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Abstract

In this paper, the following problems are discussed.
Problem 1. Given matrices A ∈ Cn×m and D ∈ Cm×m,find X ∈ SSCn

p such that
A∗XA = D, where SSCn

p = {X ∈ SSCn×n/PX ∈ SCn×n for given P ∈ OCn×n

satisfying P ∗ = P}.
Problem 2. Given a matrix X̃ ∈ Cn×n, find X̂ ∈ SE such that

∥∥∥X̃ − X̂
∥∥∥ = inf

X∈SE

∥∥∥X̃ − X
∥∥∥ ,

where ‖.‖ is the Frobenius norm, and SEis the solution set of problem 1.
Expressions for the general solution of problem 1 are derived. Necessary and suffi-
cient conditions for the solvability of Problem 1 are determined. For problem 2, an
expression for the solution is given.

Mathematics Subject Classifications: 15A57, 65F10, 65F20

Keywords: Skew-symmetric ortho-symmetric matrix, Matrix Equation, Matrix near-

ness problem, Optimal approximation, Least-square solutions



1490 D. Krishnaswamy and G. Punithavalli

1 Introduction

Let Cn×m denote the set of all n×mcomplex matrices, and let OCn×n,SCn×n, SSCn×n

denote the set of alln × northogonal matrices, the set of alln × ncomplex symmetric

matrices, the set of all n× ncomplex skew-symmetric matrices, respectively. The symbol

IK will stand for the identity matrix of order K,A† for the Moore-penrose generalized

inverse of a matrix A, and rk(A) for the rank of matrix A. For matrices A,B ∈ Cn×m,

the expression A ∗B will be the Hadamard product of A and B; also ‖.‖ will denote the

Frobenius norm. Defining the inner product (A,B)=tr(B∗A) for matrices A,B ∈ Cn×m,

Cn×m becomes a Hilbert space. The norm of a matrix generated by this inner product is

the Frobenius norm. If A = (aij) ∈ Cn×n, let LA = (lij) ∈ Cn×n be defined as follows:

lij = aij whenever i > j and lij = 0 otherwise (i, j = 1.2...., n). Let ei be the i-th column

of the identity matrix In(i = 1, 2, ..., n) and set Sn = (en, en−1, ..., e1). It is easy to see that

S∗
n = Sn, S∗

nSn = In.

An inverse problem [2]-[6] arising in the structural modification of the dynamic behaviour

of a structure calls for the solution of the matrix equation

A∗XA = D, (1.1)

where A ∈ Cn×m, D ∈ Cm×m, and the unknown X is required to be complex and

symmetric, and positive semidefinite or possibly definite. No assumption is made about

the relative sizes of m and n, and it is assumed throught that A �= 0 and D �= 0.

Equation (1.1) is a special case of the matrix equation

AXB = C. (1.2)

. Consistency conditions for equation (1.2) were given by Penrose[7] (see also [1]). When

the equation is consistent, a solution can be obtained using generalized inverses. Khatri

and Mitra [8] gave necessary and sufficient conditions for the existence of symmetric and

positive semidefinite solutions as well as explicit formulae using generalized inverses. In

[9],[10] solvability conditions for symmetric and positive definite solutions and general

solutions of Equation (1.2) were obtained through the use of generalized singular value

decomposition [11]-[13].

For important results on the inverse problem A∗XA = D associated with several kinds

of different sets S, for instance, symmetric matrices, symmetric nonnegative definite ma-

trices, bisymmetric (same as persymmetric) matrices, bisymmetric nonnegative definite

matrices and so on, We refer the reader to [14]-[17].

For the case the unknown A is skew-symmetric ortho-symmetric,[18] has discussed the
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inverse problem AX = B. However, for this case, the inverse problem A∗XA = D has

not been dealt with yet. This problem will be considered here.

Definition 1.1 A matrix P ∈ Cn×n is said to be a symmetric orthogonal matrix if P ∗ =

P, P ∗P = In.

In this paper, without special statement, we assume that P is a given symmetric orthog-

onal matrix.

Definition 1.2 A Matrix X ∈ Cn×n is said to be a skew-symmetric ortho-symmetric

matrix if X∗ = −X, (PX)∗ = PX. We denote the set of all n × n skew-symmetric

ortho-symmetric matrices by SSCn
p .

The problem studied in this paper can now be described as follows.

Problem 1. Given matrices A ∈ Cn×m and D ∈ Cm×m, find a skew-symmetric ortho-

symmetric matrix X such that

A∗XA = D.

In this paper, we discuss the solvability of this problem and an expression for its solution

is presented.

The Optimal approximation problem of a matrix with the above-given matrix restriction

comes up in the processes of test or recovery of a linear system due to incomplete data or

revising given data. A preliminary estimate X̃ of the unknown matrix X can be obtained

by the experimental observation values and the information of statistical distribution.

The optimal estimate of X is a matrix X̂ that satisfies the given matrix restriction for

Xand is the best approximation of X̃, see [19]-[21].

In this paper, we will also considered the so-called optimal approximation problem asso-

ciated with A∗XA = D. It reads as follows.

Problem 2. Given matrix X̃ ∈ Cn×n, find X̂ ∈ SE such that∥∥∥X̃ − X̂
∥∥∥ = inf

X∈SE

∥∥∥X̃ −X
∥∥∥ ,

where SE is the solution set of Problem 1.

We point out that if Problem 1 is solvable, then Problem 2 has a unique solution, and in

this case an expression for the solution can be derived.

The paper is organized as follows. In section 2, we obtain the general form of SE and the

sufficient and necessary conditions under which problem 1 is solvable mainly by using the

structure of SSCn
p and orthogonal projection matrices. In section 3, the expression for

the solution of the matrix nearness problem 2 will be determined.
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2 The expression of the general solution of problem

1

In this section we first discuss some structure properties of symmetric orthogonal

matrices. Then given such a matrix P, we consider structural properties of the subset

SSCn
p of Cn×n. Finally we present necessary and sufficient conditions for the existence of

and the expressions for the skew-symmetric ortho-symmetric ( with respect to the given

P ) solutions of problem 1.

Lemma 2.1. Assume P is a symmetric orthogonal matrix of size n, and let

P1 =
1

2
(In + P ), P2 =

1

2
(In − P ). (2.1)

Then P1 and P2 are orthogonal projection matrices satisfying P1 + P2 = In, P1P2 = 0.

Proof. Since

P1 =
1

2
(In + P ), P2 =

1

2
(In − P ).

Then

P1 + P2 =
1

2
(In + P ) +

1

2
(In − P ) =

1

2
(In + P + In − P ) =

1

2
(2In) = In.

P1P2 =
1

2
(In + P ).

1

2
(In − P ) =

1

4
(In − P + P − P 2) =

1

4
(In − P 2) =

1

4
(In − P.P ∗) =

1

4
(In − In) = 0.

Lemma 2.2. Assume P1 and P2 are defined as (2.1) and rank (P1) = r. Then rank(P2) =

n − r, and there exists unit column orthogonal matrices U1 ∈ Cn×r and U2 ∈ Cn×(n−r)

such that P1 = U1U
∗
1 , P2 = U2U

∗
2 , and U∗

1U2 = 0 then P = U1U
∗
1 − U2U

∗
2 .

Proof. Since P1 and P2 are orthogonal projection matrices satisfying P1 + P2 = In and

P1P2 = 0, the column space R(P2) of the matrix P2 is the orthogonal complement of the

column space R(P1) of the matrix P1, in other words, Rn = R(P1) ⊕R(P2). Hence, if

rank (P1) = r, then rank (P2) = n−r. On the other hand, rank (P1) = r, rank(P2) = n−r,
and P1, P2 are orthogonal projection matrices. Thus there exists unit column orthogonal

matrices U1 ∈ Cn×r and U2 ∈ Cn×(n−r) such that P1 = U1U
∗
1 , P2 = U2U

∗
2 . Using Rn =

R(P1) ⊕ R(P2), we have U∗
1U2 = 0.

Substituting P1 = U1U
∗
1 , P2 = U2U

∗
2 , into (2.1), we have P = U1U

∗
1 − U2U

∗
2 .
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Elaborating on Lemma 2.2 and its proof, we note that U = (U1, U2) is an orthogonal

matrix and that the symmetric orthogonal matrix P can be expressed as

P = U
(

Ir 0
0 −In−r

)
U∗. (2.2)

Lemma 2.3. The matrix X ∈ SSCn
P if and only if X can be expressed as

X = U
(

0 F
−F ∗ 0

)
U∗, (2.3)

where F ∈ Cr×(n−r) and U is the same as (2.2).

proof Assume X ∈ SSCn
P . By lemma 2.2 and the definition of SSCn

P , We choose p1 =
I+p
2
, P2 = I−P

2

P1XP1 =
I + P

2
X
I + P

2
=

1

4
(X + PX +XP + PXP )

=
1

4
(U

(
0 F

−F∗ 0

)
U∗ + PX +XP + U

(
Ir 0
0 −In−r

)
U∗U

(
0 F

−F ∗ 0

)
U∗U

(
Ir 0
0 −In−r

)
U∗).

=
1

4
(U

(
0 F

−F ∗ 0

)
U∗ + PX +XP + U

(
Ir 0
0 −In−r

) (
0 F

−F ∗ 0

) (
Ir 0
0 −In−r

)
U∗).

=
1

4
(U

(
0 F

−F ∗ 0

)
U∗ + PX +XP + U ( 0 F

F ∗ 0 )
(

Ir 0
0 −In−r

)
U∗).

=
1

4
(U

(
0 F

−F ∗ 0

)
U∗ + PX +XP + U

(
0 −F

F ∗ 0

)
U∗).

P1XP1 =
1

4
(XP + PX).

Similarly

P2XP2 =
−1

4
(XP + PX).

Hence,

X = (P1 + P2)X(P1 + P2) = P1XP1 + P1XP2 + P2XP1 + P2XP2
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X = P1XP2 + P2XP1 (sinceP1XP1 + P2XP2 = 0).

X = P1XP2 + P2XP1 = U1U
∗
1XU2U

∗
2 + U2U

∗
2XU1U

∗
1 (sinceP1 = U1U

∗
1andP2 = U2U

∗
2 )

= U1FU
∗
2 + U2GU

∗
1

Let F = U∗
1XU2 and G = U∗

2XU1.

It is easy to verify that F ∗ = −G.
(sinceF = U∗

1XU2, F ∗ = (U∗
1XU

∗
2 )∗ = U∗

2X
∗U1 = −UX

2 U1 = −G)

Then we have

X = U1FU
∗
2 + U2GU

∗
1 = U ( 0 F

G 0 )U∗

X = U
(

0 F
−F ∗ 0

)
U∗

Conversely, for any F ∈ Cr×(n−r), Let

X = U
(

0 F
−F ∗ 0

)
U∗

It is easy to verify that X∗ = −X
X = U1FU

∗
2 + U2GU

∗
1 , X∗ = (U1FU

∗
2 )∗ + (U2GU

∗
1 )∗ = U2F

∗U∗
1 + U1G

∗U∗
2

= −U2GU
∗
1 − U1FU

∗
2 = −(U1FU

∗
2 + U2GU

∗
1 ) = −X.

using (2.2), we have

PXP = PU
(

0 F
−F ∗ 0

)
U∗P

= U
(

Ir 0
0 −In−r

)
U∗U

(
0 F

−F ∗ 0

)
U∗U

(
Ir 0
0 −In−r

)
U∗

= U
(

Ir 0
0 −In−r

) (
0 F

−F ∗ 0

) (
Ir 0
0 −In−r

)
U∗

= U( 0 F
F ∗ 0 )( Ir 0

0 −In−r
)U∗ = U( 0 −F

F ∗ 0 )U∗ = −X
Thus

X = U
(

0 F
−F ∗ 0

)
U∗ ∈ SSCn

P .
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Lemma 2.4. Let A ∈ Cn×n, D ∈ SSCn×n and assume A − A∗ = D. Then there is

precisely one G ∈ SCn×n such that A = LD +G, and G = 1
2
(A+ A∗) − 1

2
(LD + L∗

D).

Proof.For given A ∈ Cn×n, D ∈ SSCn×n and A− A∗ = D.

It is easy to verify that there exists unique

G =
1

2
(A+ A∗) − 1

2
(LD + L∗

D) ∈ SCn×n,

and we have

A =
1

2
(A− A∗) +

1

2
(A+ A∗) =

1

2
(LD − L∗

D) +
1

2
(A+ A∗)

A =
1

2
(A+ A∗) + LD − 1

2
(LD + L∗

D)(sinceLD =
1

2
(LD + L∗

D) +
1

2
(LD − L∗

D))

A = LD +G.

Let A ∈ Cn×m and D ∈ Cm×m, U defined in (2.2), Set

U∗A =
(

A1
A2

)
, A1 ∈ Cr×m, A2 ∈ C(n−r)×m. (2.4)

The generalized singular value decomposition (see [11],[12],[13]) of the matrix pair [A∗
1, A

∗
2]

is

A∗
1 = M

∑
A1W

∗, A∗
2 = M

∑
A2V

∗, (2.5)

where W ∈ Cm×m is a nonsingular matrix, W ∈ OCr×r, V ∈ OC(n−r)×(n−r) and

∑
A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ik

S1

O1

. . . . . . . . .

O

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k

s

t− k − s

m− t

(2.6)
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∑
A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O2

S2

It−k−s

. . . . . . . . .

O

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k

s

t− k − s

m− t

(2.7)

where

t = rank(A∗
1, A

∗
2), K = t− rank(A∗

2),

S = rank(A∗
1) + rank(A∗

2) − t

S1 = diag(α1, ..., αs), S2 = diag(β1, ..., βs),

with 1 > α1 ≥ ... ≥ αs > 0, 0 < β1 ≤ ... ≤ βs < 1, and α2
i + β2

i = 1, i = 1, ..., s.

0, 01 and 02 are corresponding zero submatrices.

Theorem 2.5.Given A ∈ Cn×m and D ∈ Cm×m, U defined in (2.2), and U∗A has the

partition form of (2.4), the generalized singular value decomposition of the matrix pair

[A∗
1, A

∗
2] as (2.5). Partition the matrix M−1DM−∗ as

M−1DM−∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k

s

t− k − s

m− t

k s t− k − s m− t
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then the problem 1 has a solution X ∈ SSCn
P if and only if

D∗ = −D, D11 = 0, D33 = 0, D41 = 0, D42 = 0, D43 = 0, D44 = 0.

In that case it has the general solution

X = U
(

0 F
−F ∗ 0

)
U∗, (2.9)

where

F = W

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X11 D12S
−1
2 D13

X21 S−1
1 (LD22 +G)S−1

2 S−1
1 D23

X31 X32 X33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
V ∗, (2.10)

with X11 ∈ Cr×(n−r+k−t), X21 ∈ Cs×(n−r+k−t), X31 ∈ C(r−k−s)×(n−r+k−t), X32 ∈ C(r−k−s)×s,

X33 ∈ C(r−k−s)×(t−k−s) and G ∈ SCs×s are arbitrary matrices.

Proof. The Necessity :

Assume the equation (1.1) has a solution X ∈ SSCn
P . By the definition of SSCn

P , it is

easy to verify that D∗ = −D. Since D = A− A∗

D∗ = (A− A∗)∗ = −A+ A∗ = −(A− A∗) = −D,

and we have from lemma 2.3 that X can be expressed as

X = U
(

0 F
−F ∗ 0

)
U∗, (2.11)

where F ∈ Cr×(n−r).

Note that U is an orthogonal matrix, and the definition of Ai(i = 1, 2), Equation(1.1) is

equivalent to

A∗
1FA2 − A∗

2FA1 = D. (2.12)

Substituting (2.5) in (2.12), then we have

M
∑

A1
W ∗FA2 −M

∑
A2
V ∗FA1 = D

M
∑

A1
W ∗FV

∑∗
A2
M∗ −M

∑
A2
V ∗FA1 = D

M
∑

A1
W ∗FV

∑∗
A2
M∗ −M

∑
A2
V ∗FW

∑∗
A1
M∗ = D

M−1M
∑

A1
W ∗FV

∑∗
A2
M∗M−∗ −M−1M

∑
A2
V ∗FW

∑∗
A1
M∗M−∗ = M−1DM−∗∑

A1
(W ∗FV )

∑∗
A2

−∑
A2

(V ∗FW )
∑∗

A1
= M−1DM−∗∑

A1
(W ∗FV )

∑∗
A2

−∑
A2

(W ∗FV )∗
∑∗

A1
= M−1DM−∗, (2.13)
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partition the matrix W ∗FV as

W ∗FV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X11 X12 X13

X21 X22 X23

X31 X32 X33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (2.14)

where X11 ∈ Cr×(n−r+k−t), X22 ∈ Cs×s, X33 ∈ C(r−k−s)×(t−k−s).

Taking W ∗FV and M−1DM−∗, in (2.13), We have⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 X12S2 X13 0

−S2X
∗
21 S1X22S2 − (S1X22S2)

∗ S1X23 0

−X∗
13 −X∗

23S1 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.15)

Therefore (2.15)holds if and only if (2.8) holds and

X12 = D12S
−1
2 , X13 = D13, X23 = S−1

1 D23

and

S1X22S2 − (S1X22S2)
∗ = D22.

It follows from Lemma 2.4 that X22 = S−1
1 (LD22 +G)S−1

2 , where G ∈ SCS×S is arbitrary

matrix. Substituting the above into (2.14), (2.11), thus we have formulation (2.9) and

(2.10).

The sufficiency. Let

FG = W

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X11 D12S
−1
2 D13

X21 S−1
1 (LD22 +G)S−1

2 S−1
1 D23

X31 X32 X33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
V ∗.
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obviously, FG ∈ Cr×(n−r). By Lemma 2.3 and

XO = U( 0 FG
−F ∗

G 0 )U∗,

We have X0 ∈ SSCn
P . Hence

A∗X0A = A∗UU∗X0UU
∗A = ( A∗

1 A∗
2 )( 0 FG

−F ∗
G 0 )( A1

A2
)

( −A∗
2F ∗

G A∗
1FG )( A1

A2
) = −A∗

2F
∗
GA1 + A∗

1FGA2 = D.

This implies that

X0 = U
(

0 FG
−F ∗

G 0

)
U∗ ∈ SSCn

P

is the skew-symmetric ortho-symmetric solution of equation (1.1). Hence the proof.

3 The expression of the solution of Problem 2.

To prepare for an explicit expression for the solution of the matrix nearness problem

2, we first verify the following lemma.

Lemma 3.1. Suppose that E,F ∈ Cs×s, and let Sa = diag(a1, ..., as) > 0, Sb = diag(b1, ..., bs) >

0. Then there exists a unique Ss ∈ SCs×s and a unique Sr ∈ SSCs×s such that

‖SaSSb −E‖2 + ‖SaSSb − F‖2 = min. (3.1)

and

Ss = Φ ∗ [Sa(E + F )Sb + Sb(E + F )∗Sa], (3.2)

Sr = Φ ∗ [Sa(E + F )Sb − Sb(E + F )∗Sa], (3.3)

where

Φ = (ψij) ∈ SCs×s, Ψij =
1

2(a2
i b

2
j + a2

jb
2
i )
, 1 ≤ i, j ≤ s. (3.4)

Proof. We prove only the existence of Sr and (3.3). For any S = (Sij) ∈ SSCs×s,

E = (eij), F = (fij) ∈ Cs×s, since Sii = 0, Sij = −Sji,

‖SaSSb − E‖2 + ‖SaSSb − F‖2 =
∑

1≤i,j≤s

[(aibjSij − eij)
2 + (aibjSij − fij)

2]
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=
∑

1≤i<j≤s

[(aibjSij − eij)
2 + (−ajbiSij − eji)

2 + (aibjSij − fij)
2 + (−ajbiSij − fji)

2 +
∑

1≤i<s

(e2ij + f 2
ij).

Using ∂g(s)
∂Sij

= 0 (1 ≤ i, j ≤ n), We have

= 2(aibjSij−eij)(aibj)+2(−ajbiSij−eji)(−ajbi)+2(aibjSij−fij)(aibj)+2(−ajbiSij−fji)(−ajbi)

= 2a2
i b

2
jsij − 2aibjeij + 2a2

jb
2
iSij + 2ajbieji + 2a2

i b
2
jsij − 2aibjfij + 2a2

jb
2
iSij + 2ajbifji

= 4a2
i b

2
jsij + 4a2

jb
2
iSij − 2aibj(eij + fij) + 2ajbi(eji + fji)

− 4Sij(a
2
i b

2
j + a2

jb
2
i ) = −2aibj(eij + fij) + 2ajbi(eji + fji)

Sij =
aibj(eij + fij) − ajbi(eji + fji)

2(a2
i b

2
j + a2

jb
2
i )

, 1 ≤ i, j ≤ s.

Here

Φ = (Ψij) =
1

2(a2
i b

2
j + a2

jb
2
i )
, 1 ≤ i, j ≤ s

Hence there exists a unique solution Sr = Ŝij ∈ SSCs×s for (3.1) such that

Ŝij =
aibj(eij + fij) − ajbi(eji + fji)

2(a2
i b

2
j + a2

jb
2
i )

, 1 ≤ i, j ≤ s.

Sr = φ ∗ [Sa(E + F )Sb − Sb(E + F )∗Sa].

Theorem 3.2. Let X̃ ∈ Cn×n, the generalized singular value decomposition of the matrix

pair [A∗
1 , A

∗
2] as (2.5), Let

U∗X̃U = (
Z∗

11 Z∗
12

Z∗
21 Z∗

22
), (3.5)

W ∗Z∗
12V =

(
X∗

11 X∗
12 X∗

13
X∗

21 X∗
22 X∗

23
X∗

31 X∗
32 X∗

33

)
,

W ∗Z∗
21

∗V =

(
Y ∗
11 Y ∗

12 Y ∗
13

Y ∗
21 Y ∗

22 Y ∗
23

Y ∗
31 Y ∗

32 Y ∗
33

)
. (3.6)
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If problem 1 is solvable, then problem 2 has a unique solution X̂, which can be expressed

as

X̂ = U
(

0 F̃
−F̃ ∗ 0

)
U∗, (3.7)

where

F̃ = W

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2
(X∗

11−Y ∗
11) D12S

−1
2 D13

1
2
(X∗

21−Y ∗
21) S−1

1 (LD22 + G̃)S−1
2 S−1

1 D23

1
2
(X∗

31−Y ∗
31)

1
2
(X∗

32−Y ∗
32)

1
2
(X∗

33−Y ∗
33)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
V ∗,

G̃ = φ ∗ [S−1
1 (X22

∗ − Y22
∗ − 2S−1

1 LD22S
−1
2 )S−1

2 + S−1
2 (X22

∗ − Y22
∗ − 2S−1

1 LD22S
−1
2 )∗S−1

1 ],

with

φ = (ψij) ∈ SCs×s, ψij =
a2

i a
2
jb

2
i b

2
j

2(a2
i b

2
j + a2

jb
2
i )
, 1 ≤ i, j ≤ s.

Proof. Using the invariance of the Frobenius norm under unitary transformations, from

(2.9), (3.5) and (3.6) we have,

(2.9)implies that

X = U
(

0 F
−F ∗ 0

)
U∗,

(3.5)implies that

U∗X̃U =
(

Z∗
11 Z∗

12
Z∗

21 Z∗
22

)
(3.6)implies that

W ∗Z∗
12V =

(
X∗

11 X∗
12 X∗

13
X∗

21 X∗
22 X∗

23
X∗

31 X∗
32 X∗

33

)

W ∗Z∗
21

∗V =

(
Y ∗
11 Y ∗

12 Y ∗
13

Y ∗
21 Y ∗

22 Y ∗
23

Y ∗
31 Y ∗

32 Y ∗
33

)

X̃ = U
(

Z∗
11 Z∗

12
Z∗

21 Z∗
22

)
U−1

X − X̃ = U
(

0 F
−F ∗ 0

)
U∗ − U

(
Z∗

11 Z∗
12

Z∗
21 Z∗

22

)
U∗ = U

(
−Z∗

11 F−Z∗
12

−F∗−Z∗
21 −Z∗

22

)
U∗
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∥∥∥X − X̃
∥∥∥2

= ‖Z∗
11‖2 + ‖F − Z∗

12‖2 + ‖−F ∗ − Z∗
21‖2 + ‖Z∗

22‖2

= ‖Z∗
11‖2 +

∥∥∥∥
(

X11 D12S−1
2 D13

X21 S−1
1 (LD22

+G)S−1
2 S−1

1 D23

X31 X32 X33

)
−W ∗Z∗

12V

∥∥∥∥
2

+

∥∥∥∥
(

X11 D12S−1
2 D13

X21 S−1
1 (LD22

+G)S−1
2 S−1

1 D23

X31 X32 X33

)
+W ∗Z∗

21
∗V

∥∥∥∥
2

+ ‖

Thus ∥∥∥X̃ − X̂
∥∥∥ = inf

X∈SE

∥∥∥X̃ −X
∥∥∥

is equivalent to

‖X11 −X∗
11‖2 + ‖X11 + Y ∗

11‖2 = min, ‖X21 −X∗
21‖2 + ‖X21 + Y ∗

21‖2 = min,

‖X31 −X∗
31‖2 + ‖X31 + Y ∗

31‖2 = min, ‖X32 −X∗
32‖2 + ‖X32 + Y ∗

32‖2 = min,

‖X33 −X∗
33‖2 + ‖X33 + Y ∗

33‖2 = min,

∥∥S−1
1 GS−1

2 − (X∗
22 − S−1

1 LD22S
−1
2 )

∥∥2
+

∥∥S−1
1 GS−1

2 + (Y ∗
22 + +S−1

1 )LD22S
−1
2 )

∥∥2
= min.

From Lemma 3.1. We have,

X11 =
1

2
(X∗

11 − Y ∗
11), X21 =

1

2
(X∗

21 − Y ∗
21)

X31 =
1

2
(X∗

31 − Y ∗
31), X32 =

1

2
(X∗

32 − Y ∗
32), X33 =

1

2
(X∗

33 − Y ∗
33)

and

G = Φ ∗ [S−1
1 (X∗

22 − Y ∗
22 − 2S−1

1 LD22S
−1
2 )S−1

2 + S−1
2 (X∗

22 − Y ∗
22 − 2S−1

1 LD22S
−1
2 )∗S−1

1 ].

Taking X11, X21, X31, X32, X33 and G into (2.9), (2.10), we obtain that the solution of

(the matrix mearness) Problem 2 can be expressed as

X̂ = U
(

0 F̃
−F̃ ∗ 0

)
U∗.
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