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Abstract

In this article, we study global representation of ultradistributions and hyperfunctions.
For non-quasi-analytic ultradistributions, we need to assume suitable global growth conditions
for the global representation to hold. On the other hand, it holds for any quasi-analytic
ultradistribution and hyperfunction.

\S 1. Introduction

In this paper, we discuss the structure of generalized functions. It is well known that
any distribution $f$ is locally represented as $f=P(D)g$ , where $P(D)$ is a finite order
differential operator with constant coefficients and $g$ is a continuous function, which is
the structure theorem for distributions. The structure theorems for non quasi-analytic
ultradistributions ([1], [6]), quasi-analytic ultradistributions ([10], [11]) and hyperfunc-
tions ([3]) are als$0$ known, among which, it is only the structure of hyperfunctions that
is proved to hold globally. In this paper, we shall give global structure theorem of dis-
tributions and non quasi-analytic ultradistributions, by assuming suitable global decay
conditions. The main purpose of this article is to give the global structure theorem for
all quasi-analytic ultradistributions.

\S 2. Ultradistributions

In this section, we review the definition of ultradistributions. Let $\Omega\subset \mathbb{R}^{n}$ be an open
subset and $M_{p},$ $p=0,1,$ $\ldots$ , be a sequence of positive numbers. For non-quasi-analytic
classes, we impose the following conditions on $M_{p}.$
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$(M.0)$ (normalization)

$M_{0}=M_{1}=1.$

( $M$ . 1) (logarithmic convexity)
$M_{p}^{2}\leq M_{p-1}M_{p+1}(p=1,2, \ldots)$ .

( $M$ .2) (stability under ultradifferential operators)

there exist $G,$ $H>0$ such that $M_{p} \leq GH^{p}\min_{0\leq q\leq p}M_{q}M_{p-q}(p=1,2, \ldots)$.

( $M$ .3) (strong non quasi-analyticity)

there exists $G>0$ such that $\sum_{q=p+}^{\infty}\frac{M_{q-1}}{1^{M_{q}}}\leq Gp\frac{M_{p}}{M_{p+1}}(p=1,2, \ldots)$ .

( $M$.2) and ( $M$.3) are often replaced by the following weaker conditions respectively;
$(M.2)’$ (stability under differential operators)

there exist $G,$ $H>0$ such that $M_{p+1}\leq GH^{p}M_{p}(p=0,1, \cdots)$ .

$(M.3)’$ (non-quasi-analyticity)

$\sum_{p=1}^{\infty}\frac{M_{p-1}}{M_{p}}<\infty.$

For two sequences $M_{p}$ and $N_{p}$ of positive numbers we define their orders.

Definition 2.1. Let $M_{p}$ and $N_{p}$ be the sequences of positive numbers.

(i) $M_{p}\subset N_{p}$ if there exist constants $L>0$ and $C>0$ such that $M_{p}\leq CL^{p}N_{p}$ for
any $p.$

(ii) $M_{p}\prec N_{p}$ if for any $L>0$ there exists a constant $C>0$ such that $M_{p}\leq CL^{p}N_{p}$

for any $p.$

In order to define quasi-analytic classes, we impose the following conditions, $(QA)$

and $(NA)$ , instead of ( $M$.3) or $(M.3)’.$

$(QA)$ (quasi-analyticity)

$p! \subset M_{p}, \sum_{p=1}^{\infty}\frac{M_{p-1}}{M_{p}}=\infty.$

Let $M_{p}$ be a sequence of positive numbers satisfying $(QA)$ . If

$\lim_{parrow}\inf_{\infty}\sqrt[p]{\frac{p!}{M_{p}}}>0$

then $\mathcal{E}^{\{M_{p}\}}$ is the class of analytic functions. We impose the condition that $\{M_{p}\}$ would
not define the analytic class, namely,
$(NA)$ (non-analyticity)

$\lim_{parrow\infty}\sqrt[p]{\frac{p!}{M_{p}}}=0.$
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Definition 2.2. Let $M_{p}$ be a sequence of positive numbers and $\Omega\subset \mathbb{R}^{n}$ be an open
subset. $A$ function $f\in \mathcal{E}(\Omega)=C^{\infty}(\Omega)$ is called an ultradifferentiable function of the
class $(M_{p})$ (resp. $\{M_{p}\}$ ) if and only if for any compact subset $K\subset\Omega$ and for any $h>0$
there exists a constant $C$ (resp. for any compact subset $K\subset\Omega$ there exist constants $h$

and $C)$ such that

(2.1) $\sup_{x\in K}|D^{\alpha}\varphi(x)|\leq Ch^{|\alpha|}M_{|\alpha|}$ for all $\alpha$

holds. Denote the set of the ultradifferentiable functions of the class $(M_{p})$ (resp. $\{M_{p}\}$ )
on $\Omega$ by $\mathcal{E}^{(M_{p})}(\Omega)$ (resp. $\mathcal{E}^{\{M_{p}\}}(\Omega)$ ) and denote by $\mathcal{D}^{*}(\Omega)$ the set of all functions in
$\mathcal{E}^{*}(\Omega)$ with their supports compact in $\Omega,$ where $*=(M_{p})$ or $\{M_{p}\}.$

Let $K\subset \mathbb{R}^{n}$ be a compact set, and assume that $M_{p}$ satisfy ( $M$.1) and $(NA)$ . Denote
by $\mathcal{E}^{*}[K]$ the set of the ultradifferentiable functions of the class $*=(M_{p})$ or $\{M_{p}\}$

defined on some neighborhood of $K$ . We define $\varphi\in \mathcal{E}^{\{M_{p}\},h}[K]$ by $\varphi\in \mathcal{E}^{\{M_{p}\}}[K]$ and
(2.1) holds for given $h>0.$

For $M_{p}$ satisfying ($M$.3)’ and a compact subset $K\subset\Omega$ , set

(2.2) $\mathcal{D}_{K}^{*}=\{\varphi\in \mathcal{D}^{*}(\mathbb{R}^{n});suppf\subset K\},$

where $*=(M_{p})$ or $\{M_{p}\}$ and we define

(2.3)
$\mathcal{D}_{K}^{\{M_{p}\},h}=\bigcup_{C>0}\{\varphi\in \mathcal{D}_{K}^{\{M_{p}\}};\sup_{x\in K}|D^{\alpha}\varphi(x)|\leq Ch^{|\alpha|}M_{|\alpha|}\}.$

Let $M_{p}$ satisfy ($M$.1) and ($M$.3)’. We define $\mathcal{D}^{*}/(\Omega)$ as the strong dual of $\mathcal{D}^{*}(\Omega)$ for any
open set $\Omega$ and call it the set of ultradistributions of the class $*$ defined on $\Omega$ . These
spaces are endowed with natural structure of locally convex spaces.

For non quasi-analytic ultradifferentiable functions and non quasi-analytic ultradis-
tributions confer [6] and [7].

Definition 2.3. Let $K\subset \mathbb{R}^{n}$ be a compact set, $M_{p}$ satisfy ( $M$.1) and $(NA)$ . For
$f\in \mathcal{E}^{\{M_{p}\},h}[K]$ we define its norm by

(2.4) $\Vert f\Vert_{\mathcal{E}^{\{M_{p}\},h}[K]}:=\sup_{x\in K,\alpha}\frac{|D^{\alpha}f(x)|}{h|\alpha|M_{|\alpha|}}.$

Let $\Omega$ be an open set and $K$ be a compact set. Topologies of the spaces of ultradiffer-
entiable functions are defined as follows.

(2.5)
$\mathcal{E}^{\{M_{p}\}}[K]= \lim_{arrow,harrow\infty}\mathcal{E}^{\{M_{p}\},h}[K],$

$\mathcal{E}^{\{M_{p}\}}(\Omega)= \lim_{arrow,K\Subset\Omega}\mathcal{E}^{\{M_{p}\}}[K],$
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$\mathcal{E}^{(M_{p})}[K]= \lim_{arrow,harrow 0}\mathcal{E}^{\{M_{p}\},h}[K],$

$\mathcal{E}^{(M_{p})}(\Omega)=i\llcorner m\mathcal{E}^{(M_{p})}[K]K\Subset\Omega^{\cdot}$

We define $\mathcal{E}_{K}^{*J}$ as the strong dual of $\mathcal{E}^{*}[K]$ and call it the set of ultmdistributions of the
class $*$ supported by $K$ . We also define $\mathcal{E}^{*}/(\Omega)$

$:= \bigcup_{K\subset\Omega}\mathcal{E}_{K}^{*}\prime.$

Let us define the sheaf of ultradistributions.

Definition 2.4. Let a sequence $M_{p}$ of positive numbers satisfy ( $M$.0), ( $M$. 1), $(M.2)’$

and

(2.6) $\lim_{parrow}\sup_{\infty}\sqrt[p]{\frac{p!}{M_{p}}}<\infty.$

For an open bounded set $\Omega$ , we define

(2.7) $Db^{*}(\Omega):=\mathcal{E}^{*}/(\mathbb{R}^{n})/\mathcal{E}^{*}/(\mathbb{R}^{n}\backslash \Omega)$ ,

where $*=(M_{p})$ or $\{M_{p}\}$ . We abuse the notation and by $Db^{*}$ we define the presheaf
induced by (2.7). We denote the associated sheaf by $\mathcal{D}b^{*}$ If $M_{p}$ satisfies $(M.3)’$ then
$\mathcal{D}b^{*}=\mathcal{D}^{*J}$ If $M_{p}$ satisfies $(QA)$ and $(NA)$ , then we call $\mathcal{D}b^{*}$ the sheaf of the quasi-
analytic ultradistributions of class $*.$

The ultradistributions are represented as the boundary values of holomorphic func-
tions (cf. [6], [8]).

Definition 2.5. For a positive sequence $M_{p}$ satisfying $(NA)$ , define its associated

functions by

(2.8) $M(t) := \sup_{p}\frac{t^{p}}{M_{p}}, M^{*}(t) :=\sup_{k}\frac{t^{k}k!}{M_{k}},$

for $t>0.$

Proposition 2.6. Let $\Omega$ be an open set in $\mathbb{R}^{n}$ and $\Gamma_{j}(j=1, \ldots, N)$ open cones in
$\mathbb{R}^{n}$ The following two conditions are equivalent.

(i) $f(x)\in \mathcal{D}b^{(M_{p})}$ (resp. $\mathcal{D}b^{\{M_{p}\}}$ ).
(ii) The function $f(x)$ is represented as a hyperfunction

$f(x)= \sum_{j=1}^{N}F_{j}(x+i\Gamma_{j}0)$ ,
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where the functions $F_{j}$ are holomorphic in

$\{z\in \mathbb{C}^{n};z\in\Omega+i\Gamma_{j},$ $|{\rm Im} z|<\epsilon$ for some $\epsilon>0\}$

and for any compact set $K\subset\Omega$ there exist constants $L$ and $C$ (resp. for any $L>0$
there exists $C$) such that

$\sup_{x\in K}|F_{j}(x+iy)|\leq CM^{*}(L/|y|)$ ,

where $i:=\sqrt{-1}.$

Definition 2.7. For two classes $*$ and $\dagger$ we define their inclusion relations.

$\dagger\leq*\Leftrightarrow \mathcal{E}^{\dagger}\subset \mathcal{E}^{*},$

(2.9)
$\dagger<*\Leftrightarrow \mathcal{E}^{\dagger}\subsetneq \mathcal{E}^{*}$

Definition 2.8. $A$ function $\epsilon(t)>0$ defined for $t>0$ is said to be subordinate if it
is continuous, monotonously increasing and $\epsilon(t)/t$ is monotonously decreasing to zero
as $tarrow\infty$ , in particular

(2.10) $\lim_{tarrow\infty}\frac{\epsilon(t)}{t}=0.$

Proposition 2.9 (cf. Lemma 3.10 in [6]). For positive sequences $M_{p}$ and $N_{p}$ satis-
fying ( $M$.1), the following conditions are equivalent.

(i) $M_{p}\prec N_{p}.$

(ii) For any $L>0$ , there exists a constant $C>0$ such that

$N(t)\leq CM(Lt)$ , for $0<t<\infty.$

(iii) There exists a subordinate function $\epsilon(t)$ such that

$N(t)\equiv M(\epsilon(t))$ .

Definition 2.10. $A$ differential operator $P(D)= \sum_{\alpha}a_{\alpha}D^{\alpha}$ of infinite order is de-

fined to belong to the class $(M_{p})$ (resp. $\{M_{p}\}$ ), if there exist such constants $L$ and $C$

(resp. for any $L>0$ there exists such a constant $C$ ) that $|a_{\alpha}|\leq(CL^{|\alpha|})/M_{|\alpha|}$ holds
for any $\alpha$ . We call this operator an ultradifferential operator of the class $(M_{p})$ (resp.
$\{M_{p}\})$ .

\S 3. Known Structure Theorems

In this section, we review the known results on the structure theorems. The structure
theorem for the distributions was proved by L. Schwartz.
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Theorem 3.1 (cf. [9]). Any distribution $f$ is locally represented as

(3.1) $f=P(D)g,$

where $P(D)$ is a differential opemtor of the finite order with constant coefficients and $g$

is a continuous function.

H. Komatsu [6] proved the structure theorem for the strong non quasi-analytic ul-
tradistributions.

Theorem 3.2 (cf. [6]). Let the sequence $M_{p}$ satisfy the conditions ( $M$.1), ( $M$.2) and
( $M$.3). Then $f\in \mathcal{D}b^{*},$ where $*is(M_{p})$ or $\{M_{p}\}$ , is locally represented in the form (3.1),
where $P(D)$ is an ultmdifferential opemtor of class $*with$ constant coefficients and $g$ is
a continuous function.

This theorem was extended by R. W. Braun [1] for the non quasi-analytic ultradis-
tributions.

Theorem 3.3 (cf. [1]). Let the sequence $M_{p}$ satisfy the conditions ( $M$.1), ( $M$.2) and
( $M$.3)’. Then for $f\in \mathcal{D}b^{*}$ , where $*is(M_{p})$ or $\{M_{p}\}$ , and for any class \dagger satisfying
$*<\dagger$ , there exist an ultmdifferential opemtor $P(D)$ of class $*with$ constant coefficients
and an ultmdifferentiable function $g$ of class \dagger such that the representation (3.1) locally
holds.

In [3], [4], A. Kaneko proved the structure theorem for the hyperfunctions.

Theorem 3.4 (cf. [3], [4]). Any hyperfunction $f$ is globally represented as

(3.2) $f=J(D)g,$

where $J(D)$ is a local opemtor with constant coefficients, that is, $J(D)$ is an infinite
order differential opemtor $J(D)= \sum_{\alpha}a_{\alpha}D^{\alpha}$ with the coefficients satisfying

$\lim_{|\alpha|arrow\infty}|\alpha\sqrt[1]{|a_{\alpha}|\alpha!}=0,$

and $g$ is an infinitely differentiable function.

Theorem 3.4 was the first result to give the structure of generalized functions more
singular than the distributions. After this work, the structure of generalized functions
was well studied by other mathematicians, for example, Theorem 3.2 by H. Komatsu,
Theorem 3.3 by R. W. Braun etc. A. Kaneko also applied the $10$cal operators to give a
new characterization of analytic functions (cf. [3]). We note that the structure theorems
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for the distributions (Theorem 3.1) and for the non quasi-analytic ultradistributions
(Theorems 3.2 and 3.3) hold only locally, whereas the representation in (3.2) is global
on any open set by virtue of the properties of the (Fourier) hyperfunctions.

The structure theorem for the quasi-analytic ultradistributions had been left open,
which was proved by the author [10].

Theorem 3.5 (cf. [10]). Let $M_{p}$ satisfy ($M$.0), ( $M$.1), ( $M$.2), $(QA)$ and $(NA)$ . As-
sume that $f\in \mathcal{D}b^{*}$ , where $*=(M_{p})$ or $\{M_{p}\}$ . Then for any class \dagger satisfying $*<\dagger$

there exist $g\in \mathcal{E}^{\uparrow}and$ an ultradifferential opemtor $P(D)$ of class $*such$ that the repre-
sentation

(3.3) $f=P(D)g$

locally holds.

The main purpose of this paper is to extend Theorem 3.5 in order that the structure
theorem of quasi-analytic ultradistributions holds globally, which shall be discussed in
the next section.

\S 4. Main Theorems

It is our main purpose in this article to give the global structure theorem for distribu-
tions and non-quasi-analytic ultradistributions with suitable global growth conditions
and prove the global structure theorem for the all quasi-analytic ultradistributions,
which shall be discussed in this section. We first define the ultradistributions with
growth conditions.

Definition 4.1. Let $M_{p}$ be a sequence of positive numbers. then a function $f\in$

$\mathcal{E}^{(M_{p})}(\mathbb{R}^{n})$
$($ resp. $f\in \mathcal{E}^{\{M_{p}\}}(\mathbb{R}^{n}))$ belongs to $\mathcal{P}^{(M_{p})}$ (resp. $\mathcal{P}^{\{M_{p}\}}$ ) if for any $h>0$ there

exists a constant $C=C_{h}>0$ $(resp.$ there exists $a$ constants $h>0, C>0)$ such that

(4.1) $\sup\underline{|D^{\alpha}f(x)|}<C|h|^{|\alpha}IM_{|\alpha|},$

$x\in \mathbb{R}^{n}M(h|x|)$

for any multi-index $\alpha$ . Let us define

$\mathcal{P}^{\{M_{p}\},h}=\bigcup_{C>0}\{f\in \mathcal{P}^{\{M_{p}\}};\sup_{x\in \mathbb{R}^{n}}\frac{|D^{\alpha}f(x)|}{M(h|x|)}\leq C|h|^{|\alpha|}M_{|\alpha|}$ (for all $\alpha$ ) $\}.$

For $f\in \mathcal{P}^{\{M_{p}\},h}$ , we define its norm by

(4.2) $\Vert f\Vert_{\mathcal{P}^{\{M_{p}\},h}}:=\sup_{x\in \mathbb{R}^{n},\alpha,k}\frac{|D^{\alpha}f(x)|}{h|\alpha|M_{|\alpha|}M(h|x|)}.$
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For topologies of ultradifferentiable classes, the following relations hold.

(4.3) $\mathcal{P}^{\{M_{p}\}}=\lim_{arrow}\mathcal{P}^{\{M_{p}\},h}, \mathcal{P}^{(M_{p})}=\lim_{arrow}\mathcal{P}^{\{M_{p}\},h}$

$harrow\infty harrow 0$

The set $\mathcal{Q}^{*};=\mathcal{P}^{*J}$ is defined as the strong dual of $\mathcal{P}^{*},$ where $*=(M_{p})$ or $\{M_{p}\}$ , and is
called as the space of the Fourier ultmdistributions of class $*.$

Proposition 4.2. Assume that a sequence $M_{p}(p=0,1,2, \ldots)$ of positive numbers
satisfies the conditions ( $M$.0), ( $M$.1), ( $M$.2) and $(NA)$ . Then the following conditions
are equivalent.

(i) The function $\hat{f}$ is the Fourier-Laplace tmnsform of $f\in \mathcal{P}^{(M_{p})}$ (resp. $f\in \mathcal{P}^{\{M_{p}\}}$ ).
(ii) For $h>0$ there exists a constant $C=C_{h}>0$ (resp. there exist constants $h,$

$C>0)$ such that

(4.4) $|P_{1}(D)(P_{2}( \xi)\hat{f}(\xi))|\leq\frac{C}{M(h|\xi|)},$ $for\xi\in \mathbb{R}^{n},$

for any ultmdifferential operator $P_{1}(D)$ and $P_{2}(D)$ of the same class.

Theorem 4.3 (The Paley-Wiener Theorem for $NA$ Ultradistributions).
Let $M_{p}$ satisfy ($M$.0), ( $M$. 1), $(M.2)’$ and $(NA)$ . For any compact convex set $K\subset \mathbb{R}^{n},$

the following conditions are equivalent.

(i) $\hat{f}$ is the Fourier-Laplace transform of $f\in \mathcal{D}b_{K}^{(M_{p})}$ $($ resp. $f\in \mathcal{D}b_{K}^{\{M_{p}\}})$ .
(ii) $\hat{f}(\zeta)$ is an entire function of $\zeta\in \mathbb{C}^{n}$ which satisfies the following: there exist $L,$

$C>0$ $(resp. for any L>0,$ there exists $C>0)$ such that for any $\xi\in \mathbb{R}^{n}$

(4.5) $|\hat{f}(\xi)|\leq CM(L|\xi|)$ ,

and for any $\epsilon>0$ , there exists $C_{\epsilon}>0$ such that for any $\zeta\in \mathbb{C}^{n},$

(4.6) $|\hat{f}(\zeta)|\leq C_{\epsilon}\exp(H_{K}({\rm Im}\zeta)+\epsilon|\zeta|)$ ,

where $H_{K}(y)$
$:= \sup_{x\in K}\{x\cdot y\}(y\in \mathbb{R}^{n})$ is the supporting function of $K.$

(iii) $\hat{f}(\zeta)$ is an entire function of $\zeta\in \mathbb{C}^{n}$ which satisfies the following: there exist $L,$

$C>0$ $(resp. for any L>0,$ there exists $C>0)$ such that for any $\zeta\in \mathbb{C}^{n},$

(4.7) $|\hat{f}(\zeta)|\leq CM(L|\zeta|)e^{H_{K}({\rm Im}\zeta)}.$

Definition 4.4. Let $\mathbb{D}^{n}$ $:=\mathbb{R}^{n}\sqcup S^{n-1}$ be the directional compactification of $\mathbb{R}^{n}$

For a compact subset $K\subset \mathbb{D}^{n}$ , we define the space of ultradifferentiable test functions
as follows:

$\mathcal{P}^{\{M_{p}\}}(K)=\{\varphi(x)\in C^{\infty}(K\cap \mathbb{R}^{n})$; there exist $C,$ $h>0$ such that for any
$x\in K$ and $\alpha,$ $|D^{\alpha}\varphi(x)|\leq Ch^{|\alpha|}M_{|\alpha|}M(h|x|)^{-1}\}.$
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We define $\mathcal{P}^{(M_{p})}(K)$ in the same way. The growth condition is meaningful only if $K$

contains points at infinity. Notice that compact subsets of $\mathbb{D}^{n}$ restricted to $\mathbb{R}^{n}$ not
necessarily bounded in the usual sense. By the same way as Definition 2.4, $\mathcal{Q}^{*}$ itself
is defined as a sheaf of Fourier ultradistributions of class $*$ on $\mathbb{D}^{n}$ whose restriction
to $\mathbb{R}^{n}$ agrees with the usual sheaf $\mathcal{D}b^{*}$ of ultradistributions, since $\mathcal{Q}^{*}$ is defined on the
directional compactification of $\mathbb{R}^{n}.$ $\mathcal{P}^{*}$ being invariant under the Fourier transformation
by virtue of Proposition 4.2, $\mathcal{Q}^{*}$ is also invariant under the Fourier transformation.

Theorem 4.5. Let $M_{p}$ satisfy ( $M$.0), ( $M$.1), ( $M$.2)’ and $(NA)$ . The following con-
ditions are equivalent.

(i) $f\in \mathcal{Q}^{(M_{p})}$ (resp. $f\in \mathcal{Q}^{\{M_{p}\}}$ )
(ii) $f\in \mathcal{D}b^{(M_{p})}$

$($ resp. $f\in \mathcal{D}b^{\{M_{p}\}})$ and there exist constants $L>0$ and $C>0$ (resp.
for any $L>0$ there exists a constant $C>0$ ) such that for any $\xi\in \mathbb{R}^{n}$

(4.8) $|\hat{f}(\xi)|\leq CM(L|\xi|)$ .

Theorem 4.6. If the class $*is$ quasi-analytic, then
(i) $\mathcal{Q}^{*}$ is flabby.

(ii) The restriction $\mathcal{Q}^{*}(\mathbb{D}^{n})arrow \mathcal{D}b^{*}(\mathbb{R}^{n})$ is surjective.

This theorem is proved by L. H\"ormander ([2]) for the $\{M_{p}\}$ classes, the idea of which
can be extended for the $(M_{p})$ classes.

Now we study the global structure theorems. The following theorem is well known.

Theorem 4.7. Any tempered distribution $f\in S’$ is globally represented as

(4.9) $f=P(D)g,$

where $P(D)$ is a differential opemtor of finite order with constant coefficients and $g$ is
a continuous function.

It is essential for this theorem to hold that the Fourier-Laplace transformation is an
isomorphism on $S’.$

Let us prove our main theorem in this article.

Theorem 4.8. Let the sequence $M_{p}$ satisfy the conditions, ( $M$.1), ( $M$.2) and $p!\subset$

$M_{p}$ . Assume that $f\in \mathcal{Q}^{*}(\mathbb{D}^{n}),$ where $*is(M_{p})$ or $\{M_{p}\}$ . Then for any class \dagger satisfying
$*<\dagger$ there exist $g\in \mathcal{P}^{\dagger}(\mathbb{R}^{n})$ and an ultmdifferential opemtor $P(D)$ of class $*such$ that
the representation

(4.10) $f=P(D)g,$

holds. If $M_{p}=p!$ , we only consider the $\{M_{p}\}$ class, which yields that $\mathcal{Q}^{\{M_{p}\}}(\mathbb{D}^{n})=$

$\mathcal{Q}(\mathbb{D}^{n})$ is the space of Fourier hyperfunctions.
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Before proving this theorem, let us prepare a lemma.

Lemma 4.9. Let a sequence $M_{p}$ satisfy ( $M$.0), ( $M$.1), $(M.2)’$ and $p!\subset M_{p}$ . If for
any $h>0$ there exists a constant $C=C_{h}>0$ (resp. there exist constants $h>0$ and
$C>0)$ such that

(4.11) $|f(x)| \leq\frac{C}{M(h|x|)},$

then $\hat{f}\in \mathcal{E}^{(M_{p})}$ (resp. $\hat{f}\in \mathcal{E}^{\{M_{p}\}}$ ). If $M_{p}=p!$ , we only consider the $\{M_{p}\}$ class.

Proof of Theorem 4.8.
I. The proof for the $(M_{p})$ class.

By Theorem 4.5, there exist $L>0$ and $C>0$ such that (4.8) holds. Define the
ultradifferential operator of class $(M_{p})$ by

(4.12) $P(D) := \sum_{p=0}^{\infty}\frac{(-C\Delta)^{p}}{M_{2p}}.$

for some suitable constant $C$ such that $| \frac{\hat{f}(\xi)}{P(\xi)}|$ is bounded. By lemma 4.9

(4.13) $g := \mathcal{F}^{-1}(\frac{\hat{f}(\xi)}{P(\xi)^{2}})\in \mathcal{E}^{\{M_{p}\}},$

where $\mathcal{F}^{-1}$ is the inverse Fourier-Laplace transformation operator. We have

(4.14) $f(x)=P(D)^{2}g(x)$ .

By virtue of ( $M$.2), we see that $P(D)^{2}$ is an ultradifferential operator of class $(M_{p})$ .

II. The proof for $\{M_{p}\}$ class.
Let $\{M_{p}\}<\dagger=(N_{p})$ or $\{N_{p}\}.$ $L_{p}$ $:=\sqrt{M_{p}N_{p}}$ yields $M_{p}\prec L_{p}\prec N_{p}$ . There exists

a subordinate function $\epsilon_{1}$ such that $L(t)=M(\epsilon_{1}(t))$ , hence there exist such a positive
decreasing sequence $l_{p}^{(1)}$ with $\lim_{parrow\infty}l_{p}^{(1)}=0$ and a constant $A_{1}>0$ that

(4.15) $P_{1}( \xi):=\sum_{p=0}^{\infty}\frac{(l_{2p}^{(1)}|\xi|)^{2p}}{M_{2p}}\geq A_{1}M(\epsilon_{1}(|\xi|))$ ,

for any $\xi\in \mathbb{R}^{n}$ By virtue of Theorem 4.3, there exists a subordinate function $\epsilon_{2}$ such
that

(4.16) $|\hat{f}(\xi)|\leq M(\epsilon_{2}(|\xi|))$ ,

80



STRUCTURE OF HYPERFUNCTIONS AND ULTRADISTRIBUTIONS

for any $\xi\in \mathbb{R}^{n}$ . There exist a positive decreasing sequence $l_{p}^{(2)}$ satisfying $\lim_{parrow\infty}l_{p}^{(2)}=0$

and a constant $A_{2}>0$ such that

(4.17) $P_{2}( \xi):=\sum_{p=0}^{\infty}\frac{(l_{2p}^{(2)}|\xi|)^{2p}}{M_{2p}}\geq A_{2}M(\epsilon_{2}(|\xi|))$ ,

for any $\xi\in \mathbb{R}^{n}$ . Let us define

(4.18) $g := \mathcal{F}^{-1}(\frac{\hat{f}(\xi)}{P_{1}(\xi)P_{2}(\xi)})$ ,

then it is proved that $g\in \mathcal{E}^{\{L_{p}\}}\subset \mathcal{E}^{\dagger}$ . We have

(4.19) $P_{1}(D)P_{2}(D)g(x)=f(x)$ .

By the condition ($M$.2), the ultradifferential $operatorP_{1}(D)P_{2}(D)$ belongs to the $\{M_{p}\}$

class. $\square$

By the proof of this theorem, we obtain the following global structure theorem for
non quasi-analytic ultradistributions.

Theorem 4.10. Let $M_{p}$ satisfy the conditions ($M$.1), ( $M$.2) and $(M.3)’$ . Assume
that $f\in \mathcal{D}b^{*}(\mathbb{D}^{n})$ , where $\Omega\subset \mathbb{R}^{n}$ is open and $*$ is $(M_{p})$ or $\{M_{p}\}$ , satisfying the
condition that there exist constants $L>0$ and $C>0$ (resp. for any $L>0$ there exists
a constant $C>0$ ) such that the estimate (4.8) holds. Then for any class \dagger satisfying
$*<\dagger$ there exist $g\in \mathcal{P}^{\dagger}(\mathbb{R}^{n})$ and an ultmdifferential opemtor $P(D)$ of class $*such$ that
the representation (4.10) globally holds.

By virtue of Theorems 4.6 and 4.8, we obtain the global representation of any quasi-
analytic ultradistribution.

Theorem 4.11. Assume that $f\in \mathcal{D}b^{*}(\Omega)$ , where $\Omega\subset \mathbb{R}^{n}$ is open $and*is$ a quasi-
analytic class satisfying the condition ( $M$.2). For any class \dagger satisfying $*<\dagger$ there exist

$g\in \mathcal{E}^{\dagger}$ and an ultmdifferential opemtor $P(D)$ of class $*such$ that the representation

(4.20) $f=P(D)g,$

globally holds (on $\Omega$ ).

\S 5. Conclusion

We have proved a global representation theorem for any quasi-analytic ultradistribu-
tion (Theorem 4.11), hyperfunctional counterpart of which has been proved A. Kaneko
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(Theorem 3.4). The proofs of these two global representations essentially depends on the
flabbiness of the sheaves of the quasi-analytic ultradistributions and the hyperfunctions
(Theorem 4.6).

On the other hand, in order to obtain the global representation of the distributions
and the non quasi-analytic ultradistributions, we had to restrict their growth toward in-
finity (Theorems 4.7 and 4.10). It may be interesting to study whether the assumptions
in Theorems 4.7 and 4.10 are optimal for the global representations to hold.
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