,1\}=$ {rk $(H_{1}’),$
$\ldots$ , rk$(H_{m}’)$ } $\backslash \{0,1\}.$

The classification up to quasi-isometry is known for other classes of right-angled Artin
groups, while the classification up to commensurability seems still relatively elusive. Be-
sides those discussed above, other right-angled Artin groups that are classified up to
quasi-isometry are:

$\bullet$ Groups whose presentation graphs are trees [5, 24]: there are four quasi-isometry
classes according to whether the diameter of the tree is $0,1,2$ , or $\geq 3$ ;

$\bullet$ Groups whose presentation graphs are atomic [6] which are classified by their
graphs; by definition a graph is atomic if it is connected, has no valence-one
vertices, no cycles of length less than five, and no separating closed vertex stars;

$\bullet$ Certain right-angled Artin groups of higher dimension [4].

lNote that in the literature one can find other conventions for encoding the presentation of an Artin
group. We are not going to discuss them here.
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For arbitrary Artin groups a classification result up to abstract commensurability of a
specific class was obtained by Crisp in [14]. Crisp considered the class of 2-dimensional
Artin groups with connected, large type, triangle-free defining graphs with no separating
edge or vertex, and proved that two groups of the class are abstractly commensurable if
and only if they have label-isomorphic presentation graphs.

The following result by Davis and Januszkiewicz [17] shows that the classification of
right-angled Coxeter groups up to abstract commensurabihty would imply the same type
of classification for right-angled Artin groups. More important still, an immediate conse-
quence of their result is that right-angled Artin groups are linear, since so are right-angled
Coxeter ones.

Theorem 7.2 (Davis-Januszkiewicz). For each right-angled Artin group there is a right-
angled Coxeter group that contains it of finite index.

So far very little is known on the classification up to abstract commensurability of Cox-
eter groups and even of right-angled ones. The simplest examples of Coxeter groups are
obtained by considering discrete groups of isometries of spherical, Euclidean or hyperbolic
space generated by reflections in the faces of spherical, Euclidean or hyperbolic polyhedra
respectively. When the faces of the polyhedra always meet at right angles, the associated
Coxeter groups are right-angled.

In dimension 2, that is in the case of polygons, and assuming the polygons are compact,
Coxeter groups are virtual surface groups, and so they belong to three abstract commen-
surability classes (or, equivalently, quasi-isometry classes), according to the geometry of
the polygon. Note that the graphs associated to these Coxeter groups are just circles
with a finite number of vertices marked. The number of vertices and edges is precisely
that of the reflection polygon. However, the graph is somehow dual to the perimeter of
the reflection polygon with edges of the graph corresponding to vertices of the polygon
and a label $m$ on an edge if the angle at the corresponding vertex of the polygon is $\pi/m.$

Note that the discrete groups of reflections in the faces of a non-compact polygon are
virtually-free Coxeter groups.

The first example of classification up to abstract commensurabihty of a non-trivial class
of right-angled Coxeter groups (of dimension 2) was obtained in [15]. The classification
up to quasi-isometry of the family considered in [15] is still unknown as is the existence of
embeddings of the groups of the class into the group of isometries of hyperbohc 3-space.

The graphs associated to the groups of the family are theta-curves with one arc con-
taining precisely one vertex in its interior, and the other two arcs containing at least
two vertices (and, of course, all edges with labels equal to 2). These can also be seen as
two circles with at least five vertices each identified along two closed sub-paths of length
two. The identification is reflected in the structure of these groups which are obtained
as free products of two groups of reflections in the faces of two right-angled hyperbolic
polygons amalgamated along an infinite dihedral group times a cyclic group of order 2.
Geometrically, these groups are just orbifold fundamental groups of 2-complexes obtained
by gluing together along an edge a right-angled hyperbolic $(n+4)$-gon and a right-angled
hyperbohc $(m+4)$-gon whose edges are all silvered. Note that the common edge is also a
silvered edge. In other terms the two reflection polygons are not “contained in the same
plane”

The classification result in [15] is as follows:
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Theorem 7.3 (Crisp-Paoluzzi). Let $W_{m,n}$ the right-angled Coxeter gmup associated to a
theta-curve urith arcs of lengths 2, $n+2$ and $m+2$ respectively, where $1\leq m\leq n$ . The
groups $W_{m,n}$ and $W_{k,l}$ are abstmctly commensumble if and only if $\frac{m}{n}=\frac{k}{\iota}.$

We end by observing that the sufficiency of the condition is easy to establish. Indeed,
consider the orbifold 2-complex obtained by gluing together a right-angled hyperbolic
$(n+4)$-gon and a right-angled hyperbolic $(m+4)$-gon. By reflecting the complex $s$

times with respect to its sides which are orthogonal to the “double edge” one obtains
another orbifold 2-complex of the same type but obtained by gluing together a right-
angled hyperbohc $(sn+4)$-gon and a right-angled hyperbolic $(sm+4)$-gon.
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