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Geometric Automated Theorem Proving (GATP)

GATPs—Two major lines of research [CGZ94, CG01, Wan96]:

I Synthetic methods; Seminar 1

I Algebraic methods. Seminar 2

Formalization & Automated Discovery: Seminar 3

I Formalisation;

I Automated Discovery.

Geometric Tools & Geometric Knowledge Management: Seminar 4

I Geometric Tools: DGS/GATP/CAS/RGK/eLearning;

I Geometric Knowledge Management.
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Synthetic Methods
Synthetic methods attempt to automate traditional geometry proof
methods, producing human-readable proofs.

Seminal paper of Gelernter et al. It was based on the human simulation
approach and has been considered a landmark in the AI
area [Gel59, GHL60].

I Geometric reasoning - small and easy to understand proofs.

I Use of predicates only allow reaching fix-points.

I numerical model;

I constructing auxiliary points;

I generating geometric lemmas.

In spite of the success and significant improvements with these methods,
the results did not lead to the development of a powerful geometry
theorem prover [BdC95, CP79, CP86, Gil70, KA90, Nev74, Qua89]
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Gelernter’s GATP

A long-range program directed at the problem of “intelligent”
behaviour and learning in machines has attained its first ob-
jective in the simulation on a high-speed digital computer of a
machine capable of discovering proofs in elementary Euclidean
plane geometry without resorting to exhaustive enumeration or
to a decision procedure. The particular problem of a theorem
proving in plane geometry was chosen as representative of a
large class of difficult tasks that seem to require ingenuity and
intelligence for their successful completion.

The theorem proving program relies upon heuristic methods to
restrain if from generating proof sequences that do not have a
high a priori probability of leading to a proof for the theorem in
hand.

H. Gelernter1959, Realization of a geometry-theorem proving
machine, Computers & thought, MIT Press, 1995
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Gelernter’s GATP

Backward chaining approach.

∀geometric elements[(H1 ∧ · · · ∧ Hr )⇒ G ]

To prove G we search the axiom rule set to find a rule of the
following form

[(G1 ∧ · · · ∧ Gr )⇒ G ]

until the sub-goals are hypothesis.

The proof search will generate an and-or-proof-tree.
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Example 1 - Gelernter
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Galernter (1959): Algorithm & Proof
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GEOM — A “Coelho” out of the hat

Two uses of the geometric diagram as a model [CP86]:

I the diagram as a filter (a counter-example);

I the diagram as a guide (an example suggesting eventual
conclusions).

Top-down or bottom-up directions? A general prover should be
able to mix both directions of execution [CP86].

The introduction of new points can be envisaged as a means to
make explicit more information in the model [CP86].

Although various strategies and heuristics were subsequently
adopted and implement, the problem of search space explosion still
remains and makes the methods of this type highly
inefficient [CP79, CP86].
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Example - GEOM

GEOM is a Prolog program that generates proofs for problems in
high school plane geometry [CP86].

A user presents problems to GEOM by declaring the hypotheses,
the optional diagram and the goal.

GEOM starts from the goal, top-down and with a depth-first
strategy, outputing its deductions and reasons for each step of the
proof.

The diagram works mostly as a source of counter-examples for
pruning unprovable goals, and so proofs need not depend on it (...).
However, the diagram may also be used in a positive guiding way.
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Example - GEOM

The geometric knowledge of GEOM, i.e. some of the axioms and
theorems of elementary plane geometry, is embodied in nine
procedures.

They are: equal angles (EAI), right angles (RAI), equal magnitude
(EM, EM1), equal segments (ESI), midpoints (MP), parallel
segments (PRI), parallelogram (PG), congruence (DIRCON) and
diagram routines.

Because each procedure may call itself through others, the search
space can grow quite large, in particular when the clause for
differences of segments is used.
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GEOM: proof tree
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Coordinate-free Methods

Instead of coordinates, some basic geometric quantities, e.g. the
ratio of parallel line segments, the signed area, and the
Pythagorean difference (vector methods).

I Area method [CGZ93, JNQ12, QJ06b];

I Full-angle method [CGZ94, CGZ96b];

I Solid geometry [CGZ95].

Pros: Geometric proofs, small and human-readable.

Cons:

I not the “normal” high-school geometric reasoning;

I for many conjectures these methods still deal with extremely
complex expressions.

12 / 103



Synthetic Methods Algebraic Methods Formalisation & Discovery GKM & Tools Bibliography

Area Method — Basic Geometric Quantities

Definition (Ratio of directed parallel segments)

For four collinear points P, Q, A, and B, such that A 6= B, the

ratio of directed parallel segments, denoted PQ
AB

is a real number.

Definition (Signed Area)

The signed area of triangle ABC , denoted SABC , is the area of the
triangle with a sign depending on its orientation in the plane.

Definition (Pythagoras difference)

For three points A, B, and C , the Pythagoras difference, is defined

in the following way: PABC = AB
2

+ CB
2 − AC

2
.
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Properties of the Ratio of Directed Parallel Segments

I PQ
AB

= −QP
AB

= QP
BA

= −PQ
BA

;

I PQ
AB

= 0 iff P = Q;

I (. . . )

EL1 (The Co-side Theorem) Let M be the intersection of two
non-parallel lines AB and PQ and Q 6= M. Then it holds that
PM
QM

= SPAB
SQAB

; PM
PQ

= SPAB
SPAQB

; QM
PQ

=
SQAB

SPAQB
.
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Properties of the Signed Area

I SABC = SCAB = SBCA = −SACB = −SBAC = −SCBA.

I SABC = 0 iff A, B, and C are collinear.

I PQ ‖ AB iff SPAB = SQAB , i.e., iff SPAQB = 0.

I Let ABCD be a parallelogram, P and Q be two arbitrary
points. Then it holds that SAPQ + SCPQ = SBPQ + SDPQ or
SPAQB = SPDQC .

I Let R be a point on the line PQ. Then for any two points A

and B it holds that SRAB = PR
PQ
SQAB + RQ

PQ
SPAB .

I (. . . )
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Properties of the Pythagoras Difference

I PAAB = 0.

I PABC = PCBA.

I If A, B, and C are collinear then, PABC = 2BA BC .

I AB ⊥ BC iff PABC = 0.

I Let AB and PQ be two non-perpendicular lines, and Y be the
intersection of line PQ and the line passing through A and
perpendicular to AB. Then, it holds that

PY

QY
=
PPAB
PQAB

,
PY

PQ
=
PPAB
PPAQB

,
QY

PQ
=
PQAB

PPAQB
.

I (. . . )
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The Area Method — The Proof Algorithm

Express the hypothesis of a theorem using a set of constructive
statements.

Each constructive statement introduces a new point.

A

BC D

FE

P

The conclusion is expressed by a polynomial in some geometry
quantities (defined above), without any relation to a given system
of coordinates.

The proof is then developed by eliminating, in reverse order, the
point introduced before, using for that purpose a set of lemmas.
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Constructive Geometric Statements

ECS1 construction of an arbitrary point U; (. . . ).

ECS2 construction of a point Y such that it is the intersection of
two lines (Line U V) and (Line P Q);
ndg-condition: UV ∦ PQ; U 6= V ; P 6= Q.
degree of freedom for Y: 0

ECS3 construction of a point Y such that it is a foot from a given
point P to (Line U V); (. . . ).

ECS4 construction of a point Y on the line passing through point
W and parallel to (Line U V), such that WY = rUV , (. . . ).

ECS5 construction of a point Y on the line passing through point U
and perpendicular to (Line U V), such that r = 4SUVY

PUVU
, (. . . ).
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Forms of Expressing the Conclusion

property in terms of geometric quantities
points A and B are identical PABA = 0
points A, B, C are collinear SABC = 0
AB is perpendicular to CD PABA 6= 0 ∧ PCDC 6= 0 ∧ PACD = PBCD

AB is parallel to CD PABA 6= 0 ∧ PCDC 6= 0 ∧ SACD = SBCD
O is the midpoint of AB SABO = 0 ∧ PABA 6= 0 ∧ AO

AB
= 1

2

AB has the same length as CD PABA = PCDC

points A, B, C , D are har-
monic

SABC = 0 ∧SABD = 0 ∧PBCB 6= 0 ∧PBDB 6=
0 ∧ AC

CB
= DA

DB

angle ABC has the same mea-
sure as DEF

PABA 6= 0 ∧ PACA 6= 0 ∧ PBCB 6=
0 ∧ PDED 6= 0 ∧ PDFD 6= 0 ∧
PEFE 6= 0∧ SABC · PDEF = SDEF · PABC

A and B belong to the same
circle arc CD

SACD 6= 0 ∧ SBCD 6= 0 ∧ SCAD · PCBD =
SCBD · PCAD
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Elimination Lemmas

EL2 Let G (Y ) be a linear geometric quantity and point Y is
introduced by the construction (Pratio Y W (Line U V) r).
Then it holds

G (Y ) = G (W ) + r(G (V )− G (U)).

EL3 Let G (Y ) be a linear geometric quantity and point Y is
introduced by the construction (Inter Y (Line U V) (Line
P Q). Then it holds

G (Y ) =
SUPQG (V )− SVPQG (U)

SUPVQ
.

I (. . . )
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Constructive Steps & Elimination Lemmas

Geometric Quantities

PAYB PABY PABCY SABY SABCY AY
CD

AY
BY

ECS2 EL5 EL3 EL11 EL1

ECS3 EL6 EL4 EL12

ECS4 EL7 EL2 EL13

C
on

st
ru

ct
iv

e
S

te
p

s

ECS5 EL10 EL9 EL8 EL14

Elimination Lemmas
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The Algorithm

→ S = (C1,C2, . . . ,Cm, (E ,F )) is a statement in C.

← The algorithm tells whether S is true, or not, and if it is true,
produces a proof for S .

for (i=m;i==1;i--) {

if (the ndg conditions of Ci is satisfied) exit;

// Let G1,\ldots,Gn be the geometric quantities in E and F

for (j=1;j<=n,j++) {

Hj <- eliminating the point introduced

by construction Ci from Gj

E <- E[Gj:=Hj]

F <- F[Gj:=Hj]

}

}

if (E==F) S <- true else S<-false

Adding to that it is needed to check the ndg condition of a
construction (three possible forms).
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An Example (Ceva’s Theorem)
Let 4ABC be a triangle and P be an arbitrary point in the plane.
Let D be the intersection of AP and BC , E be the intersection of
BP and AC , and F the intersection of CP and AB. Then:

AF

FB

BD

DC

CE

EA
= 1

A

BC D

FE

P
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Example — Proof

The proof of a conjecture is based on eliminating all the
constructed points, in reverse order, until an equality in only the
free points is reached.

AF
FB

BD
DC

CE
EA

= SAPC
SBCP

BD
DC

CE
EA

the point F is eliminated

= SAPC
SBCP

SBPA
SCAP

CE
EA

the point D is eliminated

= SAPC
SBCP

SBPA
SCAP

SCPB
SABP the point E is eliminated

= 1

Elimination Steps: 3; Geometric Steps: 6; Algebraic Steps: 23;
Total Steps: 32; CPU Time 0.004s. The GATP also provide the
ndg conditions.
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Full-Angle Method

Intuitively, a full-angle ∠[u, v ] is the angle from line u to line v . Two
full-angles ∠[l ,m] and ∠[u, v ] are equal if there exists a rotation K such
that K (l)‖u and K (m)‖v

Full-Angle is defined as an ordered pair of lines which satisfies the
following rules [CGZ96b]:

R1 For all parallel lines AB‖PQ, ∠[0] = ∠[AB,PQ] is a constant.

R2 For all perpendicular lines AB ⊥ PQ, ∠[1] = ∠[AB,PQ] is a
constant.

R7 If PX is parallel to UV , then ∠[AB,PX ] = ∠[AB,UV ] .

R8 If PX is perpendicular to UV , then
∠[AB,PX ] = ∠[1] + ∠[AB,UV ].
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Solid Geometry

Solid Geometry Method — For any points A, B, C and D in the space,
the signed volume VABCD of the tetrahedron ABCD is a real number
which satisfies the following properties [CGZ95].

V.1 When two neighbor vertices of the tetrahedron are interchanged,
the signed volume of the tetrahedron will change signs, e.g.,
VABCD = −VABDC .

V.2 Points A,B,C and D are coplanar iff VABCD = 0.

V.3 There exist at least four points A,B,C and D such that VABCD 6= 0.

V.4 For five points A,B,C ,D and O, we have
VABCD = VABCO + VABOD + VAOCD + VOBCD .

V.5 If A,B,C ,D,E and F are six coplanar points and SABC = λSDEF
then for any point T we have VTABC = λVTDEF .
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Algebraic Methods

Algebraic Methods: are based on reducing geometry properties to
algebraic properties expressed in terms of Cartesian coordinates.

The biggest successes in automated theorem proving in geometry
were achieved (i.e., the most complex theorems were proved) by
algebraic provers based on:

I Wu’s method [Cho85, Cho88];

I Gröbner bases method [Buc98, Kap86].

Decision procedures.

No readable, traditional geometry proofs, only a yes/no answer
(with a corresponding algebraic argument).
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Wu’s Method

An elementary version of Wu’s method is simple:
Geometric theorem T transcribed as polynomial equations and
inequations of the form:

I H: hl = O, . . . , hs = O, d1 6= 0, . . . , dt 6= 0;

I C: c=0.

Proving T is equivalent to deciding whether the formula

∀xl ,...xn [h1 = 0 ∧ · · · ∧ hs ∧ d1 6= 0 ∧ . . . ∧ dt 6= 0⇒ c = 0] (1)

is valid.
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Wu’s Method

Computes a characteristic set C of {h1, . . . , hs} and the
pseudo-remainder r of c with respect to C .

If r is identically equal to 0, then T is proved to be true.

The subsidiary condition J 6= 0, where J is the product of initials of
the polynomials in C are the ndg conditions [CG90, WT86, Wu00].

This is a decision procedure.
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GCLC Implementation of Wu’s Method

Let 4ABC be a triangle and P be an arbitrary point in the plane. Let D
be the intersection of AP and BC , E be the intersection of BP and AC ,
and F the intersection of CP and AB. Then: AF

FB
BD
DC

CE
EA

= 1

p1 = −u3x2 + (u2 − u1)x1 + u3u1

p2 = u5x2 − u4x1

p3 = −u3x4 + u2x3

p4 = u5x4 + (−u4 + u1)x3 − u5u1

p5 = (u5 − u3)x6 + (−u5u2 + u4u3)

p6 = 2x6x
2
3 x

3
1 − 3u3x6x

2
3 x

2
1 + u2

3x6x
2
3 x1 − u3x6x3x

3
1 + u2

3x6x3x
2
1 −

−u1x
2
3 x

3
1 + 2u3u1x

2
3 x

2
1 − u2

3u1x
2
3 x1
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GCLC Implementation of Wu’s Method (cont)

Triangulation, step 1; step 2; step 3; step 4; step 5

Calculating final remainder of the conclusion:
g = 2x6x

2
3 x

3
1 − 3u3x6x

2
3 x

2
1 + u2

3x6x
2
3 x1 − u3x6x3x

3
1 + u2

3x6x3x
2
1 − u1x

2
3 x

3
1 +

2u3u1x
2
3 x

2
1 − u2

3u1x
2
3 x1

with respect to the triangular system.

Pseudo remainder with p4 over variable x6:
g =
(2u5u2−u5u1−2u4u3 +u3u1)x2

3 x
3
1 +(−3u5u3u2 +2u5u3u1 +3u4u

2
3−2u2

3u1)x2
3 x

2
1 +

(u5u
2
3u2−u5u

2
3u1−u4u

3
3 +u3

3u1)x2
3 x1+(−u5u3u2+u4u

2
3)x3x

3
1 +(u5u

2
3u2−u4u

3
3)x3x

2
1

(. . . )

Pseudo remainder with p0 over variable x1: g = 0

Status: The conjecture has been proved.

. . . but all the calculations made, are not translatable to geometric reasoning.
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Gröbner Basis

A Gröbner basis of an ideal is a special basis using which the membership
problem of the ideal as well as the membership problem of the radical of
the ideal can be easily decided.

(. . . ) to decide whether a finite set of geometry hypotheses expressed as
polynomial equations, in conjunction with a finite set of subsidiary
conditions expressed as negations of polynomial equations which rule out
degenerate cases, imply another geometry relation given as a conclusion.

Such a problem is shown to be equivalent to deciding whether a finite set
of polynomials does not have a solution in an algebraically closed field.
Using Hilbert’s Nullstellensatz, this problem can be decided by checking
whether 1 is in the ideal generated by these polynomials

This test can be done by computing a Gröbner basis of the ideal.
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GCLC Implementation of Gröbner Basis Method

Let 4ABC be a triangle and P be an arbitrary point in the plane. Let D
be the intersection of AP and BC , E be the intersection of BP and AC ,
and F the intersection of CP and AB. Then: AF

FB
BD
DC

CE
EA

= 1.

Conjecture p6 = 2x6x
2
3 x

3
1 − 3u3x6x

2
3 x

2
1 + u2

3x6x
2
3 x1 − u3x6x3x

3
1 +

u2
3x6x3x

2
1 − u1x

2
3 x

3
1 + 2u3u1x

2
3 x

2
1 − u2

3u1x
2
3 x1

The used proving method is Buchberger’s method.
Input polynomial system is:

p0 = −u3x2 + (u2 − u1)x1 + u3u1

p1 = u5x2 − u4x1

p2 = −u3x4 + u2x3

p3 = u5x4 + (−u4 + u1)x3 − u5u1

p4 = (u5 − u3)x6 + (−u5u2 + u4u3)
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GCLC Implementation of Gröbner Basis Method (cont)

iteration 1; iteration 2.

Gröbner basis has 7 polynomials:
p0 = −u3x2 + (u2 − u1)x1 + u3u1

p1 = u5x2 − u4x1

p2 = −u3x4 + u2x3

p3 = u5x4 + (−u4 + u1)x3 − u5u1

p4 = (u5 − u3)x6 + (−u5u2 + u4u3)
p5 = (u5u2 − u5u1 − u4u3)x1 + u5u3u1

p6 = (u5u2 − u4u3 + u3u1)x3 − u5u3u1

(. . . )

Status: The conjecture has been proved.
Space Complexity: The biggest polynomial obtained during proof process
contained 259 terms.
Time Complexity: Time spent by the prover is 0.101 seconds.
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“New” approaches

I An approach based on a deductive database and forward
chaining works over a suitably selected set of higher-order
lemmas and can prove complex geometry theorems, but still
has a smaller scope than algebraic
provers [CGZ94, CGZ00, YCG10b].

I Quaife used a resolution theorem prover to prove theorems in
Tarski’s geometry [Qua89].

I A GATP based on coherent-logic capable of producing both
readable and formal proofs of geometric conjectures of certain
sort [SPJ11].

I Probabilistic verification of elementary geometry
statements [CFGG97, RGK99].

I Visual Reasoning/Proofs [Kim89, YCG10a, YCG10b].
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Geometry Deductive Database

I In the general setting: structured deductive database and the
data-based search strategy to improve the search efficiency.1

I Selection of a good set of rules; adding auxiliary points and
constructing numerical diagrams as models automatically.

The result program can be used to find fix-points for a geometric
configuration, i.e. the program can find all the properties of the
configuration that can be deduced using a fixed set of geometric
rules.

Generate ndg conditions.

Structured deductive database (graphs) reduce the size of the
database in some cases by one thousand times.

1Semantic Graphs are an alternative!?
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Deductive Databases

I Use canonical form for predicates;

I Use equivalent classes to represent some predicates;

I Use representative elements for equivalent classes;

I breadth-first forward chaining search:
where D0 is the hypotheses of the geometry statement and R
is the rule set.

For each rule r in R, apply it to D0 to obtain new facts. Let
D1 be the union of D0 and the set of new facts obtained.

Repeat the above process for D1 to obtain D2, and so on.

If at certain step Dk = Dk+1, we say that a fix-point for D0

and R is reached.
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Geometry Deductive Database – The Orthocenter Theorem

points(A,B,C )∧ coll(E ,A,C )∧ perp(B,E ,A,C )∧ coll(F ,B,C )∧
perp(A,F ,B,C ) ∧ coll(H,A,F ) ∧ coll(H,B,E ) ∧ coll(G ,A,B) ∧
coll(G ,C ,H)

A B

C

H

E

G

F

The fix-point contains two of the most often encountered
properties of this configuration:

I perp(C ,G ,A,B);

I ∠FGC = ∠CGE
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Quaife’s GATP

Tarski axiomatic system: is, or rather its algebraic equivalent,
complete and decidable.

Quaife developed a GATP for Euclidean plane geometry within the
automated reasoning system OTTER (a resolution theorem
prover) [Qua89].

(A1) Reflexivity axiom for equidistance.
→ u · v ≡ v · u

(A2) Transitivity axiom for equidistance.
u · v ≡ w · x , u · v ≡ y · z → w · x ≡ y · z

(A4) Segment construction axiom, two clauses.

(A4.1) → B(u, v ,Ext(u, v ,w , x))
(A4.2) → v · Ext(u, v ,w , x) ≡ w · x

(...)
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Quaife’s GATP

Heuristics

I maximum weight for retained clauses at 25,

I first attempt to obtain a proof in which no variables are
allowed in any generated and retained clause.

The provers based upon Wu’s algorithm, are able to prove quite
more difficult theorems in geometry then those by Quaife’s GATP.

However Wu’s method only works with hypotheses and theorems
that can be expressed as equations, and not with inequalities as
correspond to the relation B in Quaife’s resolution prover.
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Coherent Logic GATP

Coherent Logic is a fragment of first-order logic with formulae of
the following form:

A1(x) ∧ . . . ∧ An(x)→ ∃y1B(x , y1) ∨ . . . ∨ ∃ymB(x , ym)

with a breath-first proof procedure sound and complete [BC05].

ArgoCLP (Coherent Logic Prover of the Argo Group2)

I new proof procedures;
I proof trace exportable to:

I a proof object in Isabelle/Isar;
I human readable (English/LATEX).

not aimed at proving complex geometry theorems but rather at
proving foundational theorems (close to the axiom level) [SPJ11].

2http://argo.matf.bg.ac.rs/
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Probabilistic Verification

Probabilistic verification of elementary geometry
statements [CFGG97, RGK99].

Cinderella (. . . ) use (. . . ) a technique called “Random-
ized Theorem Checking”. First the conjecture (. . . ) is
generated. Then the configuration is moved into many
different [random] positions and for each of these it is
checked whether the conjecture still holds. (. . . ) gener-
ating enough(!) random (!) examples where the theorem
holds is at least as convincing as a computer-generated
symbolic proof.

User Manual for the Interactive Geometry Software
Cinderella, Jürgen Richter-Gebert, Ulrich H. Kortenkamp
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Visual Reasoning/Representation

Visual Reasoning extend the use of diagrams with a method that
allows the diagrams to be perceived and to be
manipulated in a creative manner [Kim89].

Visually Dynamic Presentation of Proofs linking the proof done by
a synthetic method (full-angle) with a visual
presentation of the
proof [QSGB19, SQ10, YCG10a, YCG10b].
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Visual Reasoning in Geometry Theorem Proving

We study the role of visual reasoning as a computationally
feasible heuristic tool in geometry problem solving. We
use an algebraic notation to represent geometric objects
and to manipulate them.
We show that this representation captures powerful heuris-
tics for proving geometry theorems, and that it allows a
systematic manipulation of geometric features in a man-
ner similar to what may occur in human visual reasoning

Michelle Y . Kim,
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An Example
Consider the problem in “Given a square ABCD, take the
midpoints of the four sides, and prove that the two triangles
∆EEH and ∆GFH are congruent to each other.”

A

B C

D

E

F

G

H

To solve this problem, backward-chaining methods used by most of
previous geometry-theorem proving systems [Gel59, CP86] would
first set up a goal to prove that the two triangles arc congruent
(. . . ). A human mathematician, given the problem , may perceive
an apparent symmetry in the diagram by observing a reflection
across FH or across EG . As a symmetry is observed, it can be
shown with little effort that the two triangles are congruent, and
thus repeated proofs can be avoided. 45 / 103
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Visually Dynamic Presentation of Proofs in Plane
Geometry

Figure: Pythagoras Theorem - Visual Proof
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Formalisation

Full formal proofs mechanically verified by generic theorem proof
assistants (e.g. Isabelle [Pau94, PN90], Coq [Tea09]).

I Hilbert’s Foundations of Geometry [Hil77, MF03, DDS00];

I Jan von Plato’s constructive geometry [Kah95, vP95];

I French high school geometry [Gui04];

I Tarski’s geometry [Nar07b, BBN16];

I An axiom system for compass and ruler geometry [BNW18];

I Projective geometry [MNS11, FT11];

I Area Method [JNQ12, Nar06];

I Algebraic methods in geometry [MPPJ12].
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Proof Assistants

Proof assistant (or interactive theorem prover) is a software tool to
assist with the development of formal proofs by human-machine
collaboration.

I Isabelle—https://isabelle.in.tum.de/—Isabelle is a
generic proof assistant. It allows mathematical formulas to be
expressed in a formal language and provides tools for proving
those formulas in a logical calculus.

I Coq—https://coq.inria.fr/—Coq is a formal proof
management system. It provides a formal language to write
mathematical definitions, executable algorithms and theorems
together with an environment for semi-interactive
development of machine-checked proofs.

Others: HOL Light; Lean; Mizar; . . .
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Area Method: Formalisation
Formalisation [JNQ12, Nar06, Nar09];

1. AB = 0 if and only if the points A and B are identical

2. SABC = SCAB
3. SABC = −SBAC
4. If SABC = 0 then AB + BC = AC (Chasles’s axiom)

5. There are points A, B, C such that SABC 6= 0 (dimension; not all points are collinear)

6. SABC = SDBC + SADC + SABD (dimension; all points are in the same plane)

7. For each element r of F , there exists a point P, such that SABP = 0 and AP = rAB (construction of a
point on the line)

8. If A 6= B,SABP = 0, AP = rAB,SABP′ = 0 and AP′ = rAB, then P = P′ (unicity)

9. If PQ ‖ CD and PQ
CD

= 1 then DQ ‖ PC (parallelogram)

10. If SPAC 6= 0 and SABC = 0 then AB
AC

=
SPAB
SPAC

(proportions)

11. If C 6= D and AB ⊥ CD and EF ⊥ CD then AB ‖ EF

12. If A 6= B and AB ⊥ CD and AB ‖ EF then EF ⊥ CD

13. If FA ⊥ BC and SFBC = 0 then 4S2
ABC = AF

2
BC

2
(area of a triangle)

Using this axiom system all the properties of the geometric quantities required
by the area method were formally verified (within the Coq proof assistant),
demonstrating the correctness of the system and eliminating all concerns about
provability of the lemmas [Nar09].
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Area Method: Formalization in Coq

Require Export field.
Require Import Classical.

Ltac Geometry := auto with Geom field_hints.

Parameter Point : Set. // The set of Points

Parameter S : Point −> Point −> Point −> F. // The signed area

Parameter DSeg : Point −> Point −> F. // The signed distance

Infix ”∗∗” := DSeg (left associativity, at level 20) : F_scope.

Definition Col (A B C : Point) : Prop := S A B C = 0.
Definition S4 (A B C D : Point) : F := S A B C + S A C D.
Definition parallel (A B C D : Point) : Prop := S4 A C B D = 0.

Axiom A1b : forall A B : Point, A ∗∗ B = 0 <−> A = B.

Axiom A2a : forall (A B : Point) (r : F),
{P : Point | Col A B P /\ A ∗∗ P = r ∗ A ∗∗ B}.

Axiom A2b : forall (A B P Pl : Point) (r : F),
A <> B −>
Col A B P −>
A ∗∗ P = r ∗ A ∗∗ B −> Col A B Pl −> A ∗∗ Pl = r ∗ A ∗∗ B −> P = Pl.

Axiom chasles : forall A B C : Point, Col A B C −> A ∗∗ B + B ∗∗ C = A ∗∗ C.
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Automated Discovery

I Locus Generation: to determine the implicit equation of a
locus set [BAE07, BA12].

The set of points determined by the different positions of a
point, the tracer, as a second point in which the tracer
depends on, called the mover, runs along the one dimensional
object to which it is restrained.

I Automated Finding of Theorems: the discovery of new facts
about a given geometric configuration.
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Finding locus equations

For most DGS a locus is basically a set of points in the screen with
no algebraic information [BAE07, ABMR14].

I Numerical approach, based on interpolation (Cinderella,
Cabri) [Bot02].

I Symbolic method, finding the equation of a
locus [BL02, BA12, ABMR14].

Determine the equation of a locus set using remote computations
on a server [EBA10].
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Loci Finding: Algorithm

A statement is considered where the conclusion does not follow
from the hypotheses.

Symbolic coordinates are assigned to the points of the construction
(where every free point gets two new free variables ui , ui+1 , and
every bounded point gets up to two new dependent variables xj ,
xj+1) so the hypotheses and thesis are rewritten as polynomials
h1, . . . , hn and t in Q[u, x ].

Eliminating the dependent variables in the ideal
(hypotheses, thesis), the vanishing of every element in the
elimination ideal (hypotheses, thesis) ∩Q[u] is a necessary
condition for the statement to hold.
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Locus Finding: Implementation

A Sage worksheet integrating GeoGebra
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Implementation (cont.)

Two different tasks are performed over GeoGebra constructions:

I the computation of the equation of a geometric locus in the case of
a locus construction;

LocusEquation( <Locus Point>, <Moving Point> )

I the study of the truth of a general geometric statement included in
the GeoGebra construction as a Boolean variable.

Both tasks are implemented using algebraic automatic deduction
techniques based on Gröbner bases computations.

The algorithm, based on a recent work on the Gröbner cover of
parametric systems, identifies degenerate components and extraneous
adherence points in loci, both natural byproducts of general polynomial
algebraic methods [BA12].
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Automated Finding of Theorems

Deductive Database Approach. Forward chaining till reaching a
fixed point.

An interesting application is to discover ‘new’ facts
about a given geometric configuration.

Our experiments show that our program can discover
most of the well-known results and often some unexpected
ones.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. A

deductive database approach to automated geometry theorem prov-

ing and discovering.

56 / 103



Synthetic Methods Algebraic Methods Formalisation & Discovery GKM & Tools Bibliography

JGEX: Automated Finding of Theorems

JGEX - example Manual, 20-1
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Automated Geometer

The Automated Geometer, AG, (also meaning Ama-
teur Geometer ) intends to be a GeoGebra module where
pure automatic discovery is performed.

It includes a generator of further geometric elements
from those of a given construction, and a set of rules for
producing conjectures on the whole set of elements.

But the ultimate AG aim is not just performing a sys-
tematic exploration of the space of possible conjectures,
but mimicking human thought when doing elementary ge-
ometry.

Francisco Botana, Zoltan Kovacs, and Tomas Recio. Towards

an automated geometer. AISC 2018, LNCS 11110, Springer, 2018.

58 / 103



Synthetic Methods Algebraic Methods Formalisation & Discovery GKM & Tools Bibliography

Automated Geometer / Amateur Geometer

http://prover-test.geogebra.org/~kovzol/ag/automated-geometer.html
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Geometric Tools
Geometric tools: Dynamic Geometry Software (DGS) & Geometry
Automated Theorem Provers (GATP) & Computer Algebra Systems
(CAS) & Repositories of Geometric Knowledge (RGK) & eLearning in
Geometry.

I DGS: Cabri Geometry; C.a.R.; Cinderella; GCLC; GeoGebra; The
Geometer’s Sketchpad;
JGEX [Gro11, CGY04, Hoh02, Jac01, Jan06, LS90, RGK99]; . . .

I GATP; GCLC; OpenGeoProver; JGEX; GeoProof; . . .

I verification of the soundness of a geometric
construction [JQ07].

I reason about a given DGS
construction [CGZ96a, JQ06, Nar07a, QJ06b].

I human-readable proofs [JNQ12, QJ06a].

I RGK [QJ07, Qua11].

I eLearning [ABY86, HLY86, QJ06b, SQ08, QSM18, SQMC18]
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Dynamic Geometry Software

DGS are computer environments which allow one to create and
then manipulate geometric constructions, primarily in plane
geometry.
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Geometry Automated Theorem Provers: GCLC
Proving geometrical theorems by computer programs.

∗∗∗ Ceva s theorem
point A 80 10
point B 50 80
point C 100 80
point P 75 65
line a B C

line b A C

line c A B

line pa P A

line pb P B

line pc P C

∗∗∗ constructed point
intersec D a pa

intersec E b pb

intersec F c pc

∗∗∗ conjecture
prove {equal{mult{mult{sratio A F F B}{sratio B D D C}}{sratio C E E A}}1}
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Geometry Automated Theorem Provers: GCLC
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Geometry Automated Theorem Provers: JGEX

JGEX - GDD-FULL 63f
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Integration: DGSs & GATPs

I GCLC/WinGCLC - A DGS tool that integrates three GATPs: Area
Method, Wu’s Method and Gröbner Bases Method [JQ06, Jan06].

I JGEX - is a software which combines a DGS and some GATPs (full
angle, Wu’s Method, Deductive Databases for the full
angle) [YCG10a, YCG10b, CGY04].

I GeoProof - DGS tool that integrates three GATPs Area Method,
Wu’s Method and Gröbner Bases Method [Nar07a].

I GeoGebra - DGS + CAS + GATPs [ABK+16, BHJ+15, Kov15].

I Theorema Project - Theorema is a project that aims at supporting
the entire process of mathematical theory exploration within one
coherent logic and software system [BCJ+06]. Implementation of
the Area Method[Rob02, Rob07].

Others: The Geometry Tutor, Mentoniezh, Defi, Chypre, Cabri-Euclide,
Geometrix, Baghera, MMP-Geometer, Geometry Explorer, Cinderella.
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Integration/eLearning (DGSs & GATPs & RGPs)

WebGeometryLab: A Web environment incorporating a DGS (GATPs)
and a repository of geometric problems, that can be used in a
synchronous and asynchronous fashion and with some adaptive and
collaborative features. [QSM18, SQ08, SQMC18].

Teacher’s List of Constructions/Problems

Erase an Unlock buttons
(locked applet)

Student’s Save/Erase Buttons

Transfer Buttons
From Student to Group
From Group to Student

Student’s Chat Window
Students’ and
Teacher’s Messages

Student’s AppletGroup’s Applet

Students’ and Teacher’s
Messages (Chat)

Collaborative Work 
Session Selection Student (in a Group) Selection

Teacher’s Chat 
Input Window

Lock Owner Information
Group selection

GeoGebra’s applet

Others: Tabulae [MSB05]; GeoThink [MSM08]; Advanced Geometry
Tutor [MV05]; AgentGeom [CFPR07]; geogebraTUTOR [RFHG07].
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Integration Issues

Integrate a mosaic of tools into a coherent system.

I Intergeo Project [SHK+10];

I Deducation STREP Proposal [WSA+12];

I Road to an Intelligent Geometry Book, COST Proposal,
OC-2019-1-XXXX.
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Intergeo & I2GATP
The I2GATP format is an extension of the I2G (Intergeo) common
format aimed to support conjectures and proofs produced by
DGSs/GATPs.

XSD files contain the specification of the format:

I information.xsd with the meta-information about a given
geometric problem;

I intergeo.xsd no more than the XSD for the I2G format;

I conjecture.xsd with the specification of the conjectures;

I proofInfo.xsd with the meta-information about the proof(s).

All the XML files containing the information about a geometric problem
and also other auxiliary files, are packaged in the I2GATP container, an
extension of the I2G container.

A library of programs support the I2GATP format.
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iGeometryBook
The “Road to an Intelligent Geometry Book” (COST) Action is dedicated to the
study of how current developing methodologies and technologies of knowledge
representation, management, and discovery in mathematics, can be incorporated
effectively into the learning environments of the future.

Formalisation & Deduction Geometric Knowledge Management

Learning EnvironmentsRemote Knowledge & Computation

Proofs in a Learning Context

Learning Environments

E1

Interfaces & Searching

WG2

=> Geometric Languages

=> Natural Languages

=> Common Formats

=> Semantic Geometric Search

=> Automatic Proving

=> Interactive Proving

=> Theorem Discovery

=> Application Programming Interfaces

=> Remote Servers Design

=> Repositories Geometric Knowledge

=> Libraries Specification

Integration

Tools & Knowledge

=> Formal and Natural Reasoning

=> History of Geometry

E4

E3

E2

=> Modeling Learning Mathematical Proof

=> Design & Evaluation

=> Collaborative Strategies

=> Adaptive Strategies

=> Adaptable environments

WG3

WG4

WG5

Intelligent Geometry Book
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Repositories of Geometric Problems

GeoThms: a Web-based framework for exploring geometrical
knowledge that integrates Dynamic Geometry
Software (DGS), Automatic Theorem Provers (ATP),
and a repository of geometrical constructions, figures
and proofs. [JQ06, QJ07].

TGTP: a Web-based library of problems in geometry to
support the testing and evaluation of geometric
automated theorem proving (GATP)
systems [Qua11].

Sets of Examples and Comunities: Intergeo; GeoGebra;
Geometriagon; examples in the DGSs/GATPs. )
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TGTP

A comprehensive and easily accessible, library of GATP test
problems [Qua11].

I Web-based, easily available to the research community. Easy
to use.

I Tries to cover the different forms of automated proving in
geometry, e.g. synthetic proofs and algebraic proofs.

I provides a mechanism for adding new problems.

I (...)

It is independent of any particular GATP system 7→ the i2gatp
common format [QH12].
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Proofs/Readble Proofs/Visual Proofs

Readable Proofs

I What is a readable proofs [QSGB19]?
I Can GATPs produce readable proofs [JNQ12]?

Visual Reasoning

I Proofs with a visual counterpart [QS19].
I Proofs done by “visual

means” [YCG10a, YCG10b]

72 / 103



Synthetic Methods Algebraic Methods Formalisation & Discovery GKM & Tools Bibliography

Readability of a Proof

I According to [CGZ94, p.442] a formal proof, done using the
area method, is considered readable if one of the following
conditions holds:
I the maximal term in the proof is less than or equal to 5;
I the number of deduction steps of the proof is less than or

equal to 10;
I the maximal term in the proof is less than or equal to 10 and

the deduction step is less than or equal to 20.

I The de Bruijn factor [deB94, Wie00], the quotient of the size
of corresponding informal proof and the size of the formal
proof, could also be used as a measure of readability. Using
this quotient a proof can be considered readable if the value is
less than or equal to 2 (the formal proof is at most twice as
larger then a given informal proof).
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GATP, Readable Proofs: GCLC Area Method

(1)

((−→
AF
−→
FB
·
−−→
BD
−−→
DC

)
·
−→
CE
−→
EA

)
= 1, by the statement

(2)

(((
−1 ·

−→
AF
−→
BF

)
·
−−→
BD
−−→
DC

)
·
−→
CE
−→
EA

)
= 1, by geometric simplifications

(3)

(
−1 ·

(−→
AF
−→
BF
·
(−−→
BD
−−→
DC

·
−→
CE
−→
EA

)))
= 1, by algebraic simplifications

(4)

(
−1 ·

(
SAPC

SBPC
·
(−−→
BD
−−→
DC

·
−→
CE
−→
EA

)))
= 1, by Lemma 8 (point F eliminated)

(5)

(
−1 ·

(
SAPC

SBPC
·
(−−→
BD
−−→
DC

·
(
−1 ·

−→
CE
−→
AE

))))
= 1, by geometric simplifications

(6)

(
SAPC ·

(−−→
BD−−→
DC

·
−→
CE−→
AE

))
SBPC

= 1, by algebraic simplifications

(7)

(
SAPC ·

(−−→
BD−−→
DC

· SCPB
SAPB

))
SBPC

= 1, by Lemma 8 (point E eliminated)

(8)

(
SAPC ·

((
−1 ·

−−→
BD−−→
CD

)
· SCPB
SAPB

))
(−1 · SCPB)

= 1, by geometric simplifications

(9)

(
SAPC ·

−−→
BD−−→
CD

)
SAPB

= 1, by algebraic simplifications

(10)

(
SAPC · SBPA

SCPA

)
SAPB

= 1, by Lemma 8 (point D eliminated)

(11)

(
SAPC · SBPA

(−1·SAPC)

)
(−1 · SBPA)

= 1, by geometric simplifications

(12) 1 = 1, by algebraic simplifications
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GATP, Readable Proofs: Coherent Logic

Example: Proof Generated by ArgoCLP

Let us prove that p = r by reductio ad absurdum.

1. Assume that p 6= r .

2. It holds that the point A is incident to the line q or the point A is not incident to the line q (by axiom of
excluded middle).

3. Assume that the point A is incident to the line q.

4. From the facts that p 6= q, and the point A is incident to the line p, and the point A is incident to
the line q, it holds that the lines p and q intersect (by axiom ax D5).

5. From the facts that the lines p and q intersect, and the lines p and q do not intersect we get a
contradiction.

Contradiction.

6. Assume that the point A is not incident to the line q.

7. From the facts that the lines p and q do not intersect, it holds that the lines q and p do not intersect
(by axiom ax nint l l 21).

8. From the facts that the point A is not incident to the line q, and the point A is incident to the plane
α, and the line q is incident to the plane α, and the point A is incident to the line p, and the line p is
incident to the plane α, and the lines q and p do not intersect, and the point A is incident to the line
r , and the line r is incident to the plane α, and the lines q and r do not intersect, it holds that p = r
(by axiom ax E2).

9. From the facts that p = r , and p 6= r we get a contradiction.

Contradiction.

Therefore, it holds that p = r .

This proves the conjecture.

Sana Stojanović, Predrag Janičić Faculty of Mathematics University of BelgradeAutomated Generation of Formal and Readable Proofs of Mathematical Theorems — ongoing work —
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GATP, Proofs With Visual Support

JGEX – Example 84, Step 2
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GATP, Visual Proofs

JGEX – Example 36-13 & PYTH-cnm14
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Geometrography

Geometrography, “alias the art of geometric constructions” was
proposed by Émile Lemoine between the late 1800s and the early
1900s [SBQ19, Mac93, Lem02, QSGB19].

Measure the complexity of ruler-and-compass geometric
constructions.

Coefficient Simplicity: denoting the number of times any particular
operation is performed.

Coefficient Exactitude: each time a drawing instrument is used,
two types of error can be introduced in the image,
systematic error and accidental errors due to personal
operator’s actions.
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Geometrography

Considering the modifications proposed by Mackay [Mac93], the
following ruler-and-compass constructions and the corresponding
coefficients can be considered.

To place the edge of the ruler in coincidence with one point . . . .R1

To place the edge of the ruler in coincidence with two points . . 2R1

To draw a straight line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R2

To put one point of the compasses on a determinate point . . . . . C1

To put one point of the compasses on two determinate points . 2C1

To describe a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2

For a given construction with l1R1 + l2R2 + m1C1 + m2C2 steps.

cs = l1 + l2 + m1 + m2, is called the coefficient of simplicity.
ce = l1 + m1 is called the coefficient of exactitude.
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DGSs & Geometrography

Extrapolating (modernising) geometrography to DGS.

Coefficient of simplicity – must be adapted to new tools.
Coefficient of exactitude – loose its meaning (error free manipulations).
Coefficient of freedom – counts the degrees of freedom, gives a value for
the dynamism of the construction.

Geometrography in GCLC (commands in the GCL language): a point in
the plane (D), two degrees of freedom; a line defined by two points (2C );
a point in a line D, one degree of freedom; etc.

Geometrography in GeoGebra: similar to GCLC, but using GeoGebra
tools.

Geometrography as a way to measure the complexity and dynamism of a
given construction, being able to compare between different solutions to
a same goal

. . . and how about complexity of a proofs?
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Geometric Search

When accessing RGK it should be possible to do geometric searches, i.e.
we should be able to provide a geometric construction and look for
similar constructions [QH12, HQ14, HQ18] .

Given (in the RGK) a triangle with three equal sides, the query about a
triangle with three equal angles (which is geometrically equivalent)
should be successful.

corpus preparation query

A

B C

conversion−−−−−−−→
to CG

C inferential−−−−−−−→
closure

C sub-graph←−−−−−−−−
isomorphism

C′ conversion←−−−−−−−
to CG

A

B C
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Taxonomies for Geometry

The usefulness of repositories of geometric knowledge is directly related with the
possibility of an easy retrieval of the information a given user is looking
for [QSGB19, Qua18].

GEO0316—Nine Points Circle Prove that in any tri-
angle midpoints of each side, feet of each altitude
and midpoints of the segments of each altitude from
its vertex to the orthocenter lie on a circle [Cho88].

A B

C

D

E

FG

JI

K
L

M

H

O

MSC: 51M05, 70G55, 94B27.
GATP Provability: 1/3: GCLC area method,
“The conjecture is out of scope of the prover”;
GCLC Wu’s method, “The conjecture successfully
proved”; GCLC Gröbner basis method, “The con-
jecture not proved - timeout”.
Readability [CGZ94]: non-synthetic proof: Wu’s
Method, 16 pages long proof.
Readability [deB94]: no readable proof: de Bruijn
factor: 16/6.
Efficiency (CPU time): 0.17s
CCS: C.A.3; CO.A.1; CO.C.10; CO.D.12.
Construction Complexity: complex (cs=41). cs =
3×D + 3×2C + 3×2C + 3×2C + 2×2C + 2C +
3×2C + 2×2C + 2C + 2C = 41; cf = 3×2 = 6.
Proofs in Education: Verification: good (0.17s); Ex-
planation: no, only an algebraic, long (16 pages)
GATP proof, exist.

MSC—Mathematics Subject Classification (http://msc2010.org/)
CCS—Common Core Standard (http://www.corestandards.org/Math/)

82 / 103

http://msc2010.org/
http://www.corestandards.org/Math/


Synthetic Methods Algebraic Methods Formalisation & Discovery GKM & Tools Bibliography

Conference & Journals

CADE (IJCAR/FLoC) International Conference on Automated Deduction
http://www.cadeinc.org/conferences, every year.

ADG International Conference on Automated Deduction in
Geometry, http://adg2018.cc4cm.org/ (ADG2018),
every two years.

ThEdu Theorem Proving Components for Educational Software
http://www.uc.pt/en/congressos/thedu/, workshop
at CADE, every year.

JAR Journal of Automated Reasoning,
https://link.springer.com/journal/10817,
Springer.

LNCS CADE and ADG proceedings, https:
//www.springer.com/gp/computer-science/lncs.

EPTCS ThEdu post-proceedings, http://www.eptcs.org/.
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What to Do Next?

Integration of Methods integrate the study of logical, combinatorial,
algebraic, numeric and graphical algorithms with
heuristics, knowledge bases and reasoning mechanisms.

Applications design and implement integrated systems for computer
geometry, integrating, in a modular fashion, DGSs, ITPs,
GATPs, RGPs, etc. in research and/or educational
environments.

Higher Geometry The existing algorithms should be extended and
improved, new and advanced algorithms be developed to
deal with reasoning in different geometric theories.

Axiom Systems Development of new axiom systems, motivated by
machine formalisation. [ADM09]

Formalisation formalising geometric theories and methods.

Discovery Automated discovery of new results.
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PhD thesis, Université de Paris Sud, 2006.
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