CHOPINITE-SARCOPSIDE SOLID SOLUTION, (Mg,Fe)₃ (PO₄)₂, IN LODRANITE GRA95209

E. S. Grew¹, M.G. Yates¹, R.J. Beane², C. Floss³ and C. Gerbi¹. ¹University of Maine, Orono 04469-5790 USA. E-mail: esgrew@maine.edu. ²Bowdoin College, Brunswick 04011 USA ³Washington University, St. Louis 63130 USA

Introduction: Four phosphate minerals have the stoichiometry $(M^{2+})_3(PO_4)_2$. Sarcopside and graftonite, both Fe dominant, are found in meteorites and terrestrial rocks. Chopinite, the recently discovered Mg-dominant analogue of sarcopside occurring in terrestrial granulite-facies metasediments, is inferred to have formed at 800-860°C, 6-7 kbar [1] and is a high-pressure polymorph of farringtonite [2], which has been found only in meteorites. Unidentified $(Mg,Fe)_3(PO_4)_2$ phases with $X_{Mg} = Mg/(Mg+Fe)$ ranging from 0.01 to 0.87, together with chladniite, CaNa₈(Ca₄Na₄)(Mg,Fe)₄₃(PO₄)₃₆, or its Fe-dominant analogue, johnsomervilleite, have been reported as minor constituents in Graves Nunatak 95209, a lodranite containing Fe-Ni metal masses and forsterite-orthopyroxene aggregates [3, 4].

Results: To identify the unknown $(Mg,Fe)_3(PO_4)_2$ phases we determined the Fe-Mg-Mn distribution between contiguous grains of (Mg,Fe)₃(PO₄)₂ and chladniite-johnsomervilleite and obtained electron backscatter diffraction patterns of the (Mg,Fe)₃(PO₄)₂ phases. Electron microprobe analyses of conof $(Mg,Fe)_3(PO_4)_2$ and chladniitetiguous grains johnsomervilleite in three sections of GRA95209 give two trends for Mg-Fe, one for johnsomervilleite and chladniite with $X_{Mg} \leq$ 0.738, the second for chladniite only with $X_{Mg} \ge 0.738$. The first trend is tightly constrained with a distribution coefficient, $K_{\rm D}$ = $(Mg/Fe)_{UNK}/(Mg/Fe)_{C-J} = 0.584$, which is nearly identical to Mg-Fe distribution between terrestrial sarcopside and johnsomervilleite, $K_D = 0.588$ [1]. This suggests that the unknown $(Mg,Fe)_3(PO_4)_2$ phase is sarcopside (for compositions X_{Mg} = 0.28-0.43) and chopinite (for compositions $X_{\text{Mg}} = 0.57-0.65$). Mn-Fe distribution is consistent with the (Mg,Fe)₃(PO₄)₂ phases being sarcopside or chopinite, not graftonite, which would have contained much more Mn. The second trend in Mg-Fe gives $K_{\rm D} \sim$ 1.51. In this case, we infer that the unknown $(Mg,Fe)_3(PO_4)_2$ phase is farringtonite ($X_{Mg} = 0.80-0.89$). Electron backscatter diffraction patterns and maps of magnesian (Mg,Fe)₃(PO₄)₂ phases confirm identification of chopinite and farringtonite.

In contrast to the phosphates, our analyses show that associated forsterite and enstatite vary little in composition, viz., $X_{Mg} = 0.93$ and 0.92-0.93, respectively, except for fayalite overgrowths on forsterite ($X_{Mg} \ge 0.2$).

Discussion: Using the experimental data for the end-member reaction [2], an isopleth calculated as in [1] at 500–1050°C for chopinite $X_{Mg} = 0.65$, but with measured $K_D = (Mg/Fe)_{FAR}/(Mg/Fe)_{CHO} = 2.10$, gives 4–7 kbar for this chopinite-farringtonite pair, pressures far too high for any meteorite. We suggest that Fe-rich sarcopside initially formed by oxidation and replacement of P-rich metal; subsequent exchange with a large reservoir of Mg-rich silicates resulted in Mg enrichment of the phosphates and, consequently, Fe-rich overgrowths on forsterite. As GRA95209 cooled, Mg-enriched sarcopside failed to transform into farringtonite, leaving chopinite as a metastable phase.

References: [1] Grew E. et al. (2007) *Eur. J. Mineral.* 19:229-245. [2] Brunet F. & D. Vielzeuf (1996) *Eur. J. Mineral.* 8:349-354. [3] Floss C. (1999) *Am. Mineral.* 84:1354-1359. [4] McCoy T. et al. (2006) *Geochim. Cosmochim. Acta* 70:516-531.