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Abstract

The equation xm+yn = zr is considered under the condition that the
given integers values for m, n, and r are greater than one. Solutions to
this equation are given for cases in which gcd(mn, r) = 1, gcd(mr, n) =
1, or gcd(nr,m) = 1.
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1 Introduction

It is not surprising that, although Fermat’s Last Theorem has been established
[5], [6], variations of the original Fermat equation, xn + yn = zn, continue to
be studied. We will consider equations of the form

xm + yn = zr (1)

such that x, y, and z are nonzero integers, and m, n, and r are integers that are
greater than one. Furthermore, we will assume that the values of the exponents
m, n, and r are given. As usual, gcd(x, y, z) represents the greatest common
divisor of x, y, and z, and lcm(m,n) denotes the least common multiple of m
and n. A solution to equation (1) is said to be primitive if gcd(x, y, z) = 1,
and is called non-primitive otherwise. When studying equation (1), many
authors are focused on the primitive solutions [2], [3]. In the current note,
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we reveal formulas that generate all solutions for specified cases of equation
(1). If gcd(m,n, r) > 2, then there are no solutions to this equation due to
Fermat’s Last Theorem. Many cases in which gcd(m,n, r) = 2 have yet to
be resolved. Presently, we are concerned with solutions to equation (1) when
gcd(m,n, r) = 1; specifically, we are examining the cases in which gcd(mn, r) =
1, gcd(mr, n) = 1, or gcd(nr,m) = 1.

Recently, M. B. Nathanson [4] constructed the solution set for each equation
of the form

xn − yn = zn+1 (2)

such that x, y, z, and n are positive integers, and the value of n is given.
We will extend his methods to the other cases of equation (1) that we are
concerned with. We start by generalizing a couple of the definitions that
Professor Nathanson uses. We say that an (ordered) triple (a, b, c) of nonzero
integers is 〈m,n, r〉-addition-powerful if am + bn 6= 0 and cr divides am + bn.
Furthermore, we define the function

t+〈m,n,r〉(a, b, c) =
am + bn

cr
.

Similarly, we say that (a, b, c) is 〈m,n, r〉-subtraction-powerful if am − bn 6= 0
and cr divides am − bn. We define the function

t−〈m,n,r〉(a, b, c) =
am − bn

cr
.

Now let l1 = lcm(m,n). Due to results from elementary number theory, if mn
is relatively prime to r, then there exist positive integers j1 and k1 such that
j1l1 + 1 = k1r.

2 Main Results

The proof of the following theorem is not difficult.

Theorem 2.1. Suppose that the integer values of m, n, and r are given,
and that m ≥ 2, n ≥ 2, and r ≥ 2.

(A) Consider the case in which mn is relatively prime to r; let l1 = lcm(m,n)
and let j1 and k1 be positive integers such that j1l1 + 1 = k1r. If (a, b, c)
is a 〈m,n, r〉-addition-powerful triple of nonzero integers and we let t1 =
t+〈m,n,r〉(a, b, c), then

(x, y, z) = (at1
(j1l1)/m, bt1

(j1l1)/n, ct1
k1) (3)

is a solution to equation (1). In this case, every solution to equation (1)
can be expressed in the form given in (3) (remembering that x, y, and z
are nonzero integers).
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(B) For the case in which gcd(mr, n) = 1, let l2 = lcm(m, r) and let j2
and k2 be positive integers such that j2l2 + 1 = k2n. If (c, a, b) is a
〈r,m, n〉-subtraction-powerful triple of nonzero integers and we let t2 =
t−〈r,m,n〉(c, a, b), then

(x, y, z) = (at2
(j2l2)/m, bt2

k2 , ct2
(j2l2)/r) (4)

is a solution to equation (1). In this case, every solution to equation (1)
can be expressed in the form given in (4).

(C) Finally, when gcd(nr,m) = 1, let l3 = lcm(n, r) and let j3 and k3 be posi-
tive integers such that j3l3+1 = k3m. If (c, b, a) is a 〈r, n,m〉-subtraction-
powerful triple of nonzero integers and we let t3 = t−〈r,n,m〉(c, b, a), then

(x, y, z) = (at3
k3 , bt3

(j3l3)/n, ct3
(j3l3)/r) (5)

is a solution to equation (1). Furthermore, every solution to equation (1)
can be expressed in the form given in (5) in this case.

In formulas (3), (4), and (5), the exponents on t1, t2, and t3, that is (j1l1)/m,
(j1l1)/n, etc., are obviously positive integers and they are treated as such.
There are some similarities between theorem 2.1 and a result given by M.
Bennett, P. Mihăilescu, and S. Siksek [3] (see pages 194-195).

Proof. (A) Assume that gcd(mn, r) = 1, l1 = lcm(m,n), j1 and k1 are pos-
itive integers with the property that j1l1 + 1 = k1r, and (a, b, c) is a
〈m,n, r〉-addition-powerful triple; let t1 = t+〈m,n,r〉(a, b, c). Substituting
(at1

(j1l1)/m, bt1
(j1l1)/n) in for (x, y) in the left-hand side of equation (1),

we see that

xm + yn = amt1
j1l1 + bnt1

j1l1 = (am + bn)t1
j1l1

= cr · (am + bn)

cr
· t1j1l1 = crt1

j1l1+1 = (ct1
k1)r.

Therefore, the statement in (3) is a solution to equation (1).

Now suppose that (a0, b0, c0) is any (integer) solution to equation (1)
such that a0b0c0 6= 0. Let t10 = t+〈m,n,r〉(a0, b0, c0), which is equal to one
in this case. Thus, the solution (a0, b0, c0) can be written as

(a0t10
(j1l1)/m, b0t10

(j1l1)/n, c0t10
k1)

which is in the form expressed in formula (3).
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(B) Assume that gcd(mr, n) = 1, l2 = lcm(m, r), j2 and k2 are positive
integers with the property that j2l2 + 1 = k2n, and (c, a, b) is a 〈r,m, n〉-
subtraction-powerful triple; let t2 = t−〈r,m,n〉(c, a, b). If we set x equal to
at2

(j2l2)/m and z equal to ct2
(j2l2)/r, then

zr − xm = crt2
j2l2 − amt2

j2l2 = (cr − am)t2
j2l2

= bn · (cr − am)

bn
· t2j2l2 = bnt2

j2l2+1 = (bt2
k2)n.

Therefore, the statement in (4) is a solution to equation (1).

Once again, suppose that (a0, b0, c0) is any solution to equation (1) such
that a0b0c0 6= 0. Let t20 = t−〈r,m,n〉(c0, a0, b0), which is equal to one.
Thus, the solution (a0, b0, c0) can be written as

(a0t20
(j2l2)/m, b0t20

k2 , c0t20
(j2l2)/r)

which is in the form expressed in formula (4).

(C) The proof of part C of this theorem is similar to the proof of part B.

Note that formulas (3), (4), and (5), when they apply, generate infinitely
many non-primitive solutions to equation (1). For example, assume that
gcd(mn, r) = 1 and let a1 and a2 represent any two positive integers such that
a1 6= a2. Then (a1, 1, 1) and (a2, 1, 1) are 〈m,n, r〉-addition-powerful triples,
and the (clearly non-primitive) solutions to equation (1) generated by these
triples, using equation (3), are

(a1(a1
m + 1)(j1l1)/m, (a1

m + 1)(j1l1)/n, (a1
m + 1)k1)

and

(a2(a2
m + 1)(j1l1)/m, (a2

m + 1)(j1l1)/n, (a2
m + 1)k1)

respectively; these solutions are not equal.

An (ordered) triple of nonzero integers (a, b, c) (that may, or may not, be
a solution to equation (1)) is said to be relatively prime if gcd(a, b, c) = 1. M.
B. Nathanson [4] showed that, for any given value of n, every positive integer
solution to equation (2) can be constructed from a relatively prime 〈n, n, n+1〉-
subtraction-powerful triple. However, it is possible to find solutions to equation
(1) that cannot be generated by a relatively prime 〈m,n, r〉-addition-powerful
triple using formula (3) when gcd(mn, r) = 1, and cannot be generated by
applying formula (4) to a relatively prime 〈r,m, n〉-subtraction-powerful triple
when gcd(mr, n) = 1, etc. To see this, note the following example.
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Example 2.2. Consider the equation

x3 + y5 = z2. (6)

Note that (2, 2, 2) is a 〈3, 5, 2〉-addition-powerful triple due to the fact that
t+〈3,5,2〉(2, 2, 2) = 10. Obviously, 3 · 5 is relatively prime to 2, l1 = lcm(3, 5) =
15, and we can let j1 = 1 and k1 = 8 because 1 · 15 + 1 = 8 · 2. Thus, formula
(3) yields the solution (2 · 105, 2 · 103, 2 · 108) to equation (6) when (a, b, c) =
(2, 2, 2). Suppose that (a1, b1, c1) is a relatively prime 〈3, 5, 2〉-addition-powerful
triple that generates this solution; let t11 = t+〈3,5,2〉(a1, b1, c1). Then, applying
formula (3), there exist positive integers j11 and k11, satisfying 15j11+1 = 2k11,
for which

(a1t11
5j11 , b1t11

3j11 , c1t11
k11) = (2 · 105, 2 · 103, 2 · 108). (7)

Thus, t11
3j11 divides 2 · 103, and it is easy to show that t11 divides 10. Further-

more, if t11 is neither negative one nor one, then j11 = 1 and k11 = 8. But
neither t11 = −10,−5,−2,−1, 1, 2, 5, nor 10 yields a solution to equation (7)
that has the property that gcd(a1, b1, c1) = 1. Therefore, there is no relatively
prime 〈3, 5, 2〉-addition-powerful triple that can be utilized in formula (3) to
generate the solution (2 · 105, 2 · 103, 2 · 108) to equation (6).

We have yet to exclude the possibility that a relatively prime 〈2, 3, 5〉-
subtraction-powerful triple may generate the given solution to equation (6).
Obviously, 2 · 3 is relatively prime to 5 and l2 = lcm(2, 3) = 6. Suppose that
(c2, a2, b2) is a relatively prime 〈2, 3, 5〉-subtraction-powerful triple that gener-
ates this solution; let t22 = t−〈2,3,5〉(c2, a2, b2). Applying formula (4), there exist
positive integers j2 and k2, satisfying 6j2 + 1 = 5k2, for which

(a2t22
2j2 , b2t22

k2 , c2t22
3j2) = (2 · 105, 2 · 103, 2 · 108). (8)

If j2 = 1, 2, or 3, then k2 is not an integer; it follows that j2 ≥ 4. We
see that t22

2j2 divides 2 · 105, and it follows that t22 is equal to negative one
or one. But neither t22 = −1 nor t22 = 1 yields a solution to equation (8)
such that gcd(c2, a2, b2) = 1. Therefore, there is no relatively prime 〈2, 3, 5〉-
subtraction-powerful triple that can be utilized in formula (4) to generate the
solution (2 · 105, 2 · 103, 2 · 108). Proceeding in a similar fashion, it is easy to
verify that no relatively prime 〈2, 5, 3〉-subtraction-powerful triple can be used
in formula (5) to generate the given solution to equation (6).

It is plain to see that theorem 2.1, when applicable, does not exclude primi-
tive solutions to equation (1), when they exist. For example, t+〈3,5,2〉(2, 1, 3) =
1; thus, due to formula (3), (2, 1, 3) is a solution to equation (6). In fact,
(2, 1, 3) is a well-known primitive solution to x3 + yn = z2 for each value of n.
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3 Additional Comments

Clearly, not all cases of equation (1), such that gcd(m,n, r) = 1, are addressed
by theorem 2.1. For example, consider the equation x15 + y21 = z35. Although
gcd(15, 21, 35) = 1, it is easy to see that gcd(15·21, 35) > 1, gcd(15·35, 21) > 1,
and gcd(21 · 35, 15) > 1.

We would be remiss if we did not mention the Beal Prize, which is funded
by D. A. Beal, a famous banker and mathematics enthusiast [1]. For some
cases in which m = 2, n = 2, or r = 2, primitive solutions to equation (1) have
been found [2], [3]. Currently, no primitive solution to equation (1) has been
found such that m > 2, n > 2, and r > 2. To qualify for the Beal Prize, one
must find a primitive solution to equation (1) under the conditions that x, y,
z, m, n, and r are positive integers, m > 2, n > 2, and r > 2, or prove that no
primitive solution exists under these conditions. Presently, the Beal Prize is
worth one million U.S. dollars. Theorem 2.1 will probably not be helpful in the
search for a prize-winning example, unless an ingenious method for separating
any prize-winning solution from the others is discovered.
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