
Diplomarbeitspräsentationen der Fakultät für Informatik

Dialogue Games for Fuzzy Logics

Masterstudium
Computational Intelligence Christoph Roschger

Technische Universität Wien
Institut für Computersprachen

Arbeitsbereich: Theoretische Informatik und Logik
Betreuer: Ao.Prof. Dipl.Ing. Dr.techn. Christian G. Fermüller

Giles’s Game
Overview & Motivation

• dialogue game introduced by Robin Giles in the
1970s

• models reasoning in physical theories

• asserting a proposition means committing one-
self to pay a certain amount of money if the as-
sociated experiment(s) fail(s)

• seperates evaluation of atomic formulas from
decomposing compound formulas

Betting for Positive Results:

• each atomic proposition a is associated with a
binary (yes/no) experiment Ea

• experiments may be probabilistic, i.e. show dis-
persion

• for each assertion of an atomic proposition an
experiment is made

• each player places bets on positive outcomes of
experiments corresponding to his claims

Decomposing Compound Formulas:

• arguments about complex formulas are system-
atically reduced to arguments about less com-
plex formulas

• dialogue rules have already been introduced by
Lorenzen for Intuitionistic Logic

• these rules characterize the meaning of logi-
cal connectives, independently of the underlying
betting scheme

Rules

Atomic Evaluation: Let a be an atomic proposi-
tion. He who asserts a agrees to pay his oppo-
nent e 1 if a trial of the experiment associated
with a yields the outcome “no”.

Implication: He who asserts A → B agrees to as-
sert B if his opponent will assert A.

Negation: He who asserts ¬A agrees to assert ⊥
if his opponent will assert A where ⊥ is associ-
ated with an experiment that always evaluates
to “no”.

Disjunction: He who asserts A ∨ B commits him-
self to assert either A or B at his own choice.

Conjunction: He who asserts A∧B commits him-
self to assert either A or B at his opponent’s
choice.

Strong conjunction: He who asserts A&B com-
mits himself either to assert both A and B or to
admit falsity by asserting ⊥.

After being attacked, a formula is being deleted
from the game.

An Example Dialogue

Łukasiewicz Logic
T-Norm Based Fuzzy Logics

• many valued logics: 0 stands for absolute falsity, 1

for truth, but inifinitely many intermediate degrees
of truth between 0 and 1

• truth function for (strong) conjunction & is a con-
tinuous t-norm

• a t-norm is a commutative, associative function ∗ :

[0, 1]2 → [0, 1] with unit 1 which is order preserving

• truth function for implication → is the residuum of
a t-norm

• the residuum ⇒∗ of a t-norm ∗ is determined by
x ⇒∗ y := sup{z | x ∗ z 6 y}

• other connectives ∧, ∨, and ¬ are derived from
&,→, and ⊥

Łukasiewicz Logic

• one of three fundamental t-norm based fuzzy log-
ics

• originally J. Łukasiewicz defined a three-valued
logic for modelling future contingents, which has
later been extended to infinitely many truth values

• Łukasiewicz t-norm: x ∗ÃL y = max(0, x + y − 1)

• associated residuum: x ⇒ÃL y = min(1, 1 − x + y)

• the unique fuzzy logic where all truth functions
are continuous

• all connectives can be derived from → and ⊥

 0
 0.2

 0.4
 0.6

 0.8
 1

x
 0

 0.2
 0.4

 0.6
 0.8

 1

y

 0

 0.2

 0.4

 0.6

 0.8

 1

x*y

Łukasiewicz t-Norm ∗ÃL

 0
 0.2

 0.4
 0.6

 0.8
 1

x
 0

 0.2
 0.4

 0.6
 0.8

 1

y

 0

 0.2

 0.4

 0.6

 0.8

 1

x =>* y

Residuum ⇒ÃL

Other Fuzzy Logics
Gödel Logic

• also known as Intuitionistic Fuzzy Logic

• based on the Gödel t-norm x ∗G y = min(x, y)

• associated residuum: x ⇒G y = y if x > y, and is
1 otherwise

• only the order of truth values is relevant for evalu-
ating formulas

Product Logic

• introduced in 1996 by Hajek, Godo, and Esteva

• based on the Product t-norm x ∗Π y = x · y

• associated residuum: x ⇒Π y = y/x if x > y, and
is 1 otherwise

 0
 0.2

 0.4
 0.6

 0.8
 1

x
 0

 0.2
 0.4

 0.6
 0.8

 1

y

 0

 0.2

 0.4

 0.6

 0.8

 1

x * y

Gödel t-Norm ∗G

 0
 0.2

 0.4
 0.6

 0.8
 1

x
 0

 0.2
 0.4

 0.6
 0.8

 1

y

 0

 0.2

 0.4

 0.6

 0.8

 1

x*y

Product t-Norm ∗Π

Contact: roschger@logic.at

Accompanying Implementation
Webgame

• Web-based application which allows playing
Giles’s Game interactively,

• simulates evaluation by dispersive experiments.

• see http://logic.at/people/roschger/thesis/webgame

Giles

• Small Haskell-program to display game trees of
Giles’s game,

• given a formula, computes a game tree of the
corresponding game and outputs the tree as a
dot-Graph specification.

Hypseq

• Utility to find derivations of hypersequents in the
relational hypersequent calculus rH,

• computes all possible derivations and outputs
the one with the smallest height.

TCGame

• Utility to find a winning strategy for the propo-
nent P in a Truth Comparison Game,

• for Gödel Logic,

• winning strategy for P can be seen as a proof of
the starting formula.

Adequateness of Giles’s Game
For Łukasiewicz Logic

• Already proved by Giles in the 1970s:

• A formula F is valid in Łukasiewicz Logic iff I have a strategy to
avoid risk (expected loss) in a game starting with me asserting F

for any assignment of probability values to experiments.

• Moreover: given a fixed interpretation, my expected loss of
money from asserting a formula in the game directly corresponds
to a valuation in Łukasiewicz Logic.

For Gödel & Product Logic

• Variants of Giles’s Game presented by Fermüller recently,

• alternative betting schemes: selecting representatives (Gödel
Logic) and joint bets (Product Logic)

• dialogue rule for implication has to be extended as well,

• dialogue rules correspond to the logical rules of an analytic proof
system based on relational hypersequents.

Alternative Dialogue Rules

• Presented in this thesis,

• another way to adapt the dialogue rule for implication for Gödel
Logic and Product Logic,

• game gets simpler compared to the other approach,

• connection to the hypersequent calculus is lost.

Then we end up with
my claim of a against your
claim of c. Let’s make cor-
responding experiments

Ea and Ec.

Yes, and it suffices for me
to assert c to defend b ∨ c.

I challenge your assertion
by claiming a myself. Do you
still claim that b ∨ c?

I assert a → (b ∨ c).


