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Abstract

Standard studies of the cardiovascular system are based on advanced exper-
imental and imaging techniques. However, in the past few years, they are
being complemented by computational �uid dynamics (CFD) simulations of
blood �ows with increasing level of details. Clinical measures as well as CFD
studies revealed that the e�ects of transition to turbulence in abdominal aor-
tic aneurysms (AAA) is related to the heart pulsatility and sudden change
of diameter of the vessels.

In this thesis, we study the blood �uid dynamics using CFD simulations
in which we discretized the Navier-Stokes equations by means of the Finite
Element method in combination with di�erent type of LES σ-models (static
and dynamic) to accurately describe transition to turbulence in a realistic
scenarios of AAA. We provide a reference numerical solution obtained at high
resolution without any subgrid scale model, to be used to assess the accuracy
of LES simulations. We post-process the obtained numerical solutions to
assess hemodynamic signi�cant quantities, such as the time average wall
shear stress, and vortical structures educed via the so-called Q-criterion.
Furthermore, a complete SUPG-PSPG stabilization technique procedure has
been implemented in LIFEV C++ library.

The results demonstrate the suitability of the considered LES σ-models
and show the presence of signi�cant turbulence transitional e�ects inside the
aneurysmatic sac during the mid-deceleration and diastolic phases.

Keywords : Computational Fluid Dynamics, CFD, Finite Element
Method, FEM, Large Eddy Simulations, LES, Sigma Model, Abdominal Aor-
tic Aneurysms, AAA, Hemodynamics, SUPG-PSPG, LIFEV





(a) AAA. (b) DNS.

Figure 0.1: (a) rappresentazione schematica dell'Aneurisma Addominale Aor-
tico (AAA); (b) un istante della simulazione DNS.

Estratto in lingua italiana

Gli strumenti di indagine più usati per studiare il sistema cardiovascolare
sono basati su avanzate tecniche di imaging. Soltanto negl'ultimi anni queste
tecniche strumentali sono state a�ancate da simulazioni di �uido dinamica
computazionale (CFD) riguardanti il �usso del sangue nelle vene/arterie.
Misure cliniche e studi di CFD hanno rivelato che la presenza di e�etti di
transizione alla turbolenza, nella patologia dell'Aneurisma Addominale Aor-
tico (AAA), è legata al cambiamento improvviso del diametro dell'aorta e al
fatto che il �usso del sangue nelle vene è pulsato (vedi Figura 0.1a).

In questa tesi abbiamo studiato la �uidodinamica del sangue in uno sce-
nario reale di AAA, usando simulazioni di CFD per descrivere in modo ac-
curato gli e�etti di transizioni alla turbolenza in questa patologia. In parti-
colare, si sono discretizzate le equazioni di Navier-Stokes con il metodo degli
Elementi Finiti in combinazione con di�erenti modelli di turbolenza LES
(Large Eddy Simulation) σ-models (statico e dinamico). Per poter stimare
l'accuratezza delle diverse simulazioni LES, abbiamo costruito una soluzione
numerica di riferimento, chiamata DNS (Direct Numerical Simulation), ot-
tenuta con una griglia ad alta risoluzione e senza nessun modello di tur-
bolenza (vedi Figura 0.1b). Le di�erenze principali tra le simulazioni LES e
la DNS sono ben visibili intorno al picco diastolico. Queste discrepanze sono
dovute a e�etti di transizione che abbiamo ritrovato essere inglobati nella
viscosità turbolenta caratteristica dei modelli di turbolenza σ-LES.

Le simulazioni σ-LES, statiche e dinamiche, mostrano caratteristiche molto
simili in ogni quantità che abbiamo misurato (come il campo di velocità e di
vorticità). Alcune di�erenze, rivelate intorno al picco diastolico, sono prob-
abilmente dovute anche al fatto che il modello dinamico, a di�erenza del
modello statico, riesce a riprodurre il fenomeno della cosiddetta Cascata In-
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(a) TAWSS. (b) Q-criterion.

Figure 0.2: (a) stress a parete medio (TAWSS) nella simulazione σ-statica;
(b) Q-criterion nella simulazione σ-dinamica.

versa (Backscatter). Di fatto, nella simulazione dinamica la percentuale di
Backscatter misurata è circa il 45%.

Gli e�etti di transizione alla turbolenza sono stati messi in luce misurando
le media di insieme del campo di velocità, l'energia cinetica globale e lo
stress a parete medio (TAWSS, Time Average Wall Shear Stress), vedi Figura
(0.2a). Inoltre, abbiamo individuato nelle simulazioni numeriche le strutture
vorticose tipiche della turbolenza tramite il Q-criterion (vedi Figura 0.2b).

Abbiamo analizzato quando e dove è presente la viscosità turbolenta del
modello σ-LES all'interno della sacca aneurismatica, misurando il rapporto
tra la viscosità turbolenta e quella molecolare. Da quest'ultima analisi si
evince che i modelli di turbolenza σ-LES sono attivi soprattutto durante la
fase di metà decelerazione e intorno al picco diastolico.

In�ne, abbiamo condotto un'analisi per il modello σ-statico ra�nando la
griglia di calcolo in una geometria arti�ciale di AAA appositamente costruita.
Si è osservato che il rapporto tra viscosità turbolenta e molecolare è più
grande per griglie più lasche, mentre invece risulta più piccolo per mesh più
�ni.

Durante il lavoro di tesi si è implementata la procedura di stabilizzazione
SUPG-PSPG fortemente consistente, nella libreria LIFEV C++. Questa
nuova versione di SUPG-PSPG mostra meno dissipazione numerica rispetto
alla versione precedente. Tutte le simulazioni numeriche sopracitate fanno
uso di questa nuova versione di SUPG-PSPG.

I risultati hanno dimostrato che i modelli di turbolenza σ-LES sono adatti
a descrivere gli e�etti di transizione alla turbolenza nella patologia dell'AAA
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Introduction

Mathematical and numerical modeling of the cardiovascular system is a re-
search topic that has attracted a remarkable interest from the mathematical
community. The driving motivation for such interest is the increasing impact
of cardiovascular diseases (CVD) in our lives. According to [95], CVD are
the major cause of death worldwide, leading to more than 17 million deaths
per year, a number that is expected to grow to more than 23 million by 2030.
In Europe, nowadays they correspond to nearly half of all deaths (47%).

There are many risk factors associated with CVD, like age, genetic factors,
high blood pressure, high cholesterol, obesity, diabetes, cigarette smoking,
high alcohol consumption, etc [96, 88].

In this thesis we focused on a speci�c category of these pathologies: the
Abdominal Aortic Aneurysm (AAA). Aneurysms are localized permanent
arterial dilatations due to disease or other complex processes that result in
the weakening of the arterial walls [88]. Although this complex vascular
disease forms in many blood vessels, it mainly appears in arteries, primarily
in the abdominal and thoracic portions of the aorta. Among these, fusiform
aneurysms1 are most commonly found in the abdominal portion of the aorta,
below the renal arteries and upstream of its bifurcation into the iliac arteries.
These are known as Abdominal Aortic Aneurysms (see Figure 0.3).

Smoking is the risk factor most strongly associated with AAA, followed
by age, hypertension, and atherosclerosis [98]. Sex and genetics also in�uence
aneurysm formation [97].

Several diagnostic imaging modalities are now available for detecting and
monitoring AAAs. Among these, there are computed tomography (CT) scan-
ning, magnetic resonance (MR) angiography. The disadvantages of using this
clinical technique are related to their cost and the use of ionizing radiation
and intravenous contrast media.

A localized aortic dilatation is clinically considered an aneurysm when
its maximal diameter is greater than 1.5 times the healthy diameter [87]. It

1Aneurysms are often classi�ed according to their shape. Fusiform aneurysms are
characterised by a bulge about the vessel centerline.
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Figure 0.3: Simple representation of an abdominal aortic aneurysm (picture
taken from www.njveinandlasercenter.com).

is important to note that generally only the maximum diameter is used as
a criterion for risk of rupture associated with an AAA. The length (or the
width) of an AAA, which is indicative of the size, is not taken into account.

The risk of complications resulting from surgery (in particular for old
people) are very high. This characteristic imposes an accurate assessment
of the risks versus bene�ts of an operation. Indeed, the various interven-
tions to treat this pathology are put in place only when the estimation of
the risk of aneurysm rupture exceed the risks associated with postoperative
complications.

Clinical studies have underlined that �uid dynamics plays an important
role in the determination of the causes of degradation and consequent defor-
mation and weakening of the arterial wall. To determine the risk of rupture,
the evaluation of how the e�ects of �uid dynamic phenomena a�ect the aortic
wall is necessary.

For this purpose, in recent years there was a growing interest in devel-
oping mathematical and computational models applied to the cardiovascular
system, mainly motivated by the fact that these computational models are
less invasive than in-vivo investigations, often more accurate and �exible than
in-vitro experiments and with no ethical and practical limitations. Indeed,
the computational blood �uid dynamics could lead to signi�cant advances in
prevention, diagnosis, as in the assessment of CVD progression, and thera-
pies, e.g. in surgical planning or in optimizing medical devices.

In this thesis we focus on the modeling and simulating blood �ow dy-
namics on AAA, using clinical data on blood velocity and medical images
provided by the Vascular Surgery Division, I.R.C.C.S. Ca' Granda Ospedale
Maggiore, Policlinico di Milano, Italy.

6



Blood �ow is normally laminar in healthy vascular vessels. A di�erent
situation occurs in pathological districts, where signi�cant transition to tur-
bulence e�ects could develop, often as a consequence of a change of the
geometry (as in AAA). In particular, due to the sudden change of geometric
shape and heart pulsatility, turbulence e�ects in AAA have been observed
in-vivo by means of the Echo-Color Doppler (ECD) technique [99]. Also in-
vitro experiments in idealized AAA have been set up to study the presence
of turbulence [100, 101, 103].

The presence of turbulence e�ects in AAA carries a signi�cant clinical im-
pact. In the initial phases of AAA development, turbulence interferes with
endothelial cells turnover, which is at the basis of atherosclerosis development
[13]. In the more advanced stages of AAA development, turbulence produces
increased wall shear stresses compared with laminar �ows, which may be
responsible for further aneurysm dilatation, since the abdominal aorta reg-
ulates its diameter to maintain the shear stress below a physiological value
[103]. Moreover, the increased shear stresses together with aortic wall vibra-
tion due to the large �uctuations, could damage the vessel wall, with possible
implications on aneurysm growth and rupture [91].

To date, there are several scienti�c studies with turbulence models on
ideal aneurysm geometries [104, 100, 19], but only few studies on real ge-
ometries, especially with Large Eddy Simulation (LES) turbulence models
[20].

The aim of this thesis is to asses the reliability of LES σ-models in a
speci�c hemodynamic scenario that is the AAA, where transitional to turbu-
lence should not be neglected. To achieve this result we compared di�erent
numerical simulations obtained by these LES models with a Direct Numerical
Simulation2. This comparison will be done in a real geometry of AAA.

2Obtained at high resolution without any turbulence model.
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Summary

The remaining part of this thesis is organized as follows:

I Turbulent �ows : in Chapter 1 we introduce the basic concepts of tur-
bulence, and we document the presence of turbulent �ows in hemody-
namics, focusing our attention on the AAA pathology.

II Mathematical models : in Chapter 2 we present the mathematical mod-
els used in this thesis. We discuss how we can model the blood �ow
dynamics and we present the Large Eddy Simulation turbulence models
used in this work: the σ-models (static and dynamic).

III Numerical methods : in Chapter 3 we a�ord the numerical discretization
of the equations with turbulence modeling, described in Chapter 2,
using the Finite Element Formulation. We also detail the SUPG-PSPG
stabilization related to the Finite Element formulation used.

IV Pre-processing and meshes building : in Chapter 4 we describe how
we have build the meshes, in a real geometry of AAA, for the LES
simulations. We present the method used to estimate the parameters
to build a suitable DNS by means of a viscous, linear, incompressible
and two-dimensional shear layer stability analysis.

V Numerical results : in Chapter 5 we validate the implemented LES
framework and we present and discuss numerical results obtained. In
particular we compare di�erent LES models in the real geometry of
AAA evaluating turbulent quantities and haemodynamic indexes. LES
numerical results are also compared with the DNS ones.
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Chapter 1

Turbulent �ows

Turbulence is ubiquitous in nature and handles a key role in many applica-
tions of our life. It is a fact that most �uid �ows are turbulent.

Turbulence appears almost everywhere: �ows in rivers, oceans, atmo-
sphere, solar wind, and interstellar medium (large scale examples); �ows
in pipes, pumps, turbines, combustion processes, in the wake of cars, air-
planes and trains (some technical examples). Circulatory and respiratory
systems show occasionally turbulent �ows (carotids, aneurysms, ascending
aorta, heart, pulmonary airway), too.

Despite the widespread occurrence of �uid �ow, the turbulence remains
one of the unsolved problems of classical mathematical physics. Turbulence
has been studied by many of the greatest physicists and mathematicians of
the 19th and 20th centuries, and yet we do not understand it in complete
detail.

1.1 Basic concepts of turbulence

The �rst issue in dealing with turbulence is to provide an adequate de�nition.
However, a turbulent �ow is often characterized by the following features [1]:

• highly random �uctuating velocity both in space and time;

• three-dimensional rotational �ow �eld, with complex vortical struc-
tures;

• large mixing capacity (both at large and small scales);

• strongly chaotic �ow, very sensible to the initial and boundary condi-
tions.

9



(a) Dyed water �ow. (b) Laminar(I) vs Turbulent(II).

Figure 1.1: Transition from laminar to turbulent �ow under di�erent veloc-
ities using a small stream of dyed water introduced into the center of clear
water �ow in a larger pipe (pictures taken from www.green-mechanic.com).

A �uid that is not turbulent, i.e. such that the velocity varies smoothly
in space and time, is known as a laminar �ow. At a �rst level, the state
of �uid motion can be described, introducing the dimensionless parameter,
called Reynolds number, Re, de�ned as

Re =
UL

ν
,

where U is the �ow velocity magnitude, L is the characteristic length, and ν
is the �uid kinematic viscosity.

The Reynolds number is a measure of the ratio between the inertial forces,
generated by the �ow velocity, and the viscous forces of the �uid. Thus, Re
can be used to discriminate between laminar and turbulent �ow. Namely:

1. for "low" Re, viscous forces dominate and we are in the viscous �uid
situation (Laminar Flow),

2. for "high" Re, inertial forces prevail and a slightly viscous �uid with
high velocity emerges (Turbulent Flow),

where "high" and "low" depend on the physical situation. For example, in a
pipe-�ow experiments, for Re less than 350, the �ow remain laminar, while
for Re greater then ∼ 2300, the �ow becomes turbulent (Figure 1.1b).

When Re is increasing we have roughly three regimes: Laminar, Transi-
tion to Chaos, Turbulence (Figure 1.1a).
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(a) Lorenz attractor (b) Turbulent signal

Figure 1.2: Chaotic features of turbulence (pictures taken from
www.umanot.com, www.vtchl.illinois.edu).

For "low" Re we are in Laminar Regime, where the �ow presents a very
simple behavior in time and space. As Re increases, a second regime, named
Transition to Chaos, may emerge. In this case, the �ow begins to oscillate
and becomes irregular (in space and time). For a critical Re, a Turbulence
regime arises. In that regime the velocity �eld contains a wide spectrum of
spatial and temporal frequencies.

In a turbulent �uid the velocity u(x, t) at a �xed point shows random
�uctuations with time (Figure 1.2b). On the other hand u(x, t) at a �xed
time presents random variations with space, too.

In 1960, Lorenz discovered the chaotic behavior of a simpli�ed system
of equations describing the two-dimensional �ow of �uid (Figure 1.2a). In-
deed, turbulence is a chaotic process: a small change in the initial conditions
u(x, t = 0) results in a large change in its time evolution, u(x, t > 0) (Figure
1.2).

Another important feature of turbulence is the presence of irregular ed-
dying motions when the vorticity, de�ned as

ω = ∇× u

is not zero. Usually, a turbulent �ow has a spectrum of eddy sizes and
contains coherent vortical motions, eddies, which occur at random locations
and at di�erent length scales.

A �rst schematic view of turbulence is the so called Richardson Cascade
[2] (due too Lewis Fry Richardson - R.F.L. - 1920). In this picture we can
ideally subdivide our complex turbulent �ow in "blobs", eddies, that decrease
in size from Large Scale (L.S.) to Small Scale (S.S.), see Figure 1.3a. Only at
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(a) Richardson cascade. (b) Energy cascade.

(c) Cantor Dust

Figure 1.3: (a) Richardson cascade, and (b) its representation as an energy
cascade [2]; (c) the famous Cantor dust [80], a fractal that looks very similar
to the Richardson cascade [3].

very short scale the viscosity can act and the dissipation (by molecular vis-
cosity) takes place. From this simple picture we can observe how turbulence
is a multiscale phenomena.

"Big whirls have little whirls
which feed on their velocity,

and little whirls have lesser whirls
and so on to viscosity."

cit. R.F.L.

In the last thirty years, there have been a lot of work focused on how
fractal geometries1 might be used to descrivbe turbulent �ows [3]. Indeed,
turbulent �ow can be viewed as an ensemble of fractal geometries [4]. Thus,
turbulence can be represented as a collection of a number of fractals each of
which is slightly di�erent (see, for example, 1.3c).

1A fractal is a geometric object with internal homothety: it repeats itself in the same
form on di�erent scales.
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Figure 1.4: K41 energy spectrum, E(k).

A �rst formal way to describe turbulence has been given by Kolmogorov in
1941 [5], whose theory (named K41) is based on four fundamental hypotheses:

1) the �ow is statistically stationary, homogeneous and isotropic2;

2) the dissipation rate ε does not tend to zero when Re → ∞ (there will
always be some dissipation due to ν - kinematic viscosity);

3) the existence of three energetic bands in consequence of Richardson
Cascade, where two scales are well separated by an intermediate one
(Figure 1.3b):

L.S. the integral scale (the Large Scale region) where the energy is
produced. This scale (with a typical scale length indicated by L)
is coupled with the mean �eld,

I.R. the intermediate scales (the Inertial Region) in which the energy
is transferred to the small scales by non-linear interactions and
without the action of viscosity or production of energy,

S.S. the dissipation region (the Small Scale) where the kinetic energy
is dissipated by the viscous e�ects. Furthermore, η is the Kol-
mogorov length scale which is associated to the smallest dissipa-
tive eddies;

2Stationary, homogeneous and isotropic �ows mean temporal, translational and rota-
tional (in space) symmetry, respectively.
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Figure 1.5: Jet of water initially axial symmetric, at Re = 2300. Note the
loss of stability and the rapid transition to turbulence. We can observe the
presence of large and small eddies [4].

4) All the statistical quantities depend on the dissipation rate, ε, on the
kinematic viscosity, ν, and on the separation distance between two
points in the �ow �eld, r (or k, if we are dealing with a quantity
described in the Fourier space3). Moreover, for su�ciently large scale
the statistical moments do not depend on ν.

Using these hypothesies we can derive one of the most important features
of K41: the kinetic energy, E, is transferred from large scales of motion to
the smaller ones (direct energy cascade, as shown in Figure 1.4):

E(ε, k) ∼ k−
5
3 ε

2
3 .

As a result of K41 theory, the separation between L.S. and S.S. (see, for
example, Figure 1.5) is

L

η
∼ O(Re

3
4 ). (1.1)

The fundamental �aw in Kolmogorov's theory lies in the fact that a turbu-
lent signal is intermittent ([4]). For example, the phenomena called Backscat-
ter, in which energy goes form small scales to larger scales (inverse cascade
of energy), was not mentioned in K41 and was discovered later on, observing
that a turbulent signal is an intermittent one ([4]).

3In the Fourier space the variable r is replaced by k ∼ 1
r , as in the kinetic energy

E(k, ε).
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Figure 1.6: Simpli�ed schematization of aneurysm (on the left) and of steno-
sis (on the right).

1.2 Turbulence in Hemodynamics

The study of blood �ow is called Hemodynamics. In the human cardiovascu-
lar system the blood �ow is usually laminar. Nonetheless, in [12] it has been
investigated the turbulence of blood �ow in glass models, which simulated
arterial bifurcations and the carotid siphon. The critical Reynold's numbers
for these models were found to be considerably below the generally accepted
value of pipe-�ow critical value, Re ∼ 2300.

Some cardiovascular districts in pathological conditions are character-
ized by complex geometries (bends, stenosis, bifurcations, aneurysm or areas
with an abrupt increase in diameter) and high blood velocity (see Figure
1.6). These two characteristics, combined with the heart �ow pulsatility, can
generate high frequency velocity �uctuations within the blood �ow, leading
to a transitional or turbulent �ow �eld [12].

During this transitional state, blood �ow does not exhibit the typical iner-
tial range scales of fully developed turbulent �ow. This means that the blood
�ow should be named as highly unsteady or chaotic �ow in some cases but
not strictly turbulent at all (surely not an isotropic, homogeneous, stationary
turbulence).

Turbulence can signi�cantly alter the e�ect that the �uid has on the ar-
terial walls, modifying hemodynamic indexes such as Wall Shear Stress. A
turbulent �ow is also considered to be more damaging to endothelial cells4

than laminar �ows [13, 14]. Moreover, turbulence increases the energy re-
quired to drive blood �ow since it develops friction. This means an increase
of the perfusion pressure5 required to drive a given �ow (see Figure 1.7).

4Endothelium refers to cells that line the interior surface of blood vessels. Endothelial
cells are involved in many aspects of vascular biology, including blood clotting, formation of
new blood vessels, vasoconstriction, and vasodilation (hence, the control of blood pressure).

5The resistance to �ow, R, o�ered by the blood vessel and its interactions with the
�owing blood, is related to the pressure di�erence, ∆P (sometimes called driving pressure

15



Figure 1.7: Pressure-�ow relationship (F = ∆P
R
.): turbulence increases the

perfusion pressure required to drive a given �ow. Alternatively, at a given
perfusion pressure, turbulence leads to a decrease in �ow (picture taken from
www.cvphysiology.com).

Turbulence generates sound waves (e.g., ejection murmurs, carotid bruits)
that can be heard with a stethoscope. Because higher velocities enhance tur-
bulence, murmurs intensify as �ow increases. Elevated cardiac outputs, even
across anatomically normal aortic valves, can cause physiological murmurs
because of turbulence. Recent studies have investigated transition to turbu-
lence in presence of pathologic conditions

• atherosclerotic carotids [15, 16, 17], (Figure 1.8),

• aneurysms [18, 19, 20], (Figure 1.10),

• hemodialysis treatment [21, 22],

but also in healthy conditions

• ascending aorta [23, 24], (Figure 1.9a),

• left ventricle [25, 26], (Figure 1.9b),

• pulmonary airway [27], (Figure 1.9c).

To understand how blood �ow is undergoing to this transition to turbu-
lence, we will explain, in the next Chapter, how we can model the blood �ow
and the turbulence e�ect in a �uid �ow using the LES approach.

or perfusion pressure), and the current of the blood �ow, F , by: R = ∆P
F (see Figure 1.7).
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Figure 1.8: Healthy and atheroslerotic catotid (pictures taken from
www.wikipedia.org).
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(a) Aorta. (b) Heart.

(c) Breathing.

Figure 1.9: Other examples of turbulent �ow in circulatory system and in pul-
monary airway (pictures taken from www.pedilung.com, www.slideshare.net,
www.thoughtco.com).
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Figure 1.10: Di�erent types of aneurysms (pictures taken from
www.stanfordhealthcare.org, www.steptohealth.com, www.cardiatis.com).

1.2.1 Turbulence in Abdominal Aortic Aneurysms

An aneurysm consists in the dilatation of the vessel wall (at least 50% of
the normal artery's diameter [87]) with formation of a bulge, mainly in aorta
and cerebral arteries, due to a loss of elastin resulting in a weakening of
the arterial wall. This process is usually gradual and distributed over years.
This dilatation makes the arterial wall thinner and weaker and so, prone to
rupture or dissection: 80−90% of ruptured abdominal aortic aneurysms and
45% of ruptured cerebral aneurysms result in death.

Aneurysms can be classi�ed in two groups according to the shape [88],
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[10]: fusiform aneurysm and saccular aneurysm (see Figure 1.10). In fusiform
aneurysm the dilation involves all the aortic segment, and it is more common
in abdominal aorta, in particular, abdominal aortic aneurysms (AAA) are
usually found in the segment of the aorta between the renal arteries and the
iliac bifurcation (see Figure 1.10). Saccular aneurysm, on the other hand,
is caused by a weakening of only one side of the artery wall resulting in a
spherical or balloon-like shape and can be found mainly in the arteries of the
cerebral circulation (see Figure 1.10).

The role of blood �uid-dynamics has been recognized to be crucial for
the development of these diseases [89, 90]. In particular, wall shear stresses,
i.e. the viscous/friction forces exerted by the blood on the wall vessel, al-
though about 100 times smaller in magnitude than pressure, regulate the
permeability of the wall and the loss of elastin, thus playing an important
role in aneurysm development [90] (see Figure 1.10). Although not deter-
mined mainly by wall shear stress, the rupture process may be in�uenced by
turbulence in the aneurysm, since the corresponding arterial wall vibration
may damage the structural components of the wall [91, 92].

In AAA there is a complex �uid dynamics, characterized by a disturbed
�ow, vortices, recirculation regions, back�ow and possible transition to tur-
bulence. The e�ects of transition to turbulence in AAA is related to the
heart pulsatility and the sudden change of diameter of the vessels [20].

For these reasons, the inclusion of turbulence e�ects is mandatory for a
computational study of blood dynamics in AAA and for an accurate descrip-
tion of the aneurysm evolution [19]. A particularly important motivation for
a numerical investigation of AAA is to better evaluate the risk of rupture.
In clinical practice, the current parameter used to evaluate the probability
of rupture is the aneurysm diameter: patients with an aneurysm diameter
of ∼ 5 cm are considered for elective repair [19]. This estimation is a too
rough approximation of the risk of rupture derived from the Law of Laplace
that states that the wall tension in a sphere is proportional to the radius.
However, some studies found that there is no signi�cant correlation between
tensile strength or rupture probability and diameter [93, 44] and the main
reason is that the shape of an aneurysm is signi�cantly di�erent from a
sphere. So, the probability of rupture depends also on the local strength of
the AAA wall. Moreover, AAA are mostly present in men and women older
than 65 year [94] and there is also high risk of complication caused by a
surgical intervention.

For all these reasons, a somewhat more precise evaluation of the risk of
rupture against the risk of surgical complication is mandatory for this disease.
This can be achieved by a mathematical modeling of the problem.
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Chapter 2

Mathematical models

2.1 Blood �ow modeling

Blood �ow refers to the movement of blood through a vessel, tissue, or organ.
It is initiated by the contraction of the ventricles of the heart. Ventricular
contraction ejects blood into the major arteries, resulting in �ow from regions
of higher pressure to regions of lower pressure, as blood encounters smaller
arteries and arterioles, then capillaries, then the venules and veins of the
venous system (see Figure 2.1).

Blood is made by plasma (about 55% of its total volume) in which cellular
elements are suspended. Plasma is an aqueous solution mainly composed
by water, 92% by volume. The cellular part [82, 83, 84] is composed by
platelets, white blood cells and red blood cells1. Nearly half of the blood's
volume (40% to 45%) is red blood cells. For this reason, they are the most
important factor for the mechanical properties of blood. In particular, the
slight compressibility of the blood is due to the presence of red blood cells.
However, in many situations (e.g. in the abdominal aorta) the changes in
pressure and temperature are su�ciently small that the changes in density
are negligible. So, we can assume the blood as an incompressible �uid [9].

The diameter of blood cells is approximately 10−3 cm, whereas that of
the arteries/veins is about 10−1 cm. In particular, the vessel for medium and
large vessels diameters have a dimension of some millimeters in the case of
coronaries, up to some centimeter in the case of the aorta. Hence, because
the di�erece between the blood cells and the arteries is more than two order
of magnitude, we can consider the blood as Newtonian, i.e. characterized

1The main function of platelets is to stop bleeding blood vessel damages. White blood
cells are involved in protecting the organism from infections. Red blood cells deliver oxygen
to the body tissues via blood �ow through the circulatory system.
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Figure 2.1: The human circulatory system (simpli�ed). Red indi-
cates oxygenated blood carried in arteries, blue indicates deoxygenated
blood carried in veins (pictures taken from www.interactive-biology.com,
www.ainuna.com).

by a linear relationship between internal forces and velocity gradients [10]
[85]. In particular, a Newtonian �uid is a �uid where viscosity does not
depend on the velocity. However, in the smallest arteries, such as coronaries
in presence of a vessel narrowing (stenosis), a non-Newtonian blood is more
appropriately assumed [86].

For all the reasons mentioned above, blood is modeled as a constant
density, Newtonian and homogeneous �uid, a well accepted hypothesis for
medium and large vessels [8, 9, 10]. As a consequence, blood �uid dynamics
in large vessels (like the abdominal aorta) is modeled by the incompressible
Navier-Stokes equations for a Newtonian �uid. In particular, in the abdom-
inal aorta, the incompressibility approximation is supported by the size of
blood cells that presents a di�erence of about three order of magnitude from
aortic diameter.

The most suitable way to model blood �ow dynamics is to take into
account the interaction with the vessel wall. In fact, there is a signi�cant
energy exchange between the vessel and the �uid at the interface. This
interconnection is described by a coupled problem, named Fluid-Structure-
Interaction (FSI), which leads to a very complex non-linear system of Partial
Di�erential Equations (PDE). In this thesis, we make the assumption of
vessels rigid wall, because our primarily aim is to study and compare di�erent
turbulence models able to describe turbulent and transitional phenomena in
AAA. We stress that however a FSI simulations could increase the accuracy
of the results obtained in this thesis.
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Figure 2.2: Choices of the Dirichlet (Γin∪Γwall) and Neumann (Γouts) bound-
aries for a carotid domain (Ω) in the �uid stand-alone problem (reconstructed
from Magnetic Resonance Angiography, MRA, images). Picture taken from
[55].

Let's consider the hemodynamic problem concerning a portion of blood
vessel which is part of an entire cardiovascular system (Figure 2.1).

Let Ω ⊂ R3 be the spatial blood �uid vessel domain with a smooth
boundary ∂Ω ≡ Γ, where Γ = ΓN ∪ ΓD, with ΓD = Γin ∪ Γwall the subset
of Γ in which the essential (Dirichlet) boundary conditions are set, while
ΓN = Γouts the portion of the boundary where natural (Neumann) boundary
conditions have been considered. Moreover, ΓN = Γ\ΓD, and Γ̊N ∩ Γ̊D = ∅
(see Figure 2.2).

Introducing an unknown velocity �eld u(x, t) : Ω × [0, T ] → R3 and an
unknown pressure �eld p(x, t) : Ω × [0, T ] → R, in absence of body forces2,
the NS equations for an incompressible �uid read

∂u

∂t
+ (u · ∇)u− 1

ρ
∇ · σ(u, p) = 0 in Ω× (0, T ] , (2.1a)

∇ · u = 0 in Ω× (0, T ] , (2.1b)

u = g on ΓD × (0, T ] , (2.1c)

σ(u, p)n̂ = h on ΓN × (0, T ], (2.1d)

u(x, 0) = u0(x) in Ω× {0} , (2.1e)

2Blood �ow to all parts of the body is primarily regulated by blood pressure. Arterial
blood pressure outweighs gravitational �uid force.
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where n̂ is the outward directed unit normal vector to ΓN , σ is the Cauchy
stress tensor, ρ is the �uid density, and ∇ and ∇· are the usual gradient and
divergence operators. The functions g and h indicate suitable Dirichlet and
Neumann data, respectively, while u0 is the known initial �eld solution at
time t = 0.

For a Newtonian �uid, the Cauchy stress tensor σ depends linearly on
the components of the strain rate tensor:

σ(u, p) = −pI + 2µS(u),

where µ is the dynamic viscosity of the �uid (taken to be a known constant)
and I is the second order identity tensor, while S(u) is the strain rate tensor

S(u) =
1

2

[
∇u + (∇u)T

]
.

We recall that the �rst equation (2.1a) represents the balance of mo-
mentum and the second one (2.1b) the conservation of the mass, also called
continuity equation (or incompressible constraint). Equations (2.1c), (2.1d),
and (2.1e) guarantee the well posedness of the problem3. Vectorial functions
u0, g, and h are assigned.

Because the blood vessel domain Ω is a portion of the entire circulatory
sistem (Figure 2.1), it is appropriate to simulate the blood �ow not as an
isolated system. In hemodynamics, it is a common practice to impose a
velocity pro�le, uin, at the inlet, Γin, �tting an experimental measured �ow
rate Qin [11]:

u = uin(Qin) on Γin × (0, T ] .

Thanks to the rigid wall hypothesis, we impose a null velocity on the
vessel wall, Γwall:

u = 0 on Γwall × (0, T ] .

At the outlets, Γouts, because of the incompressibility constraint (2.1b), we
impose a zero-traction condition (homogeneous Neumann boundary condi-
tion)4:

σ(u, p)n̂ = 0 on Γouts × (0, T ] .

3In the 2-D case, the NS equations, with initial and boundary conditions, give rise to
well posed problem (see [81]): solutions with continuous derivatives, and without singu-
larities in time, for regular data. Instead, in the 3-D case existence and uniqueness have
only been demonstrated for small time.

4We will see later on that on the outlets we do not really set a Neumann boundary
condition but a Robin non linear condition related to the Back�ow stabilization.
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In the next Chapter we will see more in detail the imposed boundary
conditions for our speci�c case (AAA).

So, the general hemodynamic mathematical problem we want to solve is:

Find, ∀t ∈ (0, T ], velocity u(x, t) and pressure p(x, t) such that:

∂u

∂t
+ (u · ∇)u +∇p̂− 2ν∇ · S(u) = 0 in Ω× (0, T ] , (2.2a)

∇ · u = 0 in Ω× (0, T ] , (2.2b)

u = uin(Qin) on Γin × (0, T ] , (2.2c)

(−p̂I + 2νS(u)) n̂ = 0 on Γouts × (0, T ] , (2.2d)

u = 0 on Γwall × (0, T ] , (2.2e)

u(x, 0) = u0(x) in Ω× {0} , (2.2f)

where, ν = µ
ρ
is the kinematic viscosity, and the pressure is rescaled by ρ,

p̂ = p
ρ
. However, for the sake of clearness, we will neglect the hat on pressure

variable in what follows. Equations (2.2) are the strong formulation of the
incompressible Navier-Stokes equations for a constant density, Newtonian
and homogeneous �uid (see Figure 2.2).

We note that in the strong formulation, due to incompressibility con-
straint (2.2b), we have the equivalence

2ν∇ · S(u) = ν∆u.

However, this equivalence is no longer valid for what concern the boundary
conditions, because the (2.2d) is the correct way to impose the normal stress
tensor on the Neumann boundary.

Observing the (2.2a), we can say that the Reynolds number tells us how
important is the non linear term, (u ·∇)u, compared to the dissipative term,
ν∆u:

(u · ∇)u

ν∆u
≈

U2

L

ν U
L2

=
UL

ν
= Re.
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(a) DNS not feasible (b) DNS feasible.

Figure 2.3: Schematic representation of Direct Numerical Simulations for
"very high" Re (a) and "not too high" Re (b).

2.2 Turbulence modeling

If we want to completely capture a statistically homogeneous and isotropic
turbulent �uid �ow motion, we have to solve (numerically) the Navier-Stokes
equations which, as mentioned before, describe the �uid �ow. To accomplish
this task, we have to discretize these equations in space and time capturing
all the scales associated to our problem, including the smallest scales. We
will describe this discretization process in detail in Chapter 3. In this Section
we want only to justify the introduction of turbulence model which is strictly
related to numerical discretization.

For a 3D turbulence, assuming that L is equal to the dimension of the
domain (for example, in a cube of side equal to L), the relation (1.1) implies

Nd.o.f =

[
L

η

]3

∼ O(Re
9
4 ),

where Nd.o.f indicates the number of degree of freedom - d.o.f5. This means

that we need O(Re
9
4 ) d.o.f. to represent all the scales. Namely, for Re ∼ 106

we need ten thousand of billions of mesh points

Nd.o.f ∼ O(Re
9
4 ) ∼ 1013.

5The Nd.o.f , at numerical level, is the �nite dimension of the discretized NS solution.
In particular we have di�erent number of d.o.f. for pressure and velocity (for details, see
Section 3.2.1).
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(a) LES methods. (b) RANS methods.

Figure 2.4: LES versus RANS approach.

Moreover, the evolution of the smallest eddies is very small itself and can be
derived in K41 from

tL
tη
∼ O(Re

1
2 ),

where tL and tη are respectively the typical time evolution of the L.S. and
S.S. eddies (see Figure 1.5).

For these reasons, the computation of very high Reynolds number �ows
resolving all the physical scales of the �ow (Direct Numerical Simulation,
DNS), is prohibitive (see Figure 2.3a). Anyway, for Re not "too" high the
DNS can be done using a lot of computational resources (see, Figure 2.3b).

In order to �nd another way to fully describe turbulent �ows, we need to
�nd some turbulence modeling allowing to reduce the computational cost by
the introduction of a coarser description of the �ow (i.e. reducing the Nd.o.f.

of the discretized NS equations).
Two are the widely used approaches of turbulence modeling:

A: to compute only the averaged �ow �eld (Figure 2.4b). This approach
is called Reynolds Averaged Navier Stokes, or RANS [6];

B: to compute only the largest spatial scales of the �ow, and suitably
model the small scales (Figure 2.4a). This approach is named Large
Eddy Simulation, or LES [7].
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Using RANS methods, we are not interested in describing exactly the
velocity �ow �eld at every scale and at every time. RANS equations are
averaged equations of motion for �uid �ow. The idea behind RANS is
the Reynolds decomposition, whereby the instantaneous velocity �ow �eld,
u(x, t) is decomposed into its averaged, u, and �uctuating quantities u′

u(x, t) = u(x) + u′(x, t).

The RANS equations are derived inserting the Reynolds decomposition into
the NS equations.

The second approach is based on LES methods, which resolve the largest
spatial scales of the �ow, corresponding to low-frequency modes, and model
the smallest (unresolved) scales. The idea behind the LES methods is a
�ltering procedure (with a low frequency pass �lter) in which the velocity �eld
u(x, t) is decomposed into its �ltered quantity, u, and �uctuating quantities
u′

u(x, t) = u(x, t) + u′(x, t).

The LES equations are derived inserting this decomposition into the NS
equations.

Although the equations produced by both RANS and LES methods look
very similar, there is an important di�erence between RANS and LES ap-
proaches. The LES methods will tend to the DNS with the mesh grid re�ne-
ment6, while, in any RANS method it does not make any sense to use a �ner
grid as soon as we are resolving the average �ow �eld.

In this thesis, we chose the LES approch [7]. In particular, we used the so
called σ-models (static and dynamic) [30] [38], whose details will be described
in the next Section.

6We will highlight this property of LES methods in the next Section.
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2.3 Large Eddy Simulation

The Direct Numerical Simulation (DNS) of turbulent �ows requires the full
representation of the whole range of spatial and temporal turbulent scales at
the discrete level [1, 28, 29].

The Large Eddy Simulation (LES) is a turbulence modeling approach
which strongly reduces the computational cost with respect to a DNS. In
fact, in the LES approaches [1, 7, 30] only the "large scales" of the �ow �eld
are fully represented and resolved at the discrete level, while the e�ect of the
"small" unresolved scales is taken into account by means of suitable models
based on the resolved scales. This is the reason why the computational costs
of LES is more a�ordable with respect to a DNS.

The steps to perform a LES are:

1. separation of the small (unresolved) scales from the large (resolved)
scales by a �ltering procedure;

2. modelization of the interaction between the removed smaller scales and
the larger ones. In particular, we consider models able to include their
e�ects on the larger scales, obtaining the modeled �ltered Navier Stokes
equations;

3. solution of the resulting �ltered Navier Stokes equations.

2.3.1 Filtering procedure

Scales are separated by applying a high-pass �lter in the physical space, i.e.
low-pass in the frequency one. This �ltering is represented in physical space
as a convolution product.

Let us de�ne the generic �ltered quantity f(x, t) as

f(x, t) =

∫
Ω

G∆(r,x)f(x− r, t)d3r, (2.3)

which is a convolution of the generic variable f with the �lter function G
(with a given length ∆), resulting in a �ltered variable f .

We can de�ne the �uctuating part, f ′, of the quantity f as

f ′(x, t) = f(x, t)− f(x, t).

Hence, G∆(r,x) is the low pass �lter that take away all the high frequen-
cies modes of the generic variable f(x, t), which are the �uctuating quantity
f ′(x, t).
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(a) Sharp cut o� �lter. (b) Box �lter.

Figure 2.5: Di�erent types of �lter functions for �ltering procedure.

Filtering operation commute with time derivative

∂f

∂t
=
∂f

∂t

because we are assuming that the �lter G∆(r,x) does not depend on time.
Moreover, we have the property of linearity and constant conservation

f + g = f + g , cf = cf.

Filtering operation does not always commutes with space derivative because
G∆(r,x) depends on x. Filtering operation and space derivative commute
if and only if the �lter function G∆ = G∆(r) does not depend on x, which
means that the G∆ is an homogeneous �lter

∂f

∂xi
=
∂f

∂xi
⇐⇒ G∆ = G∆(r).

For now on, we will assume that the �lter function is homogeneous. More-
over, for the sake of easier analysis, we also assume that our �lter G∆ is also
isotropic, which means that its dependence on r is just through the magni-
tude r = ‖r‖.

Since the �ltering operation is a convolution, for an homogeneous G∆(r),
the spatial Fourier transform of equation (2.3) is

f̂(k) = Ĝ∆̂(k)f̂(k),

where f̂ indicates the Fourier transform of the quantity f , f̂ = FT (f), and

∆̂ represents the �lter width in the Fourier space.
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(a) Physical space. (b) Fourier space.

Figure 2.6: Filtering procedure in Physical and Fourier space. Pictures taken
from [69].

In general the �ltered �uctuation is not zero because it depends on the
�lter G∆. This means that if we �lter two times the function f we will not
get the same quantity

f ′ 6= 0 =⇒ f 6= f.

The �ltered �uctuation is zero only ifG∆ is a sharp cuto� �lter (see Figure
2.5a) which is also an homogeneous �lter. In fact, the Fourier transform of
a sharp cuto� o� �lter is the Heaviside function (Figure 2.5b)

G(r) =
sin(1

2
r∆)

1
2
r∆

=⇒ Ĝ(k) = H

(
π

∆̂
− k
)
.

Hence, due to the fact that for a sharp cuto� �lter ĜĜ = Ĝ, we have

f̂ = ĜĜf̂ = Ĝf̂ = f̂ ,

from which, doing the inverse Fourier transform of both members, we arrive
at

f = f =⇒ f ′ = 0.

The quantity ∆̂ represents the cuto� length. This means that, in doing
the �ltering procedure, we get only the scales (or low spatial frequencies)
|k| < π

∆̂
(see Figure 2.6b)).
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2.4 Filtered Navier-Stokes equations

LES models are based on the decomposition of the �uid unknowns in resolved
and unresolved quantities, [u, p] and [u′, p′], respectively, so that

u = u + u′ , p = p+ p′.

The resolved quantities are referred to as �ltered [32], since a �ltering oper-
ation is performed over the �uid equations.

In order to derive a set of equations for u and p, a formal �ltering proce-
dure is performed over the Navier-Stokes equations (2.2), obtaining

∂u

∂t
+ (u · ∇)u +∇p− 2ν∇ · S(u) = 0 in Ω× (0, T ] ,

∇ · u = 0 in Ω× (0, T ] .

Exploiting the commutative property with time and spatial derivatives for
an homogeneous �lter, we obtain

∂u

∂t
+ (u · ∇)u +∇p− 2ν∇ · S(u) = 0 in Ω× (0, T ] , (2.4a)

∇ · u = 0 in Ω× (0, T ] , (2.4b)

where we stress that the non linear term (u · ∇)u cannot be expressed in
term of the �ltered quantities u and p. Indeed, the �ltered non-linear term
can be written in components as(

(u · ∇)u
)
i

=
3∑
j=1

uj
∂ui
∂xj

=
3∑
j=1

∂ uiuj
∂xj

, (2.5)

where we have used the homogeneous �lter commutation property and also
the incompressibility constraint 7. By adding and subtracting the term ui uj
inside (2.5) we obtain

(
(u · ∇)u

)
i

=
3∑
j=1

∂ uiuj − ui uj
∂xj

+
3∑
j=1

∂ ui uj
∂xj

=

= [∇ · (u ⊗ u− u ⊗ u)]i + [(u · ∇)u]i ,

7The incompressibility constraint can be written in component as:

∇ · u =
∑
i

∂ui
∂xi

= 0 =⇒
∑
j

uj
∂ui
∂xj

=
∑
j

∂uiuj
∂xj

.
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where we have introduced the tensor product operator (u ⊗ v)ij = uivj.
De�ning the subgrid scale stress tensor τ sgsij as

τ sgsij = (u ⊗ u− u ⊗ u)ij = uiuj − ui uj,

we can rewrite equations (2.4) as follows

∂u

∂t
+ (u · ∇)u +∇p− 2ν∇ · S(u) +∇ · τ sgs = 0 in Ω× (0, T ] , (2.6a)

∇ · u = 0 in Ω× (0, T ] . (2.6b)

The subgrid scale stress tensor τ sgs should contain the e�ect of the small
(unresolved) scales over the large (resolved) scales. The modeling problem
regards a suitable choice for τ sgs: this is addressed as the turbulence closure
problem. The choice of how to model this term, τ sgs, leads to di�erent LES
models.

We do not need to model the complete tensor τ sgs, but its enough to
consider only the deviatoric part

τ sgsd = τ sgs − 1

3
Tr(τ sgs)I,

where Tr is the trace operator de�ned as Tr(A) =
∑

iAii. This is because
the tensor τ sgs enters in the equation (2.6a) as

∇ · τ sgs = ∇ · τ sgsd +∇Π,

where Π = 1
3
Tr(τ sgs). Hence, we can add the isotropic part of the subgrid

scale stress tensor to the �ltered pressure, de�ning a modi�ed pressure

P = p+ Π.

The resulting �ltered Navier-Stokes equations, for a general hemodynamic
problem (2.2), are

∂u

∂t
+ (u · ∇)u +∇P − 2ν∇ · S(u) +∇ · τ sgsd = 0 in Ω× (0, T ] , (2.7a)

∇ · u = 0 in Ω× (0, T ] , (2.7b)

u = uin(Qin) on Γin × (0, T ] , (2.7c)(
−P I + 2νS(u)− τ sgsd

)
n̂ = 0 on Γouts × (0, T ] , (2.7d)

u = 0 on Γwall × (0, T ] , (2.7e)

u(x, 0) = u0(x) in Ω× {0} . (2.7f)
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A special remark should be highlighted for what concerns the boundary
conditions. Indeed, often LES models are written for unbounded domains (in
practice, with periodic boundary conditions). However, we can reasonably
assume that the boundary conditions in the �ltered equations are the same as
those of the un�ltered problem. In particular, we have added the deviatoric
tensor τ sgsd into the Neumann boundary condition because it represents the
contribution of the subgrid (unresolved) scales on traction. This is consistent
with the fact that the Neumann condition is the "natural" condition [17].

2.5 Eddy viscosity models

The �rst idea of turbulent eddy viscosity was made by Boussinesq (1877).
The concept behind the eddy viscosity model is based on the following hy-
pothesis [7]:

HP "The energy transfer mechanism from the resolved to the subgrid scales
is analogous to the molecular mechanisms represented by the di�usion
term (in which the viscosity ν appears)."

According to this hypothesis, we made an analogy with the kinetic theory of
gases, in which the molecular agitation draws energy from the �ow thanks to
molecular viscosity. In the same way, the energy cascade mechanism can be
modeled by a term with a similar mathematical structure of the molecular
di�usion term

τ sgsd = −2νsgs(u)S(u), (2.8)

where the subgrid scale viscosity have been introduced, νsgs(u).
Inserting the model expression (2.8) in the �ltered momentum equation

of NS (2.7a), we have

∂u

∂t
+ (u · ∇)u +∇P − 2(ν + νsgs(u))∇ · S(u) = 0 in Ω× (0, T ] .

Hence in eddy viscosity models the overall e�ect of turbulence modeling is
to add to the viscous molecular kinematic coe�cient ν a new viscosity νsgs

νeff = ν + νsgs.

To explain and understand this new term, we can make an analogy be-
tween the turbulent viscosity term, νsgs, and the molecular viscosity, ν. First
of all, we recall that the total stress tensor for the molecular viscosity is

σ = 2νS− pI =⇒ −∇ · σ = −2ν∇ · S +∇p.
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At molecular level there are �uctuations through the molecules which produce
a stress tensor σ. In the cascade of energy most of the velocity �uctuations
are present at small scales. Hence, we can imagine that small scales are
composed by individual eddies in which velocity �uctuates randomly. Simi-
larly to molecules �uctuation, we can make an analogy between the random
motion of molecules and the �uctuations of these eddies. Therefore, we can
write an expression for the subgrid viscosity analogous to the molecular one

ε := 2νsgsS− ΠI =⇒ −∇ · ε = −2νsgs∇ · S +∇Π.

Since Π = 1
3
Tr(τ sgs), and τ sgsd = −2νsgs(u)S, we obtained the same

terms we have in (2.7a) due to the subgrid scale stress tensor. We underline
that this is only an analogy and it is not a formal concept.

Eddy viscosity models assume an alignment between the resolved strain
rate tensor S and the deviatoric part of subgrid stress tensor τ sgsd , due to
their direct proportionality. However it has been shown that this alignment
is not physical [33, 34, 35]. Nonetheless, the eddy viscosity models have been
widely used because of the easy computational implementation.

Di�erent choices of νsgs(u) lead to di�erent eddy viscosity models. The
�rst eddy viscosity model was proposed by Smagorinsky (1963) and it is
based on the following choice [36]

νsgs = νsmagsgs = CS∆
2|S(u)|,

where, ∆ is the �lter width, |S(u)| =
√

2S(u) : S(u) (in which ":" is the
operator such that A : B =

∑
ij AijBij, for two generic tensor A and B),

and the value of CS, named the Smagorinsky costant, has to be suitably
chosen [31, 37].

The Smagorinky model has the nice feature to vanish for pure rotations,
but it does not vanish in near-wall regions and for pure shear [38]. Moreover,
it is too dissipative in laminar regions [39]. It has been used in several works
for the analysis of the �uid-dynamics in stenotic vessels, see [17, 40, 41, 42,
43].
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2.5.1 Static Sigma model

The eddy viscosity model considered in this thesis is the σ−model [38]. This
model is based on the introduction of the singular values of the gradient of
velocity ∇u8

σi =
√
eig[(∇u)T∇u], i = 1, 2, 3,

where
σ1(x, t) ≥ σ2(x, t) ≥ σ3(x, t) > 0,

are used to build the subgrid-scale viscosity as

νsgs = νσsgs = Cσ∆
2
[
σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

]
,

where Cσ is a suitable constant.
The σ-model vanishes for both pure rotation, like Smagorinsky model,

and pure shear, since σ3 is zero for a two dimensional �ow (such as a pure
rotation). The term νσsgs vanishes also when the resolved scales are in ax-
isymmetric or isotropic con�guration due to the fact that σ2 = σ1 or σ3 = σ1

in case of a axisymmetric con�guration, and σ2 = σ1 = σ3 in case of isotropy.
Moreover, the turbulent stresses decay as the distance to the solid boundary.

All these features make the σ-model suitable to simulate �uid �ow in the
presence of shear layers (as it happens in our case). For this reason it has
also been successfully used in other cardiovascular applications [17, 20, 44].
For example, in [26] the σ-model was successfully applied to describe the
ventricular blood �uid-dynamics.

The σ-model is characterized by the choice a priori of the constant Cσ
appearing in the subgrid scale tensor model. We refer to static σ-model when
the parameter Cσ is �xed to a constant value during the simulation.

8We recall that the singular values of a matrix A ∈ Rm×n, are de�ned as the square
root of the eigenvalues of the matrix ATA

σi =
√
eig(ATA) i = 1, ..., n.

36



Figure 2.7: Filters involved in the Germano dynamic procedure. Picture
taken from [4]

2.5.2 Dynamic Sigma model

In this thesis, besides the use of static σ-model, we also considered the dy-
namic procedure in which Cσ is not prescribed at the beginning but computed
during the simulation: here we refer to dynamic σ-model.

Many LES models (Smagorinsky and σ-model) are characterized by the
choice of the constant C appearing in the subgrid scale tensor.

The dynamic procedure, introduced in [39, 45, 46], is an e�ective way to
provide an estimation of this constant C. It is based on the Germano identity
to automatically compute the constant.

The Germano dynamic procedure introduces a second �lter, besides the
one associated to the mesh, known as the test �lter (hereafter indicated as

(̃.)), which acts on a larger scale (see Figure 2.7b).
The test �lter is applied to the �ltered momentum equation (2.7) obtain-

ing

∂ũ

∂t
+ (ũ · ∇)ũ +∇P̃ − 2ν∇ · S(ũ) +∇ · Ld = 0 in Ω× (0, T ] , (2.9)

where Ld, in analogy with τ sgsd in (2.7a), is the deviatoric part of the resolved
stress tensor L de�ned by

L = ũ⊗ u− ũ⊗ ũ, (2.10)

and the characteristic test �lter width, ∆̃, is such that ∆̃ > ∆9 (with the

9We recall that we are considering an isotropic homogeneous sharp cuto� �lter. So, in

case of ∆̃ > ∆ which means π

∆̃
< π

∆
we could use the properties f̃(u) = f̃(u) and ũ = ũ.
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optimal value ∆̃ = 2∆ [39]).
Alternatively, we could apply directly the two �lters sequentially to the

non �ltered momentum equation (2.2a) obtaining

∂ũ

∂t
+ (ũ · ∇)ũ +∇P̃ − 2ν∇ · S(ũ) +∇ ·Td = 0 in Ω× (0, T ] , (2.11)

where, as usual, Td is the deviatoric part of the subgrid scale tensor T,
named subtest stress tensor, de�ned by

T = ũ⊗ u− ũ⊗ ũ. (2.12)

We recall that the subgrid stress tensor is

τ sgs = u ⊗ u− u ⊗ u. (2.13)

By a direct comparison of (2.10), (2.12) and (2.13) we derive the so called
Germano identity which is the base of the dynamic procedure

L = T− τ̃ sgs.

Let us now rewrite in a more compact form the modeled deviatoric part
of the subgrid stress tensor appearing in the σ-model

τ sgsd = −2Cσ∆
2
β(u)S(u),

where we have introduced β(u) = σ3(σ1−σ2)(σ2−σ3)

σ2
1

(u). We can use the same

model also for the deviatoric part of the subgrid tensor T

Td = −2Cσ∆̃2β(ũ)S(ũ),

where we have made the assumption that the constant Cσ does not depend
on the �lter width.

By expliciting the Germano identity for the deviatoric part of L we obtain

Ld = Td − τ̃ sgsd = CσM, (2.14)

where M = 2(∆
2
β(u)S(u) − ∆̃2β(ũ)S(ũ)). Because tensors Ld and M are

both computable, since they depend on u, we have found a way to prescribe
the constant Cσ. The identity (2.14) must be ful�lled for all tensor compo-
nents

T dij = CσMij ∀ i, j.
Whereas, both tensors Td and M are symmetric and with null trace, we
have to solve �ve equations with one unknown. Hence, (2.14) cannot be
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chosen to match the �ve independent components of the tensors. Applying
a least-square minimization (as proposed by Lilly [46])

Cσ s.t.
d

dC

{
[Ldij − CMij][L

d
ij − CMij]

} ∣∣
C=Cσ

= 0,

we obtained the following result

Cσ(x, t) =

∑
ijMijL

d
ij∑

ijMijMij

,

where Cσ is now a function of space and time.
The computed constant Cσ has the following properties:

• it can take negative values (i.e. an anti-dissipative e�ect is taken into
account locally). This characteristic is often interpreted as a backscat-
ter modeling energy cascade (the energy transfers from the smaller
modeled scales to the larger resolved ones);

• it is not bounded.

These two properties potentially represent drawbacks for the stability of
the simulation as shown in [46, 47]. To avoid numerical instabilities, we
can statistically average Cσ in time or locally in space [47]. Moreover, we
can limit the value of Cσ using arbitrary bounds [47] (procedure known as
clipping) to ensure that

I νeff = ν + νsgs ≥ 0;

II |Cσ| ≤ Cσ,max.

Condition I is a constraint on the total resolved dissipation positiveness,
while condition II �xes a maximum value on |Cσ|.

Notice that neither problem (2.9) nor (2.11) are explicitly solved. Thus,
most of the computational e�ort of the dynamic LES model remain the so-
lution of the NS problem (2.7).
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2.6 Grid �ltering and test �lter

The framework of homogeneous isotropic �lters is the one in which subgrid
modeling, detailed in Section 2.4, has been developed.

We recall that homogeneous means that the �lter is characterized by a
constant cuto� scale in all directions of space, and isotropic means that �lter
properties are independent of the position and orientation of the frame of
reference in space.

However, the use of homogeneous isotropic �lters is unpractical in real
applications, where the �uid domain is bounded. Hence, we need �lters that
are local in space in order to take the boundaries into account.

Anyway, the �ltering procedure is not performed explicitly because the
�elds u and p, being the solution, are not known. Therefore, the application
of the �lter is only formal.

In this thesis, we considered an implicit �ltering procedure, given by the
solution of the �uid equations on a mesh10 (named grid �ltering). Therefore,
∆ represents the size of the mesh. This empirical choice was �rst proposed by
Deardor� [31] and it is the most widely used today. Therefore, the ∆ �lter,
the computational mesh, made a sort of spatial "sampling" of the variable
up to a certain scale. This is similar to a cuto� �lter that eliminates the
higher spatial frequencies (see Figure 2.6a).

To obtain the expression of an e�ective constant Cσ in the dynamic pro-
cedure (see Section 2.5.2) we have used the so called test �lter, fully detailed
in [48]. In particular, this �lter is based on

i) computing the average velocity w of the grid-�ltered velocity u in each
mesh element (tetrahedra in our case),

ii) assigning to each node xi of the mesh the velocity �eld ũ obtained by
averaging the values w related to the tetrahedra that share xi. The
characteristic length ∆̃ related to this geometric �lter is equal to the
cubic roots of the sum of the volumes of the tetrahedron sharing the
node xi.

10We will detail the process of meshes building in Chapter 5.
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Chapter 3

Numerical methods

We use the �nite element method (FEM) to numerically solve the Navier-
Stokes equations. For the sake of exposition, we report again the strong
formulation of the modeled �ltered Navier-Stokes equations for a general
hemodynamic problem (2.7):

Find velocity u and pressure p such that

∂u

∂t
+ (u · ∇)u +∇p− 2ν∇ · S(u) +∇ · τ sgsd = 0 in Ω× (0, T ] , (3.1a)

∇ · u = 0 in Ω× (0, T ] , (3.1b)

u = uin(Qin) on Γin × (0, T ] , (3.1c)

(−pI + 2νS(u)− τ sgsd ) n̂ = 0 on Γouts × (0, T ] , (3.1d)

u = 0 on Γwall × (0, T ] , (3.1e)

u(x, 0) = u0(x) in Ω× {0} , (3.1f)

where, for the sake of clearness, we neglected the �ltering operation in the
rest of this Section. In addition, for the LES σ-model we have

τ sgsd (u) = −2νσsgs(u)S(u),

νσsgs(u) = Cσ∆
2
β(u) β(u) =

σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

(u),

where Cσ can be �xed a priori (static - σ), or computed during the simulation
(dynamic - σ) through the Germano dynamic procedure.
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3.1 Weak formulation

The weak formulation [49] of the governing equations (3.1) is obtained by
multiplying equations (3.1a) and (3.1b) by test functions v and q, respec-
tively, belonging to suitable function spaces (that we will specify later on),
and integrating these equation all over the �uid domain Ω. As a consequence:∫

Ω

∂u

∂t
· v dΩ +

∫
Ω

(u · ∇)u · v dΩ +

∫
Ω

∇p · v dΩ +

−
∫

Ω

2ν∇ · S(u) · v dΩ−
∫

Ω

2∇ · [νσsgs(u)S(u)] · v dΩ = 0,∫
Ω

∇ · u q dΩ = 0.

By summing up the two equations and performing integration by parts
for pressure (∇p), viscous (∇ · S(u)), and eddy viscosity turbulent (∇ ·
[νσsgs(u)S(u)]) terms, we get∫

Ω

∂u

∂t
· v dΩ +

∫
Ω

(u · ∇)u · v dΩ +

+

∫
Ω

∇ · u q dΩ−
∫

Ω

p∇ · v dΩ +

∫
∂Ω

pv · n̂ dΓ +

+

∫
Ω

2νS(u) : ∇v dΩ−
∫
∂Ω

2νS(u) · v · n̂ dΓ +

+

∫
Ω

2νσsgs(u)S(u) : ∇v dΩ−
∫
∂Ω

2νσsgs(u)S(u) · v · n̂ dΓ = 0.

Regarding the choice of the function spaces, it's enough that p and q, u
and v, and their derivative, ∇u and ∇v are square-integrable functions in
order to have sense in the integrals that appear in the above formulation.
Hence, we de�ned

Q = L2(Ω) = {q ∈ Ω s.t. ‖q‖L2 =

√∫
Ω

|q|2 dΩ <∞},

V = {v ∈ [L2(Ω)]3 and∇v ∈ [L2(Ω)]3×3, v|Γin = uin, v|Γwall = 0}.

V0 = {v ∈ V s.t. v|ΓD = 0},
where ΓD = Γin ∪ Γwall. Because we want to prescribe the solution function
u on the Dirichlet boundaries, we have to choose the test function to be zero
on ΓD, v|ΓD = 0.
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Having speci�ed the function spaces V , V0 and Q, and by applying the
boundary conditions (3.1c), (3.1d), (3.1e), the boundary terms vanish. In-
deed, by rewriting the boundary terms as∫

ΓD∪ΓN

pv · n̂ dΓ +

∫
ΓD∪ΓN

[−2νS(u)− 2νσsgs(u)S(u)] · v · n̂ dΓ,

where ∂Ω = ΓD ∪ ΓN with ΓD = Γin ∪ Γwall and ΓN = Γouts. The integral
terms with ΓD vanish because v|ΓD = 0. The term∫

Γouts

[pI− 2νS(u)− 2νσsgs(u)S(u)] · v · n̂ dΓ,

also vanishes thanks to (3.1d).
The weak formulation of the modeled �ltered Navier-Stokes equations for

a general hemodynamic problem 3.1 reads:

Find, for all t ∈ (0, T ], (u, p) ∈ {V ×Q}, such that(
∂u

∂t
,v

)
+ c(u,u,v) + b(u, q)− b(v, p) + a(u,v) + g(u,u,v) = 0

∀v ∈ V0 , ∀q ∈ Q, (3.2)

with u|t=0 = u0, where (
∂u

∂t
,v

)
:=

∫
Ω

∂u

∂t
· v dΩ,

b(u, q) :=

∫
Ω

∇ · u q dΩ,

a(u,v) :=

∫
Ω

2νS(u) : ∇v dΩ,

and

c(w,u,v) :=

∫
Ω

(w · ∇)u · v dΩ,

g(w,u,v) :=

∫
Ω

2νσsgs(w)S(u) : ∇v dΩ.

The weak formulation reduces the space derivation order of the solution.
We moved from a second order di�erential problem (the strong formulation)
to a �rst order problem in integral form (the weak formulation), which allows
to treat less regular data. It can be proved that there is an equivalence, in
the sense of distribution, between the weak formulation and the strong one
[49].
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3.2 Galerkin formulation

In order to solve the problem numerically, we �rst perform a space discretiza-
tion of the weak formulation (3.2).

Let us consider a triangulation Ωh, composed by tetrahedra Ti, with i =
1, ..., NT (where NT is the total number of tetrahedra), of the domain Ω

Ω ≈ Ωh = int

(
NT⋃
i=1

Ti

)
,

where int(A) indicates the internal part of a domain A. We denoted the
re�ning level of triangulation as

h = max
T ∈Th

hT ,

where hT is a characteristic length of the element T of the triangulation.
Introducing two families of �nite-dimensional sub-spaces Vh and Qh, ap-

proximations of V and Q respectively, and depending on a discretization
parameter h, with dimVh = NV and dimQh = NQ,

Vh ⊂ V Qh ⊂ Q,

the space discretization of the weak formulation (3.2) reads:

Find, for all t ∈ (0, T ], (uh, ph) ∈ {Vh ×Qh}, such that(
∂uh
∂t

,vh

)
+ c(uh,uh,vh) + b(uh, qh)− b(vh, ph) + a(uh,vh) + g(uh,uh,vh) = 0

∀vh ∈ V0h , ∀qh ∈ Qh, (3.3)

with uh|t=0 = uh,0, where uh,in and uh,0 are approximations of uin and u0,
respectively (for example, their interpolants), and as usual V0h = {vh ∈
Vh s.t. vh|ΓD = 0}.

The (3.3) is the discretized-in-space Galerkin problem of (3.2).
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3.2.1 Finite Element formulation

Let's de�ne the �nite element (FE) spaces of continuous functions, Xr
h (poly-

nomials of degree r on each element Ti of the triangulation) as

Xr
h = {vh ∈ C0(Ω) : vh|Ti ∈ Pr ∀Ti ∈ Ωh} r = 0, 1, 2, ...,

where, Pr is the space of polynomials of degree less than or equal to r.
We introduce the �nite element formulation, as a speci�c Galerkin prob-

lem, choosing in (3.3) Vh and Qh as

Vh ≡ [Xr
h]3 Qh ≡ Xs

h r, s ∈ N.

The FE spaces Vh and Qh need to satisfy the well known inf-sup (or LBB)
condition [50]:

∃βh > 0 s.t. inf
qh∈Qh

sup
vh∈Vh

b(qh,vh)

‖vh‖H1‖qh‖L2

≥ βh ∀h > 0, (3.4)

with βh > 0, and independent of the mesh size h. This property is necessary
for the well posedness of the discrete problem and the optimal convergence
of the method.

Examples of FE spaces satisfying (3.4) are the so named Taylor-Hood
pair Pk+1 − Pk (with k ≥ 1), where it can be noticed that the velocity space
Vh has to be, in some sense, "richer" in comparison to the pressure space Qh.
Indeed, the inf-sup condition couples the space Vh and Qh, and it is a sort
of compatibility condition between the velocity and pressure spaces.

The equal order �nite elements, Pk − Pk (∀k), do not satisfy the inf-sup
condition and leads to instability on the discrete pressure (also called spuri-
ous pressure). However, Pk−Pk can still be used with additional stabilization
terms such as Streamline Upwind Petrov-Galerkin with a Pressure-Stabilizing
Petrov-Galerkin term (SUPG-PSPG) [51, 52]. We will detail this stabiliza-
tion procedure in Section 3.4.

In order to derive the algebraic formulation of (3.3) we have to explain
the two basis for the discrete spaces Vh and Qh

{φi(x)}NVi=1 {ψk(x)}NQk=1,

in order to expand our variables as

uh =

NV∑
j=1

Uj(t)φj(x), qh =

NQ∑
l=1

Pl(t)ψl(x).
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The coe�cients, Uj(t) (j = 1, ..., NV ) and Pl(t) (l = 1, ..., NQ) are called
degrees of freedom of the �nite element for the velocity and pressure �eld,
respectively. The dimension of the FE spaces, NV and NQ, is the number of
d.o.f, of the velocity and pressure �eld, respectively. Hence, the total number
of d.o.f Nd.o.f

1 is
Nd.o.f = NV +NQ.

Since the problem (3.3) holds for all elements of the space Vh and Qh,
then it is valid also for the basis. Hence, choosing these basis functions as test
functions in (3.3), and using bilinearity of a(., .) and b(., .), and trilinearity of
c(., ., .) and g(., ., .), we obtained the following system of Ordinary Di�erential
Equations (ODEs):M

dU

dt
+ AU + C(U)U +G(U)U +BTP = 0

BU = 0
, (3.5)

where M ∈ RNV ×NV , A ∈ RNV ×NV , C(U) ∈ RNV ×NV , G(U) ∈ RNV ×NV ,
and B ∈ RNQ×NV are matrices whose elements are given by

Mij =

∫
Ω

φj · φidΩ

Aij = a(φj,φi)

Cij(u(t)) = c(u(t),φj,φi),

Gij(u(t)) = g(u(t),φj,φi),

Bkj = b(φj, ψk),

and U and P are the unknown vectors

U =
(
U1(t), ..., UNV (t)

)T
, P =

(
P1(t), ..., PNQ(t)

)T
.

Problem (3.5)is completed by an initial condition on the velocity

U(0) = U0.

1We stress that this is the same parameter that we used in Section 2.2 to introduce the
turbulence modeling.
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3.3 Time discretization

Time discretization of the Galerkin problem (3.3) was performed by using the
second order Backward Di�erentiation Formula (BDF2), that is an implicit
second order multistep method (see [53, 54]).

First of all, we uniformly divided the �nite time interval [0, T ], where
T = NcThb with Thb the period of the cardiac cycle and Nc the total number
of cycles, into Nt step of size δt (time step)

tn = nδt, n = 0, 1, 2, ..., Nt Nt =
T

δt
.

For a general function z, we denoted zn as the approximation of z(tn).
Thus, the BDF2 approximation of the time derivative in (3.3) results:(

∂uh
∂t

)n+1

' 3un+1
h − 4unh + un−1

h

2δt
for n ≥ 1

So, the discretized in time and space FEM Galerkin problem for the
generic hemodynamic problem (3.3) is:

Find, for n = 0, 1, ..., Nt − 1, (un+1
h , pn+1

h ) ∈ {Vh ×Qh}, such that(
3un+1

h − 4unh + un−1
h

2δt
,vh

)
+ c(u∗h,u

n+1
h ,vh) + b(un+1

h , qh)− b(vn+1
h , ph)

+ g(u∗h,u
n+1
h ,vh) + a(un+1

h ,vh) = 0,

∀vh ∈ V0h , ∀qh ∈ Qh, (3.6)

with u0
h = uh,0, and u

∗
h is a quantity that we will specify in what follows.

The main issue of a fully implicit method is that the resulting problem
is still non linear, due to the convective, c(u∗h,u

n+1
h ,vh), and the turbulent

eddy-viscosity, g(u∗h,u
n+1
h ,vh), terms in (3.6). Indeed, if we put u∗h = un+1

h ,
this choice leads us to solve a non linear system2 with an huge computational
cost. In order to reduce this cost, we use a semi-implicit approach with a
second order extrapolation for the velocity, u∗h, in the convective and eddy-
viscosity terms (as suggested in [49])

u∗h = 2unh − un−1
h . (3.7)

2For example, we can solve this system with Newton or Fixed point algorithm.
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Accordingly, time discretization of the �nite element approximation of
the ODEs system (3.5) is

M
3Un+1 − 4Un + Un−1

2δt
+AUn+1 + C(U∗)Un+1+

+G(U∗)Un+1 +BTPn+1 = 0

BUn+1 = 0

, (3.8)

where U∗ = 2Un − Un−1. With this semi-implicit treatment the trilinear
term c(., ., .) and g(., ., .) become bilinear, and the corresponding matrices
are

Cij = c(u∗,φj,φi) =

∫
Ω

(u∗ · ∇)φj · φi dΩ,

Gij = g(u∗,φj,φi) =

∫
Ω

2νσsgs(u
∗)S(φj) : ∇φi dΩ.

The (3.8) is now a linear system, that can be written in a single monolithic
matrix (Σ, also called monolithic NS matrix) form[

K BT

B 0

] [
Un+1

Pn+1

]
=

[
1

2δt
M(4Un −Un−1)

0

]
, Σ =

[
K BT

B 0

]
. (3.9)

where

K =
3

2δt
M + A+ C(U∗) +G(U∗).

The non-symmetric linear system (3.9) can be solved by a Krylov method,
e.g. the GMRES method. However, due to the unde�niteness monolithic
matrix we have a slow convergence (see [55]). To speed up convergence,
the use of preconditioner is mandatory. We will use the Additive Schwarz
Preconditioner [56, 57].

For this semi-implicit scheme the stability condition is

δt ≤ C
h

max
x∈Ω
‖uh‖

, (3.10)

where C ∈ R+.
The semi-implicit is a compromise between a completely explicit scheme

which has a stricter stability condition of the type

δt ≤ C min

h2

ν
,

h

max
x∈Ω
‖uh‖

 ,
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and a completely implicit BDF2 scheme which is unconditionally stable [10,
58].

However, in hemodynamic problem, the constraint (3.10) is mild, since
δt, for accuracy purposes, should be typically taken smaller than the required
by the previous condition.

3.4 SUPG-PSPG stabilization

Navier-Stokes equations with �nite element formulation su�er from two source
of numerical instability, due to the fact that:

I NS is a convection dominated problem, which means "large" Re (as
in the aorta during the systolic phase), where numerical oscillations in
the velocity �eld can occur (spurious velocity);

II FE spaces Pk−Pk (∀k) are unstable combinations of velocity and pres-
sure �nite element spaces, that do not satisfy the inf-sup condition
(3.4), and generates numerical oscillations in the pressure �eld (spuri-
ous pressure).

In order to have a global second order convergence rate3

‖un+1
h − u(tn+1)‖H1(Ω) ∼ O(h2) +O(δt2),

we used a BDF2 semi-implicit approach for the time discretization, in combi-
nation with a P2−P2 Finite Elements, that is piece-wise quadratic polynomi-
als, for the space approximation of the velocity and each pressure component.

P2 − P2 FE spaces are inf-sup unstable. So, to control instabilities aris-
ing from inf-sup condition and convection dominated problem, Pressure-
Stabilizing Petrov-Galerkin(PSPG) stabilization along with Streamline-Upwind
Petrov-Galerkin (SUPG) stabilization were added to the problem (3.6), re-
spectively [51].

The SUPG-PSPG stabilization consists in adding a series of terms to
the formulation (3.6), involving the product of the residual of the strong
formulation of NS equations with its skew-symmetric part [60]

sLES(un+1
h , pn+1

h ; vh, qh) = γ
∑
T ∈Ωh

τT

∫
T

[
L(un+1

h , pn+1)
]T Lss(vh, qh)dT ,

3For an analysis of the numerical errors of a Finite Elements approximation in presence
of a LES model, see [59].
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where γ > 0 is a positive constant, τT is the stabilization parameter (that
will be speci�ed later on), T is a generic tetrahedron belonging to the �nite
elements partitioned domain Ωh, L(u, p) is the residual of the NS equations
(3.1a)-(3.1b)

L(u, p) =

[
∂u
∂t

+ (u · ∇)u +∇p− 2ν∇ · S(u)− 2νsgs(u)∇ · S(u)
∇ · u

]
,

and Lss(u, p) is the skew-symmetric part4 of the NS equations (3.1a)-
(3.1b)

Lss(u, p) =

[
(u · ∇)u +∇p

0

]
.

Since, it is based on the residual of the NS equations, the SUPG-PSPG
is a strongly consistent stabilization [51].

The discretized �nite element Galerkin formulation with SUPG-PSPG
stabilization can be written as:

Find, for all t = 0, 1, ..., Nt − 1, (un+1
h , pn+1

h ) ∈ {Vh ×Qh}, such that(
3un+1

h − 4unh + un−1
h

2δt
,vh

)
+ c(u∗h,u

n+1
h ,vh) + b(un+1

h , qh)− b(vh, pn+1
h )+

+ g(u∗h,u
n+1
h ,vh) + a(un+1

h ,vh) + sLES(un+1
h , pn+1

h ; vh, qh) = 0

∀vh ∈ V0h , ∀qh ∈ Qh, (3.11)

with u0
h = uh,0, where

sLES(un+1
h , pn+1

h ; vh, qh) =

= γ
∑
T ∈Ωh

τM,T

(
3un+1

h − 4unh + un−1
h

2δt
+ (u∗h · ∇)un+1

h +∇pn+1
h +

−2[ν + νsgs(u
∗
h)]∇ · S(un+1

h ) , u∗h · ∇vh +
∇qh
ρ

)
T

+

+ γ
∑
T ∈Ωh

τC,T
(
∇ · un+1

h ,∇ · vh
)
T , (3.12)

4The skew-symmetric part of a generic operator L(u, p) is the one for which(
L(u, p), (v, q)

)
= −

(
(v, q),L(u, p)

)
.
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and τM,T , and τC,T are two stabilization parameters for the momentum and
the continuity NS equations, respectively. In addition, the notation (a, b)T =∫
T ab dT has been introduced, and u∗h was de�ned in agreement to (3.7).
In the previous expression of sLES (3.12), the term∑

T ∈Ωh

τM,T

(
∇pn+1

h ,
∇qh
ρ

)
T
,

is the Brezzi-Pitkaranta stabilization for the inf-sup, while the term∑
T ∈Ωh

τM,T
(
u∗h · ∇un+1

h , u∗h · ∇vh
)
T ,

corresponds to the streamline di�usion term stabilization for large Re.
The other terms in (3.12) occur to obtain a strongly consistent stabilization.

Regarding the choice of the stabilization parameters τM,T , and τC,T we
used

τM,T =

(
σ2
BDF

δt2
+
‖u‖2

h2
T

+ Ck
(ν + νsgs)

2

h4
T

)−1/2

, τC,T =
h2
T

τM,T
,

where: Ck = 60 ·2k−2 is a constant obtained by an inverse inequality relation
(and k is the order of the chosen pair Pk − Pk); σBDF is a constant equal
to the order of the time discretization; δt is the time step; hT is the "ele-
ment length" (e.g. the element diameter) of a generic tetrahedra belonging
to the partitioned domain Ωh [61]. τM,T and τC,T were obtained by a mul-
tidimensional generalization of the optimal value introduced in [62] for the
one-dimensional case [64].

Notice that the terms added by the SUPG-PSPG stabilization 3.12 can
be explicitly written as fallows

s
(1)
11 =

(
3

2

un+1
h

δt
, u∗h · ∇vh

)
T
, s

(1)
21 =

(
3

2

un+1
h

δt
,
∇qh
ρ

)
T
,

s
(2)
11 =

(
u∗h · ∇un+1

h , u∗h · ∇vh

)
T
, s

(2)
21 =

(
u∗h · ∇un+1

h ,
∇qh
ρ

)
T
,

s
(3)
11 =

(
−2(ν + νsgs(u

∗))∇ · S(un+1
h ) , u∗h · ∇vh

)
T
,

s
(3)
21 =

(
−2(ν + νsgs(u

∗))∇ · S(un+1
h ) ,

∇qh
ρ

)
T
,

s
(4)
11 =

(
∇ · un+1

h ,∇·vh
)
T
,
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s12 =

(
∇ph , u∗h · ∇vh

)
T
, s22 =

(
∇ph ,

∇qh
ρ

)
T
,

fv =

(
4unh − un−1

h

2δt
, u∗h · ∇vh

)
T
, fq =

(
4unh − un−1

h

2δt
,
∇qh
ρ

)
T
,

where, for the sake of clearness, the sum over the tetrahedra was omitted5.
Moreover, the indices I, J in s

(n)
(I,J) refer to the position of the corresponding

term in the monolithic NS matrix, Σ (3.9), and n distinguishes the di�erent
terms inside each block,[

Σ11 Σ12

Σ21 Σ22

]
=⇒

[
s

(1)
(11) + s

(2)
(11) + s

(3)
(11) + s

(4)
(11) s(12)

s
(1)
(21) + s

(2)
(21) + s

(3)
(21) s(22)

]
, (3.13)

while the corresponding vectors to fv and fq �ll the RHS of the system (3.9).
The matrix elements corresponding to (3.13) are

[S
(1)
11 ]ij =

3

2δt

∑
T ∈Ωh

τM,T

∫
T
φj(u

∗
h · ∇)φi dT ,

[S
(2)
11 ]ij =

∑
T ∈Ωh

τM,T

∫
T

(u∗h · ∇)φj(u
∗
h · ∇)φi dT ,

[S
(3)
11 ]ij = −

∑
T ∈Ωh

τM,T

∫
T

(ν + νsgs(u
∗))∆φj(u

∗
h · ∇)φi dT ,

[S
(4)
11 ]ij =

∑
T ∈Ωh

τC,T

∫
T
∇ · φj∇ · φi dT ,

[S
(1)
21 ]kj =

3

2δtρ

∑
T ∈Ωh

τM,T

∫
T
φj∇ψk dT ,

[S
(2)
21 ]kj =

1

ρ

∑
T ∈Ωh

τM,T

∫
T

(u∗h · ∇)φj∇ψk dT ,

[S
(3)
21 ]kj = −1

ρ

∑
T ∈Ωh

τM,T

∫
T

(ν + νsgs(u
∗))∆φj∇ψk dT ,

[S12]il =
∑
T ∈Ωh

τM,T

∫
T
∇ψl(u∗h · ∇)φi dT ,

5All the terms to be intended as s
(n)
(I,J) =

∑
T ∈Ωh

τT ( . , . )T .
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[S22]kl =
1

ρ

∑
T ∈Ωh

τM,T

∫
T
∇ψl∇ψk dT ,

[Fv]i =
∑
T ∈Ωh

τM,T

∫
T

4unh − un−1
h

2δt
(u∗h · ∇)φi dT ,

[Fq]k =
1

ρ

∑
T ∈Ωh

τM,T

∫
T

4unh − un−1
h

2δt
∇ψk dT .

Hence, the NS monolithic system with the SUPG-PSPG stabilization
becomes[

Σ BT + ST12

B̃ S22

] [
Un+1

Pn+1

]
=

[
1

2δt
M(4Un −Un−1) + Fv

Fq

]
, (3.14)

where Σ = K +
4∑
i=1

S
(i)
11 , and B̃ = B +

3∑
i=1

S
(i)
21 .

It is well known that SUPG-PSPG stabilization does not exhibit excessive
numerical di�usion if at least second-order velocity elements and �rst-order
pressure elements (P2 − P1) are used [62].

In LES the subgrid scales are represented by a physical model (see Section
3), which uses dissipation to include the e�ect of the small unresolved scales
on the larger resolved scales. The numerical dissipation coming from the
SUPG-PSPG is introduced for the purpose of achieving a stable, consistent
and convergent discretization, and it can interfere with the dissipation related
to these physical models. In particular, the SUPG-PSPG stabilization can
be considered a numerical subgrid scale model.

To guarantee that LES models feature the same amount of dissipation
independently of the SUPG stabilization, in [63] a correction of the subgrid-
scale viscosity has been introduced for the Smagorinsky model in an open
channel. We rather decided to follow [65] where no correction of the subgrid
tensor was implemented. However, further investigations about this topic
will deserve future studies.
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(a) Bfstab on outlet. (b) NBC on outlet.

Figure 3.1: Back�ow stabilization (Bfstab) versus Neumann Boundary Con-
dition (NBC) on an outlet �ow of a cylinder. We have imposed a parabolic
(in space) and pulsatile (in time) inlet pro�le.

3.5 Back�ow instabilities

As mentioned in Section 2.1, we imposed homogeneous Neumann boundary
condition (3.1d) on the outlets of the domain, since we want to avoid pre-
scribing a particular velocity pro�le on outlets. Indeed, due to the complex
�ow in the AAA, an assumption of the velocity �eld on the outlets would not
be realistic. A drawback is that the Neumann boundary condition (NBC)
su�ers from numerical instability coming from back�ow (see, for example,
Figures 3.1b, 3.2b, 3.3b).

This problem can arise when there is an inward �ow over the entire outlet
surface, or also when �ow partially reverses at an outlet. Flow reversal is
present in both healthy and diseased cardiovascular system [66] (for example,
during the diastole phase of the cardiac cycle). A partial retrograde �ow
can also be induced by recirculation caused by complex geometry near the
outlets, or can be triggered also by the convection of vortices moving through
the outlet. As a matter of fact, the outlet section is an "arti�cial" boundary
of the �uid domain, which is truncated to focus on the region of interest.

When these phenomena occur, an outlet section becomes an inlet section,
which is the cause of numerical instability. In fact, a general mixed boundary
condition ∂Ω = ΓN ∪ ΓD

6, for the NS equations, leads to stable results

6Where, as usual, ΓN and ΓD indicate disjoint portions (i.e. Γ̊N ∩ Γ̊D = ∅) of the
boundary, ∂Ω = ΓN ∪ ΓD, where we impose Neumann and Dirichlet boundary condition,
respectively.
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only if
u(x) · n̂ ≥ 0, ∀x ∈ ΓN ,

where n̂ indicates the outward normal unit vector to ΓN , and u(x) is the
velocity �eld on ΓN .

The motivation for this numerical instabilities is that the system energy
is not controlled in case of an incoming �ux from a Neumann boundary. In
fact, from a stability analysis7 [67]

d

dt

∫
Ω

1

2
|u|2dΩ + (ν + νsgs)

∫
Ω

|∇u|2dΩ +

∫
Γouts

1

2
|u|2u · n̂ dΓ = 0,

from which, de�ning E(t) =
∫

Ω
1
2
|u|2dΩ, and D(t) = (ν + νsgs)

∫
Ω
|∇u|2dΩ,

we obtain
d

dt
E(t) = −D(t)−

∫
Γouts

1

2
|u|2u · n̂ dΓ. (3.15)

In (3.15) D(t) is always non-negative ( i.e. always dissipative), while the last
term can add energy in case of u · n̂ ≤ 0 on Γouts, which correspond to an
inward velocity on the outlet. So during partial back�ow, the last term can
lead to an uncontrolled energy increase [68].

Back�ow stabilization

One way to resolve the back�ow instability is to add a stabilization term to
the Neumann boundary conditions (as proposed in [67, 68]).

This approach is referred to Back�ow Stabilization [67] (Bfstab). It con-
sists in suppressing the unstable term in equation (3.15) by modifying the
Neumann boundary condition (3.1d):

(−pI + 2νS(u)− τ sgsd ) n̂ = β

∫
Γouts

1

2
|u · n̂|−u dΓ on Γouts × (0, T ] ,

where

|u · n̂|− =
u · n̂− |u · n̂|

2
=

{
u · n̂ for u · n̂ < 0

0 for u · n̂ ≥ 0
.

This type of boundary condition is a non-linear Robin condition.
The stabilization term is active only where and when u · n̂ < 0 (i.e. where

back�ow is present - see, for example, Figures 3.1a, 3.2a, 3.3a).
This method can ensure a theoretical back�ow stable simulation with a

parameter β = 1, but it is often used with a value β ∈ (0, 1]. In physical

7Stability result can be obteined from the weak formulation (3.2) tested on the solution,
i.e. putting v = u in (3.2).
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(a) Bfstab on outlet. (b) NBC on outlet.

Figure 3.2: Bfstab versus NBC on an outlet �ow of a cylinder. Parabolic and
pulsatile inlet pro�le.

(a) Bfstab on outlet. (b) NBC on outlet.

Figure 3.3: Bfstab versus NBC on an outlet �ow of a cylinder. Parabolic and
pulsatile inlet pro�le.

terms, it is an outward traction proportional to the magnitude of the normal
component of the back�ow velocity.

In this thesis we used the back�ow stabilization, implemented and studied
in [69]. Indeed, this type of stabilization reveals to be e�ective in many
cardiovascular and pulmonary applications [66, 70, 71].
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3.6 Inlet defective boundary condition

Figure 3.4: Velocity pro�le uin at the inlet Γin during the �rst systolic peak.

In numerical simulation of blood �ow problems, it might happen that
the unique available boundary condition prescribe the �ow rate incoming the
vascular district at hand. In order to have a well posed NS problem, this
condition needs to be completed. This problem is usually faced by choosing
a priori velocity pro�le on the in�ow section, to be �tted with the assigned
�ow rate [72].

In this thesis, at the inlet Γin (see Figure 2.2), we imposed a representative
time variation of the �ow rate Qin(t) shown in Figure 3.5. The �ow rate is
de�ned as

Qin(t) =

∫
Γin

uin(t) · n̂ dΓ, (3.16)

where uin(t) is the velocity pro�le at the inlet surface Γin, and n̂ is the
outward directed unit normal vector to Γin.

This is a defective boundary condition [72], since at each time step we are
prescribing only a scalar quantity over the whole Γin, rather than three con-
ditions for each point of the section. To �ll this gap, we assumed a parabolic

velocity pro�le uin(t) =
(
u

(x)
in (t), u

(y)
in (t), u

(z)
in (t)

)
, along the normal direction

n̂ = [nx, ny, nz] (a common choise in heamodynamics, see for example [73])
u

(x)
in (t) = −2Qin(t)

A

(
1− r2

R2

)
nx

u
(y)
in (t) = −2Qin(t)

A

(
1− r2

R2

)
ny

u
(z)
in (t) = −2Qin(t)

A

(
1− r2

R2

)
nz

, (3.17)
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(a) Qin(t) in the �rst cardiac cycle. (b) Qin(t) for six cardiac cycles.

Figure 3.5: Inlet pro�le �ow rate Qin(t).

Figure 3.6: Circle C(R) approximating the border surface Γin

where: r ∈ Γin, with r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 in which
(x0, y0, z0) are the center point coordinates of Γin; A = πR2 is the area
of the boundary surface Γin; R is the radius of the circle approximating the
border surface Γin (see Figure 3.6).

Notice that uin(t) is the unique function characterized by a parabolic
pro�le in the normal direction n̂, and vanishes in the tangential ones, whose
�ow rate at each time t, is equal to Qin(t).

Conditions (3.16) and (3.17) give us the Dirichlet condition 3.1c.

u = uin(Qin) on Γin × (0, T ] .

Moreover, no inlet perturbation is prescribed, so that the �ow is assumed to
be laminar at the inlet boundary. This will allow us to capture turbulence
transitional e�ects arising as a consequence of geometry and pulsatility solely.

In the cardiac cycle, with period Thb = 0.7s, we can distinguish the
systolic phase, i.e. the interval of acceleration and deceleration of blood
�ow, and the diastolic phase, i.e. the interval of almost constant or negative
�ow (see Figure 3.5a).
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The �nal part of the cardiac cycle has a null inlet �ow rate, which allows
the �ow in the vessel to become nearly still. That supports the choice of a
null initial condition 3.1f

u(x, 0) = u0(x) = 0 in Ω× {0} .
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Chapter 4

Pre-processing and meshes

building

As discussed in the Introduction, the aim of this thesis is to asses the re-
liability of LES σ-models in a speci�c hemodynamic scenario that is the
AAA, where transitional to turbulence should not be neglected. To this aim
we want to compare di�erent numerical simulations obtained by these LES
models with a DNS one. This comparison will be done in a real geometry
of AAA. In this Chapter we address how we have build the meshes for LES
and DNS simulations.

4.1 Geometrical data and boundary conditions

To obtain realistic results, patient speci�c data are used, in particular the
AAA geometry and the waveform of the �ow entering in the aneurysm.

The aorta geometry data were acquired using a computed tomography
(CT) scan performed by the Vascular Surgery Division of the Ca' Granda
Ospedale Maggiore Policlinico in Milano.

In particular, the acquisition images start from the thoracic segment of
the aorta till the �rst track of the common Iliac arteries. The surface model
of the arterial wall was reconstructed with the Vascular Modeling Toolkit,
VMTK [76]1. Figure 4.1 shows VMTK geometry taken from a patient of [74].

Observing the Figure 4.1, this segment of aorta includes a fusiform aneurysm
(see Figure 1.10) with a diameter of about 4.2 cm, against a normal aortic di-
ameter of about 1.8 cm. At the end of the aorta slits there are two branches,
called common Iliac arteries.

1www.vmtk.org
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Figure 4.1: Abdominal arterial wall reconstructed by VMTK tools: (a) right-
left view, (b) bottom-top view.

(a) Clipping plane. (b) Geometry after clipping.

Figure 4.2: VMTK clipping
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Figure 4.3: Boundaries of the AAA.

To focus our hemodynamic studies inside the aneurysm, we ignore the
portion with the branches before the aneurysm. This decision does not in-
�uence substantially the �uid behavior in the aneurysm [69]. The clipping
plane is placed about 3 cm proximal to the aneurysm and perpendicular to
the center line of the vessel as can be seen in Figure 4.2a. The resulting
geometry is represented in Figure 4.2b.

Considering the geometry in Figure 4.3, the boundaries of the Ω domain
are:

• Γin, the inlet section of the aorta,

• Γwall, the arterial wall,

• Γouts, the two common Iliac outlet sections.

For each boundary, the conditions imposed are:

• On Γin Dirichlet boundary condition with parabolic velocity pro�le on
inlet section (as explained in Section 4.5)

u(x, t) = uin(x, Qin(t)) ∀x ∈ Γin, t ∈ (0, NcTnb],

where Nc = 6 is the number of cardiac cycles, and Thb = 0.7s is the
heartbeat period. Concerning Qin(t), a supraceliac waveform is taken
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from [74] and its �ow rate magnitude is reduced by 50% to match the
infrarenal waveforms reported in [75]. The resulting inlet waveform
(Figure 3.4) is the used physiological waveform Qin(t).

• On Γwall homogeneous Dirichlet boundary condition (rigid wall hp.)

u(x, t) = 0 ∀x ∈ Γwall, t ∈ (0, NcThb].

• On Γouts non-linear Robin boundary condition (due to the Back�ow
stabilization, detailed in Section 4.6)

(−pI + 2νS(u)− τ sgsd ) n̂ = β

∫
Γouts

1

2
|u·n̂|−udΓ onΓouts×(0, NcThb],

with β = 1.

4.2 Computational meshes

The surface model (Figure 4.3) was turned into volumetric meshes of linear
tetrahedra.

In particular the �uid domain Ω (Figure 4.3) has been discretized with an
unstructured tetrahedral meshes. The open source VMTK library [76] has
been used to obtain a good quality mesh. A boundary layer composed by
three or four layers has been introduced in order to accurately describe the
viscous e�ects near the wall.

In this thesis we generated the following meshes:

I mesh-DNS with 1M of tetrahedra (Figures 4.4a, 4.4c);

II mesh-LES with 125K of tetrahedra (Figures 4.5a, 4.5c);

Table 4.1: Meshes parameters

I: mesh-DNS II: mesh-LES

NT 1M 125k
h 0.115 cm 0.25 cm
sBL 0.13 cm 0.13 cm
NBL 4 3
δs 0.8 0.7
Nd.o.f.(V ) 4.06 M 511 K
Nd.o.f.(P ) 1.35 M 170 K

The parameters of the meshes I and II are shown in the table 4.1, where:
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• NT denotes the number of tetrahedra and h the corresponding charac-
teristic space discretization parameter;

• sBL is the boundary layer thickness composed of NBL layers in which
a thickness ratio, δs, has been selected between two successive layers;

• Nd.o.f.(V ) and Nd.o.f.(P ) are the total number of d.o.f. in the domain
Ω, using the FE spaces P2 − P2, for the velocity and pressure �eld,
respectively.

(a) Bottom view. (b) Boundary layers thickness.

(c) Mesh inside di�erent cut planes.

Figure 4.4: mesh-LES of 125k tetrahedra
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(a) Bottom view. (b) Boundary layers thickness.

(c) Mesh inside di�erent cut planes.

Figure 4.5: mesh-DNS of 1M tetrahedra
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In particular, sBL, NBL, and δs allow us to obtain a dimensionless wall
distance y+ < 5, at least for the �rst cell (Figures 4.4b, 4.5b). This means
that we have at least one point in the viscous sublayer of the turbulent
boundary layer (more details are to be found in [78]). The de�nition of the
dimensionless wall distance is

y+ =
U∗y

ν
,

where y is the physical distance to the wall, and U∗ =
√

tw
ρ
, with tw the wall

shear stress (WSS), is the friction velocity.
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Figure 4.6: Shear layer detachment within the AAA visualized in the im-
pingement plane and in the bag plane.

4.3 Building a DNS

In the hemodynamic framework, complex geometries and pulsatile �ow, due
to the heartbeat, could generate turbulent transitional e�ects. In this con-
text, we cannot use the classical Kolmogorov theory (for fully developed
homogeneous isotropic and stationary turbulence) to estimate the smallest
scale (Kolmogorov scale η) needed to perform a DNS simulation. For this rea-
son, we decided to use an alternative approach, enploied in [17], to generate
our DNS mesh.

For the case of stenotic carotid, Lancellotti et al. [17] computed a solution
without any turbulence model they called a gold standard. They estimated
two shear layers2 (at the systole) that can trigger the transition to turbulence
during the deceleration phase.

Observing our numerical simulations, a long shear layer at the systole,
entering in the bulge of AAA, is created (see Figure 4.6). This shear layer,
impacting on the bulge wall of the aneurysm, create vortical structures that
can trigger the transition to turbulence during the deceleration phase.

Following the same approach of [17], we estimated the mesh size hDNS
able to correctly resolve this shear layer which is the primary phenomenon
characterizing the blood �ow in the AAA. The same holds for the choice of
the time discretization parameter δtDNS.

In what follows, we refer to this simulation as the DNS no-model solution.

2The shear layer is de�ned as the region between two parallel streams.
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Figure 4.7: Instability curves of a shear layer for di�erent Re. Each curve
divides the frequency plane in a stable (top) and an unstable (bottom) re-
gions. The stability regions are depicted as as function of the space frequency
αLshear and the time exponential growth factor ωI(α)Lshear/Ushear of the os-
cillation.

4.3.1 Estimation of the DNS discretization parameters

To be able to de�ne the characteristic mesh size, hDNS, and the time step,
δtDNS, of our reference DNS solution, we considered the simpli�ed problem
of a viscous, incompressible, and two-dimensional laminar shear layer [77],
characterized by the following velocity �eld

u(x, y) =
[
Ushear tanh

(
y

Lshear

)
, 0
]T
,

where Ushear and Lshear are the characteristic velocity and width of the shear
layer, respectively (to be suitable chosen). The Reynolds number of this
shear layer is

Reshear =
UshearLshear

ν
.

We apply, to this two-dimensional laminar shear layer, a perturbation of
the form

u′(x, y) = [iα
dv

dy
, v(y)ei(αx−ωt)]T ,

where, for a given α ∈ R, the eigenfunction v and the corresponding eigen-
value ω = ωR + iωI ∈ C are determined by forcing the perturbation, u′, to
satisfy the linearized NS equations [78].

69



(a) Impingement plane. (b) Bag plane.

Figure 4.8: Measures (125K no-model simulation) of the shear layer thick-
ness, Lshear (taken from regions of highest velocities, in red, to regions of
lowest velocities, in blue), and of the velocity, Ushear (taken in the shear layer
center), for two di�erent plane.

Solving numerically the linearized NS equations for u′ [78], it is possible
to determine, for each Reynolds number, the stability regions of this two-
dimensional shear layer [77]. In particular, it is possible to obtain the curves
reported in Figure 4.7, where the instability curves are plotted as a function
of the normalized space frequency, α = αLshear, and the normalized time
frequency, ωI = ωILshear/Ushear.

A shear layer will be unstable if a perturbation introduced in the system
leads to oscillations which grow up in time inde�nitely. Otherwise it will
be said stable. In our case, the shear layer in a AAA is stable, since the
oscillations do not blow up in time. Hence, we have to identify for the
Reynolds number, Reshear, the region in the space of the frequencies which
lead to either stable or unstable shear layers, and then select the discretization
parameters hDNS and δtDNS which guarantee that we fall in the stability
region.

In [78] it has been shown that the most unstable eigenvalues have null
real part (ωR ' 0) so that the associated modes are characterized by an
exponential growth in time. Given the Reynolds number Reshear, by plotting
the values of ωI = ωI(α), as a function of α, we obtained a curve from which
we derived the maximum value of ωI , ωI,max, and the maximum value of α,
αmax, such that ωI(α) > 0 for each α < αmax (see Figure 4.9). Thus, we can
obtain the values for hDNS and δtDNS as

hDNS ≤
ALshear
αmax

, δtDNS ≤
BLshear

ωI,maxUshear
, (4.1)

where A, B < 1 are two control parameters.
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Figure 4.9: Growth rate for the shear layer instabilities for Reshear = 177 as
a function of the normalized spatial frequency αLshear.

To determine Reshear, we considered a no-model simulation (i.e. with
no LES model) using the mesh-LES with 125K of tetrahedra (Figure 4.6).
In particular, we measured (at systole) in di�erent points the shear layer
thickness Lshear and the velocity in the shear layer center, Ushear (see Figures
4.8)

Ushear ' 50 cm/s Lshear ' 0.124cm =⇒ Reshear ' 177. (4.2)

Using this value of Reshear with the procedure explained above, we ob-
tained the Figure 4.9 from which we had

αmax = αmaxLshear = 0.97, ωI,max = ωI(αmax)Lshear/Ushear = 0.18. (4.3)

Inserting the 4.3 and 4.2 in 4.1, and choosing A = 1/2, B = 1/4, we got the
following values of the discretization parameters which allow to well resolve
the shear layer

hDNS ≤ 0.124 cm δtDNS ≤ 6ms,

where we also doubled these two parameters because we considered a second
order discretization in space and time (P2−P2, and BDF2), as we will specify
in Section 5.1. Hence, we choose the following characteristic mesh size, hDNS,
and time step, δtDNS,

hDNS = 0.115 cm δtDNS = 2ms.
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(a) mesh-DNS 1M (b) mesh-LES 125K

Figure 4.10: The dimensionless wall distance, y
(1)
+ for the �rst mesh point

from the wall, in mesh-DNS (a) and mesh-LES (b).

In particular, hDNS = 0.115cm is the value used to build the mesh-DNS with
1M of tetrahedra (Figure 4.5), and δtDNS = 2ms is the time step used for all
the simulations. Moreover, for the time step we chose an even smaller value
to well ful�ll the stability condition (3.10).

4.3.2 Estimation of Boundary Layer thickness

In order to estimate the boundary layer (BL) thickness, we evaluated the
WSS in a no-model simulation using the mesh-LES 125K.

To de�ne the WSS, we �rst introduce the traction tensor, T, which is
de�ned as the Cauchy stress tensor, σ = −pI + 2µS, minus the hydrostatic
component (due to the pressure), and the traction vector τ = Tn̂ acting on
a surface with an outward normal n̂

T = 2µS(u) =⇒ τ = 2µS(u)n̂,

where we recall that S(u) = 1
2

(
∇u + (∇u)T

)
.

The WSS is de�ned as the L2-norm of the tangential component of the
traction vector

WSS = ‖τ t̂‖ = ‖τ − τ n̂‖,

where t̂ is the tangential unit vector of the surface in which t acts.
We measured the maximal values of the WSS (during the six cardiac

cycles) for di�erent points on:

I Inlet section: from the inlet to the beginning of the bulge aneurysm
(see Figure 4.11a);

II Bulge section: in the bulge wall of the aneurysm (see Figure 4.11b);
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III Outlets section: from the end of the bulge to the outlets (see Figure
4.11c).

We obtained :

I: WSS
(I)
max ' 3.5 Pa; II: WSS

(II)
max ' 8 Pa; III: WSS

(III)
max ' 9 − 10 Pa.

(see plots in Figures 4.11)

Hence, we measured the dimensionless wall distance, y
(1)
+ for the �rst

mesh point from the wall (see Figure 4.10)

y
(1)
+ =

yU∗
ν
, with U∗ =

√
WSSmax

ρ
,

where we had halved the value of y
(1)
+ because we considered a second order

in space and time discretization (P2 − P2, and BDF2).

These values of y
(1)
+ , for di�erent sections I, II, III, are well inside the vis-

cous sublayer, which for developed turbulence is generally assessed to extend
to y+ ∼ 5 [78] (see Figures 4.10, 4.11 and tables 4.2, 4.3).

The tables (4.2 - 4.3) below shown the values y+ for the layers of the BL
in the mesh-DNS and mesh-LES (see Figure 4.10).

Table 4.2: dimensionless wall distances for BL of mesh-DNS

Inlet Bulge Out Left Out Right

y
(1)
+ 1.96 2.96 3.31 3.14

y
(2)
+ 4.41 6.67 7.46 7.08

y
(3)
+ 7.49 11.32 12.66 12.07

y
(4)
+ 11.32 17.11 19.13 18.15

Table 4.3: dimensionless wall distances for BL of mesh-LES

Inlet Bulge Out Left Out Right

y
(1)
+ 2.53 3.83 4.28 4.06

y
(2)
+ 6.15 9.29 10.39 9.86

y
(3)
+ 11.32 17.11 19.13 18.15
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(a) Inlet section

(b) Bulge section

(c) Outlets section

Figure 4.11: WSS measured, during the six cardiac cycles, for speci�c points
on di�erent section: (a) Inlet section, (b) Bulge section, (c) Outlets section.
The plots on the left are the WSS(t) for the selected points (showed in black).
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Chapter 5

Numerical results

Numerical simulations were performed with the C++ parallel Finite Element
library LIFEV 1 which is developed at MOX (Politecnico di Milano), INRIA
(Paris), CMSCS (EPFL in Lausanne) and E(CM)2 (Emory University of
Atlanta).

LIFEV is an object oriented software (with parallel and serial version)
aimed to solve complex real engineering problems. To exploit parallel com-
puting (partitioning the mesh), it relies on ParMETIS2, whereas the solution
of the linear system is based on Trilinos3. In particular, the linear sys-
tem arising at each time step has been solved with GMRES, preconditioned
with an Additive Schwarz preconditioner available in the package Ifpack
of Trilinos.

Simulations on the mesh-LES were run on 1 node Xerox E4610-v2 of 20
cores cluster with 64GB memory per node. Simulation on the mesh-DNS was
run on a 2 nodes Xerox E4610-v2 of 32 cores cluster with 252GB memory
per node.

The code used in this thesis, based on the turbulence models introduced
in Chapter 2, was validated in [79] through a decaying isotropic turbulent
test case in which di�erent LES models were successfully compared with
experimental results. The author (for details see [79]) showed that the σ-
models (static and dynamics) obtain an excellent agreement (measuring the
kinetic energy) with experimental results (see Figure 5.1). Moreover, the
code was also used in the cardiovascular framework, in a stenotic carotid
context [17] and in a primary study of transition to turbulence in AAA [20].

1https://cmcsforge.epfl.ch/doxygen/lifev/
2http://glaros.dtc.umn.edu/gkhome/views/metis
3http://trilinos.sandia.gov
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(a) High vorticity coherent

structures. (b) Resolved kinetic energy.

Figure 5.1: (a) High vorticity coherent structures in the freely decaying
isotropic homogeneous turbulence simulation; (b) Time evolution of resolved
kinetic energy: comparison between the static σ model, and its dynamic
version, with the experimental data. Pictures taken from [79].

Using the working conditions described in the Section 5.1 we ran the
following simulations:

• DNS no-model on mesh-DNS ;

• LES static σ-model (Cσ = 1.5) on mesh-LES ;

• LES dynamic σ-model on mesh-LES.

The chosen value Cσ = 1.5 for the static σ-model was used by Nicoud et
al. [38] in the case of decaying isotropic turbulence and plane channel �ow,
and also successfully used in another heamodynamic case treating the study
of turbulence �ow in a stenotic carotids in presence of atheromasic plaque
[17], and in a primary investigation of turbulence �ow in an abdominal aortic
aneurysm [20].
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Figure 5.2: Systolic velocity pro�le at the inlet.

5.1 Simulations parameters

Common parameters among the simulations are:

• time step of δt = 2ms with a BDF2;

• Nc = 6 cardiac cycles; Thb = 0.7s heartbeat period: T = NcThb = 4.2s;

• P2 − P2 FE spaces with SUPG-PSPG stabilization;

• SUPG-PSPG coe�cient γ = 1;

• static σ-model constant Cσ = 1.5;

• blood density ρ = 1.06 g/cm3;

• blood dynamic viscosity µ = 0.035 g/(cm s);

• blood kinematic viscosity ν = µ
ρ

= 0.033 cm/s2;

• 2R = 1.8cm, the diameter at the inlet.

• Qs = 125cm3/s, the systolic �ow rate at the inlet (see Figure 5.3);

• Us = 2Qs
πR2 ' 100cm/s is the max systolic velocity at the inlet (see Figure

5.2).

The peak systolic Reynolds number, Res, at the inlet is

Res =
UsR

ν
=

2Qs

πRν
' 2700.

77



Figure 5.3: Six cardiac cycles, with period Thb = 0.7s for each cycle.

We considered six cardiac cycles for a total simulation time of 4.2s. For
six cardiac cycles (see Figure 5.3), we have (see Table 5.1 ):

• at t
(n)
s = n 0.196s, n = 1, ..., 6, Systolic peaks,

• at t
(n)
m = n 0.31s, n = 1, ..., 6, Mid deceleration points,

• at t
(n)
d = n 0.5s, n = 1, ..., 6, Diastole peaks.

Table 5.1: Systolic, Mid deceleration, and Diastolic points, in Nc = 6.

ts tm td

1stThb 0.196s 0.310s 0.500s
2ndThb 0.896s 1.010s 1.200s
3thThb 1.596s 1.710s 1.900s
4thThb 2.296s 2.410s 2.600s
5thThb 2.996s 3.110s 3.300s
6thThb 3.696s 3.810s 4.000s
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Figure 5.4: Velocity magnitude in the center line of a cylinder middle plane
for the complete SUPG-PSPG (in red) and for the "steady" SUPG-PSPG
stabilization (in blue).

5.2 SUPG-PSPG implementation

In LIFEV library the SUPG-PSPG stabilization (described in Section 3.4)
was implemented only for the case of steady NS equations4.

In this thesis, we implemented the fully SUPG-PSPG stabilization for the
complete NS (3.1) (in the monolithic framework). In particular, we add to

the existing SUPG-PSPG function of LIFEV library the missing terms s
(1)
11 ,

s
(1)
21 , fv, and fq (refer to 3.13).
We have tested the complete SUPG-PSPG stabilization just implemented,

comparing it with the steady version, in the simple case of a �ow inside a
cylinder.

Figure (5.4) shows the comparison between the new version of the com-
plete SUPG-PSPG stabilization and the steady old version. Observing the
plot on the left in Figure (5.4), we see how the complete stabilization is less
dissipative with respect to the steady version. This is because the steady
version is a consistent stabilization, while the complete version is a strongly
consistent one.

The less dissipation of the complete SUPG-PSPG is a very important
feature because, when we add in the NS equations the term corresponding to
the subgrid viscosity characteristic of the LES σ-model, also the subgrid term
produces some dissipation. With a mesh very �ne, both the stabilization
and the subgrid terms goes to zero. The important di�erence is that the
SUPG-PSPG refers to a numerical arti�cial di�usion, while the turbulent

4The steady Navier Stokes equations do not include the temporal derivative in the 3.1a.
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viscosity is a physical di�usion which is involved in the process of modeling
the unresolved scales. Hence the use of a strongly consistent stabilization is
mandatory to avoid numerical arti�cial dissipation.

All the results that follows use the new complete version of the SUPG-
PSPG stabilization.

5.3 Description of the reference solution

Our �rst analysis concerns the description of the blood �ow dynamics emerg-
ing by the DNS-reference/no-model simulation.

We considered three time instants in the �rst cardiac cycle, namely the
systolic peak ts = 0.196s, the mid-deceleration point tm = 0.310s, and the
diastolic peak td = 0.500s.

In Figure 5.5 we report the velocity �eld magnitude during the �rst heart-
beat at three di�erent sliced planes: the Internal plane, a middle slice in-
cluding both the inlet and the outlets; the Impingement plane, normal to
the Internal plane, starting from the inlet and �nishing on the shear layer
impact zone on the bulge of AAA; the Bag plane, normal to the Internal and
Impingement planes, taken approximately in the middle of the AAA bulge.
The view generated by these sliced planes can be useful to see the evolution
of the blood �uid dynamics inside the AAA. Figure 5.7 shows all the planes
mentioned above viewed separately.

In Figure 5.6 we report the velocity �eld magnitude on �ve consecutive
3D warped sliced sections (from the inlet to the outlets).

From the Figures (5.5, 5.6, 5.7) we observe, as expected, the formation of
a shear layer, which is compact and intact at the Systole (see Figures 5.5a,
5.6a, 5.7a). The jet impinges on the distal part of the aneurysmatic sac, and
breaks down leading to chaotic and random swirling structures inside the
AAA (see Figures 5.5b, 5.6b). We can see that after �ow impingement on
the arterial wall, the �uid creates a complex vortical �eld (see Figures 5.5b,
5.7b). The vortices created persist during the diastolic phase till the end of
the cardiac cycle (see Figures 5.5c, 5.6c, 5.7c).

The above considerations are con�rmed also by the Figure 5.8 represent-
ing the vorticity (ω = ∇× u) �eld for the same sliced planes (Internal, Im-
pingement, Bag plane). In Figure 5.8a we can see the annular vortex formed
during the systolic phase, which grows and advances, and �nally breaks into
smaller vortices during mid-deceleration and diastolic phases (see Figures
5.8b, 5.8c). Hence, at the mid-deceleration point, the transitional e�ects
are well highlighted also by the vorticity. During the remaining part of the
cardiac cycle, these vortices decay slowly.
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Lastly, in Figure 5.9 we report the Wall Shear Stress (WSS) over the �rst
heartbeat. The WSS reaches its maximum value during the mid deceleration
phase. From the Figure 5.8a, we observe large values in correspondence of
the impingement regions.

These Figures (5.5, 5.6, 5.7, 5.8, 5.9) indicate that for the DNS-reference
solution the presence of disturbed �ow �eld , in the aneurysmatic sac, appears
particularly at the mid-deceleration and early diastolic phases.

We conclude by saying that the pulsatility of the blood �ow does not
allow the complete development into a turbulent �ow regime. This is pre-
vented by the acceleration phase of a new heartbeat that laminarizes the �ow
(see Figure 5.27a). This is the reason why we prefer to call the instability
processes in AAA, a transition to turbulence, instead of a fully developed
turbulent �ow.
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(a) Systolic peak.

(b) Mid deceleration point.

(c) Diastolic peak.

Figure 5.5: DNS Velocity �eld on three sliced planes (Internal, Impingement,
and Bag plane) at Systole (a), Mid deceleration point (b), Diastole (c).
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(a) Systolic peak.

(b) Mid deceleration point.

(c) Diastolic peak.

Figure 5.6: DNS Velocity �eld on di�erent 3D warped sliced sections (from
the inlet to outlets) at Systole (a), Mid deceleration point (b), Diastole (c).
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(a) Systolic peak.

(b) Mid deceleration point.

(c) Diastolic peak.

Figure 5.7: DNS Velocity �eld on Internal, Impingement, and Bag plane at
Systole (a), Mid deceleration point (b), Diastole (c).
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(a) Systolic peak.

(b) Mid deceleration point.

(c) Diastolic peak.

Figure 5.8: DNS Vorticity �eld on Internal, Impingement, and Bag plane at
Systole (a), Mid deceleration point (b), Diastole (c).
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(a) Systolic peak.

(b) Mid deceleration point.

(c) Diastolic peak.

Figure 5.9: DNS Wall Shear Stress (for di�erent views) at Systole (a), Mid
deceleration point (b), Diastole (c).
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5.4 Comparison between di�erent simulations

The aim of this Section is to provide a comparison among the solutions
obtained by the reference simulation (DNS) and the LES models (σ-static
and σ-dynamic) described in Chapter 2.

A �rst comparison was made considering the WSS, the velocity and the
vorticity �elds. Again, we considered three time instants in the �rst cardiac
cycle: systolic peak ts = 0.196s, mid-deceleration point tm = 0.310s, and
diastolic peak td = 0.500s.

Regarding the velocity (Figures 5.10, 5.11, 5.12) and vorticity (Figures
5.13, 5.14, 5.15) �elds we focused our analysis at the same sliced plane con-
sidered in the description of reference solution (Internal, Impingement, and
Bag plane).

At the systolic peak, velocity and vorticity �elds presents very small dif-
ferences between the simulations (see Figures 5.10, 5.13). Some marginal
di�erences can be noticed during the deceleration phase (see Figures 5.11,
5.14), while greater di�erences can be seen going to the diastolic phase. At
the diastolic peak the di�erences are ampli�ed and become signi�cant (see
Figures 5.12, 5.15). Moreover, the vorticity �eld patterns with the DNS
�ner mesh are better captured. In particular, vortices in simulations with
LES models seem to be more compact and less dispersed with respect to the
DNS-solution (see Figure, 5.15). Moreover, the LES simulations seem to be a
little bit more dissipative then the DNS one. This dissipation may be due to
the turbulent viscosity that take into account the unresolved scales. Lastly,
almost no di�erences can be noticed between the σ-static and σ-dynamic
simulations.

Similar considerations can be done for the WSS (Figures 5.16, 5.17, 5.18).
WSS reaches its maximum values at the mid deceleration point (see Figure
5.16). From Figure 5.16, we observe large values in the impingement region.
Between the DNS and the LES simulations, almost no di�erence can be seen
during the systolic peak (Figure 5.16), while some di�erences are present
at the mid deceleration point (Figure 5.17). Going to the diastolic phase,
di�erences in WSS patterns become remarkable.

The di�erences around the diastolic phase could be explained by the pres-
ence of transitional �uctuations that arise during deceleration and diastolic
phases. Indeed, the primary vortex burst occurs during these phases of the
cardiac cycle. The vortex burst leads to a disturbed �ow and thus to turbu-
lent transitional �ow that produces a �uctuating velocity �eld.

Notwithstanding these di�erences, in this �rst comparison, the DNS and
the LES simulations capture almost the same features in the blood �uid
dynamics inside the aneurysmatic sac.
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(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.10: Velocity �eld at the Systole on Internal, Impingement, and Bag
plane in DNS (a), Static-σ (b), and Dynamic-σ (c) simulation.
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(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.11: Velocity �eld at Mid deceleration point on Internal, Impinge-
ment, and Bag plane in DNS (a), Static-σ (b), and Dynamic-σ (c) simulation.

89



(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.12: Velocity �eld at Diastole on Internal, Impingement, and Bag
plane in DNS (a), Static-σ (b), and Dynamic-σ (c) simulation. Notice that
the halved colorbar with respect to the Figure at the Systole and Mid-
deceleration point.
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(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.13: Vorticity �eld at Systole on Internal, Impingement, and Bag
plane in DNS (a) Static-σ (b) and Dynamic-σ (c) simulation.
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(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.14: Vorticity �eld at Mid deceleration point on Internal, Impinge-
ment, and Bag plane in DNS (a), Static-σ (b), and Dynamic-σ (c) simulation.

92



(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.15: Vorticity �eld at Diastole on Internal, Impingement, and Bag
plane in DNS (a), Static-σ (b), and Dynamic-σ (c) simulation.
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(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.16: Wall Shear stress (for di�erent views) at Systole in DNS (a),
Static-σ (b), and Dynamic-σ (c) simulation.
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(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.17: Wall Shear stress (for di�erent views) at Mid deceleration point
in DNS (a), Static-σ (b), and Dynamic-σ (c) simulation.

95



(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.18: Wall Shear stress (for di�erent views) at Diastole in DNS (a),
Static-σ (b). and Dynamic-σ (c) simulation.
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To better investigate the blood dynamics and in particular the transitional
e�ects in the AAA geometry, we introduce the following operators and post-
processed quantities:

• Ensemble-Average: given a quantity f(t,x), we de�ne its ensemble-
average as

< f(t,x) >=
1

Nc

Nc∑
i=1

f
(
x, t+ (i− 1)Thb

)
.

This allows us to remove from the �eld of interest the random, zero-
time-mean �uctuations due to the transitional e�ects appearing at each
heartbeat. In this thesis, we consider the ensemble-average of the ve-
locity �eld along a line in the Impingement plane (see Figure 5.24). Six
cardiac cycles were simulated, Nc = 6.

• TAWSS, Time Averaged Wall Shear Stress: the TAWSS is the integral
over some period (in particular we consider the interval [Thb, 3Thb]) of
the magnitude of the WSS

TAWSS =
1

2Thb

∫ 3Thb

Thb

|WSS|dt

• Q-criterion: the scalar �eld Q is de�ned as

Q(t,x) =
1

2

[∑
i,j

Ω2
ij(t,x)− S2

ij(t,x)

]
,

where Ω, S are the skew-symmetric and the symmetric part of the ve-

locity gradient tensor, respectively: Ω = ∇u−(∇u)T

2
, S = ∇u+(∇u)T

2
. The

Q-criterion consists in analyzing the iso-contours of the positive part
of Q with the aim of visualizing the coherent vortex structures. Indeed,
positive values of Q indicate locations where rotations dominates over
strain and shear. This allows us to identify regions where vortical struc-
tures are present. In particular, we plot the iso-contours corresponding
to Q ≥ 5000 (see Figures 5.20, 5.21, 5.22) and color them according to
the velocity magnitude.

• Global Kinetic Energy, K(t), de�ned as the ensemble average of the
total Kinetic Energy:

K(t) =
1

2
ρ

∫
Ω

1

M

Nc∑
i=1

|u(t+ (i− 1)Thb,x)|2dΩ.
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These quantities give an insight into the main characteristics of the peri-
odic blood �ow. In particular, by studying them, we can identify the regions
where the �ow experiences the highest variability among di�erent cycles,
which can be an indicator of transition to turbulence.

In �gure (5.19) we show the TAWSS patterns which are similar for all
the simulations. The regions with the most pronounced di�erences are the
front and the distal parts of the AAA bulge wall (see pictures in the middle
in Figures 5.19). Nonetheless, the LES simulations seem to underestimate
the TAWSS, all the simulation shown the same patterns. In particular the
dynamic-σ underestimates the TAWSS with respect to the static-σ simula-
tion.

In Figures 5.20, 5.21, 5.22 we plot the vortical structures identi�ed by
means of the Q-criterion. In all the simulation (DNS and LES) we have
the formation of a vortex ring at the systolic peak (see Figure 5.20) which
impinges the AAA sac at the mid deceleration phase (see Figure 5.21) and,
after the breakage, partially exits through the iliac outlets (see Figure 5.22),
as also observed in [20]. The DNS is able to capture more coherent struc-
ture with the respect of LES models, especially in the Diastolic peak (see
Figure 5.22). This greater resolution power of the DNS for the Q-criterion
can be explained recalling the enstrophy spectrum of turbulent �ows. The
enstrophy, Z, can be described as the integral of the square of the vorticity

Z(ω) =
1

2

∫
Ω

ω2 dΩ.

In K41 theory the enstrophy spectrum goes like

Z(k) = E(k)k2 ∼ k1/3,

where we recalled that in K41 the energy spectrum goes like k−5/3. So, in
doing the LES models �ltering operation, we are not considering the last part
of the enstrophy spectrum which is a an increasing function of k. Hence, the
Q-criterion of the DNS, which is a quantity directly related to the vorticity,
is able to capture more coherent structures particularly in the diastolic peak.
This more resolution power of the DNS can be seen also looking at the
vorticity �eld in the diastolic peak (see Figure 5.15).

In Figure 5.23a we report the time evolution of the Kinetic Energy over
six heartbeats for all the simulations (DNS, σ-static, and σ-dynamic). In
Figure 5.23b we show the Global kinetic energy over the mean period. We
observe that, the peak value is reached during the mid-deceleration phase
(t ∼ 0.2 − 0.3s). All the simulations are in perfect agreement, with the
static-σ simulation more close to the DNS particularly after the systolic peak.
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In Figure 5.24 we report the Ensemble Average Velocity magnitude along
a line in the Impingement plane, at systolic peak (Figure 5.24a), mid de-
celeration point (Figure 5.24b), and Diastolic peak (Figure 5.24c). In the
systolic phase there is a very good agreement between the simulations (see
Figure 5.24a). This is not surprising since at this location we are in laminar
regime. Also at the mid deceleration point (where the transitional e�ects are
relevant) we can observe agreement between the LES models and the DNS-
reference simulation (see Figure 5.24b). During the Diastolic peak there are
some di�erence. Notwithstanding the ensemble average operation, the dias-
tolic peak still presents signi�cant �uctuations for all the simulations. This
means that six heartbeats are not enough to remove most of the �uctuations.
A better investigation should be done making the ensemble average over more
than six heartbeats. Notwithstanding these di�erences at the diastole, all the
simulations seem to show the same trend (see Figure 5.24c).

From this further analysis we conclude that the DNS and the LES mod-
els show the same features in the transition of turbulence inside the AAA
geometry which occur at the mid deceleration phase. In particular, we ob-
served that all the reported quantities of interest, related to the formation of
transitional e�ects, are higher during the mid deceleration phase.
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(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.19: Time Average Wall Shear stress (for di�erent views) between
[Thb, 3Thb] in DNS (a), Static-σ (b), and Dynamic-σ (c) simulation.
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(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.20: Q-criterion (di�erent views), colored by velocity, at Systole in
DNS (a), Static-σ (b), and Dynamic-σ (c) simulation.
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(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.21: Q-criterion (di�erent views), colored by velocity, at Mid decel-
eration point in DNS (a), Static-σ (b), and Dynamic-σ (c) simulation.
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(a) DNS.

(b) Static-σ.

(c) Dynamic-σ.

Figure 5.22: Q-criterion (di�erent views), colored by velocity, at Diastole in
DNS (a), Static-σ (b), and Dynamic-σ (c) simulation.
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(a) Kinetic Energy on [0, 6Thb]

(b) Ensemble Average Kinetic Energy.

Figure 5.23: Kinetic Energy (a) and Global Kinetic Energy (b) for DNS (in
red), Static-σ (in blue), and Dynamic-σ (in black) simulation.
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(a) Systole.

(b) Mid deceleration point.

(c) Diastole.

Figure 5.24: Ensemble Average Velocity magnitude at Systole (a), Mid de-
celeration point (b), and Diastole(c) along a line (shown in black) on the
Impingement plane for DNS (in red), Static-σ (in blue), and Dynamic-σ (in
black) simulation.
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5.5 Turbulent Viscosity

We observed that the use of LES models leads to di�erences with respect
to the DNS-no model simulation after the mid deceleration point. This dis-
crepancy is due to the �uctuating process which should be included in the
turbulent viscosity term related to the LES model. For this reason, in the
σ-static simulation we investigated, where and when the turbulent viscosity
νsgs is active.

In Figure 5.26 we report the ratio between the subgrid-scale viscosity and
the molecular one (νsgs

ν
) along the usual sliced plane (Internal, Impingement,

and Bag plane) at systolic peak (Figure 5.26a), mid deceleration point (Figure
5.26b), and diastolic peak (Figure 5.26c). The subgrid-scale viscosity reaches
values up to �ve times the molecular one.

In Figure 5.27 we visualize, on the Impingement plane, the velocity �eld
(on the left) and the turbulent viscosity (on the right), at the systole (Figure
5.27a), mid deceleration point (Figure 5.27b), and diastole (Figure 5.27c).
From these Figures we can observe how the LES model correctly turns o�
when the shear layer enters in the AAA bulge (see Figure 5.27a), while it
activates when the shear layer, impacting on the aneurysmatic wall, begins to
produce vortical structures (see Figures 5.27b). Turbulent viscosity still re-
mains active also during the diastolic phase, when highly �uctuating velocity
�eld is present in the AAA geometry (see Figure 5.27c).

Figure 5.28 shows the contour surface of the turbulent viscosity (νsgs
ν
≥ 3)

at the systolic peak (Figure 5.28a), mid deceleration point (Figure 5.28b), and
diastolic peak (Figure 5.28c). Regions with large turbulent viscosity reach
the maximal �lling, inside the aneurysmatic bulge, at the mid deceleration
point (see Figure 5.28b).

In Figure 5.29 we report the turbulent viscosity (νsgs
ν
) along the stream-

lines at the systolic peak (Figure 5.29a), mid deceleration point (Figure
5.29b), and diastolic peak (Figure 5.29c). We can observe how turbulent
viscosity is concentrated along some vortical streamline structures, in partic-
ular those near the impingement zone (Figure 5.29b, 5.29c).

In Figure 5.30 we report the ensemble average turbulent viscosity (νsgs
ν
)

along the Impingement plane line (see Figure 5.24) for the σ-static and σ-
dynamic simulation, at the systolic peak (Figure 5.30a), mid deceleration
point (Figure 5.30b), and diastolic peak (Figure 5.30c). There is a marked
di�erence between the σ-static and σ-dynamic turbulent viscosity, mainly
because the dynamic νsgs can take negative values, which correspond to the
backscatter phenomena. In fact, the backscatter percentage in the σ-dynamic
simulation oscillates around the 45% (see Figure 5.25), in agreement with
reported values in turbulent �ows for the plane channel �ow [105].
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Figure 5.25: Backscatter percentage in the Dynamic-σ simulation.

Lastly, in Figure 5.31 we display the values of the Cσ coe�cient, related
to the turbulent viscosity, for the σ-static and σ-dynamic simulation. The
dynamic Cσ coe�cient is a very variable function of space and time, in par-
ticular during the systole (see Figure 5.31a). As we can see from Figure 5.31,
six heartbeats are not enough to capture the average trend of Cσ. Moreover,
these highly �uctuating values of Cσ could destabilize the solution destroying
the numerical stability. Fortunately, in our case, after the systolic peak Cσ
oscillates between a less wide range of values (see Figure 5.31b-5.31c).

From the turbulent viscosity analysis we found that the LES model is
active, in particular during the mid-deceleration and early diastolic phases,
with the subgrid-scale viscosity reaching values up to �ve times greater than
those of the molecular viscosity. The regions with large values of the subgrid-
scale viscosity are those where the �ow is disturbed (high �uctuations of the
velocity magnitude). On the other hand, the LES model switches itself essen-
tially o� in the laminar regions, unlike the Smagorinsky model, for example
(as mentioned in Section 2.5). This con�rms the suitability of the σ−LES
models in this context, being able to turn on only where and when needed.
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(a) Systole.

(b) Mid deceleration point.

(c) Diastole.

Figure 5.26: Turbulent viscosity (νsgs
ν
) at Systole (a), Mid deceleration point

(b), and Diastole(c) on the Internal, Impingement, and Bag plane for the
Static-σ simulation.
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(a) Systole.

(b) Mid deceleration point.

(c) Diastole.

Figure 5.27: Velocity �eld (on the left) and Turbulent viscosity (on the right)
on the Impingement plane at Systole (a), Mid deceleration point (b), and
Diastole(c) for the Static-σ simulation.
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(a) Systole.

(b) Mid deceleration point.

(c) Diastole.

Figure 5.28: Turbulent viscosity iso-surface (νsgs
ν
≥ 3), colored by velocity,

for the Static-σ simulation.
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(a) Systole.

(b) Mid deceleration point.

(c) Diastole.

Figure 5.29: Turbulent viscosity (νsgs
ν
) along the streamlines at Systole (a),

Mid deceleration point (b), and Diastole(c) for the Static-σ simulation.

111



(a) Systole.

(b) Mid deceleration point.

(c) Diastole.

Figure 5.30: Ensemble Average Turbulent viscosity (νsgs
ν
) at Systole (a), Mid

deceleration point (b), and Diastole(c) along the Impingement plane line for
Static-σ (in blue), and Dynamic-σ (in black) simulation.
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(a) Systole.

(b) Mid deceleration point.

(c) Diastole.

Figure 5.31: Ensemble Average for the costant Csigma at Systole (a), Mid
deceleration point (b), and Diastole(c) along the Impingement plane line for
Static-σ (in blue), and Dynamic-σ (in black) simulation.
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Figure 5.32: Total Iteration time for all the simulations.

5.6 Computational costs

Figure 5.32 shows the total iteration time, which is the time that the code
needs to complete one time step (updating the NS matrix, computing the pre-
conditioner, if needed, and solving the linear system) for the �rst heartbeat
(0− 0.7s).

The spikes in Figure 5.32 correspond to the recalculation of the precondi-
tioner. We chose to reuse the preconditioner of the previous time step if the
linear system is solved in certain number of iteration, while it is recalculated
if exceed this threshold.

In Figure 5.32 the total iteration time for the DNS simulation is about ten
times bigger than those of static-σ and dynamic-σ. While, the total iteration
time for the dynamic-σ is doubled with respect to the static-σ. Below, we
report the mean total iteration time, < t >, and the total time to complete
an heartbeat, T , for each simulation.

• < t >DNS∼ 13.6min =⇒ TDNS ∼ 79.5 hrs;

• < t >SS∼ 1.36min =⇒ TSS ∼ 7.9 hrs;

• < t >DS∼ 2.7min =⇒ TDS ∼ 15.8 hrs.

From these results it is evident how a LES turbulence modeling approach
strongly reduces the computational cost with respect to a DNS.
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Appendix

Figure 5.33: Meshes for di�erent h.

5.7 LES Grid convergence study

We studied the behavior of the static-σ LES model for a grid re�nement. We
created an arti�cial surface similar to a real AAA geometry. Using the VMTK
library, the built on purpose surface was turned into volumetric meshes of
linear tetrahedra for di�erent characteristic space discretization parameter.
We obtained the following meshes (see Figure 5.33):

I 25K tetrahedra corresponding to h = 0.55cm;

II 52K tetrahedra corresponding to h = 0.416cm;

III 102K tetrahedra corresponding to h = 0.32cm.

In all the meshes we selected 3 boundary layers of thickness sBL = 0.13cm
with ratio of δs = 0.7 between two successive layers. At the inlet we imposed
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Figure 5.34: Meshes for di�erent h.

a parabolic in space velocity pro�le with a time variation �ow rate Q(t)
shown in Figure 5.34. At the outlet we prescribed the usual Robin non linear
boundary condition characteristic of the Back�ow stabilization, while on the
lateral surface we imposed a zero velocity pro�le.

We used a BDF2 in time discretization with a δt = 0.01s in combination
with a P2 − P2 space discretization.

In Figure 5.35a we report the ratio between the turbulent viscosity and the
molecular one (νsgs

ν
) in the sliced middle plane for di�erent mesh re�nements

(25K, 52K, 102K), at the systole (Figure 5.35a), mid deceleration point
(Figure 5.35b), and diastole (Figure 5.35c) of the signal Q(t) (see Figure
5.34).

Figure 5.36 shows the contour-surface of turbulent viscosity (νsgs
ν
≥ 4)

colored by velocity, at the systole (Figure 5.36a), mid deceleration point
(Figure 5.36b), and diastole (Figure 5.36c), for di�erent mesh re�nements
(25K, 52K, 102K).

Observing the Figures 5.35, 5.36, we can say that the contribution of the
subgrid-scale modeling is, as expected, greater for the coarsest mesh in order
to account for the higher frequency cuto� (introduced by the implicit �lter).
For a grid re�nement the contribution of turbulent viscosity is smaller with
respect to a coarser grid.
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(a) Systolic peak.

(b) Mid deceleration point.

(c) Diastolic peak.

Figure 5.35: Turbulent viscosity, νsgs
ν
, in the middle plane at the Systole (a),

Mid deceleration point (b), and Diastole (c), for di�erent mesh re�nements
(25k, 52k, 102k).
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(a) Systolic peak.

(b) Mid deceleration point.

(c) Diastolic peak.

Figure 5.36: Turbulent viscosity iso-surface, νsgs
ν
≥ 4, at the Systole (a), Mid

deceleration point (b), and Diastole (c), for di�erent mesh re�nements (25k,
52k, 102k).
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Conclusion

In this thesis, Large Eddy Simulation σ-models (static and dynamic) have
been used to study the transition to turbulence in Abdominal Aortic Aneurysms.

During the work of this thesis we implemented in LIFEV a complete
version of SUPG-PSPG able to show less numerical dissipation with respect
to the steady old version. This new version will help future numerical studies.

We compared the LES simulations with a reference solution obtained at
high resolution without any turbulent model, that we called DNS. The con-
sidered LES models are capable to turn on in regions where the instabilities
and �uctuations occur, i.e. at the mid-deceleration and diastolic phases.
The main di�erences between LES simulations and the DNS one are shown
to be during mid-deceleration and diastolic phases. These discrepancies are
probably caused by transitional e�ects during these phases that we found are
incorporated in the turbulence viscosity of LES models.

The static-σ and the dynamic-σ simulations shows very similar features
in any quantity we have analyzed. Some minimal di�erences are found to be
in the diastolic phase. This is probably, but not only, due to the fact that
the dynamic σ-model is able to reproduce the backscatter phenomena. In
fact, the backscatter percentage of the Dynamic-σ is about the 45%.

Turbulent transitional e�ects were studied by computing the ensemble
average of the velocity magnitude, the Q-criterion, evaluating the global
kinetic energy, and the Time Average Wall Shear Stress. Also for these
quantities of interest there are marked di�erences around the diastolic phase.
However, these di�erences seem to have a limited impact on the TAWSS.

We studied where and when turbulent viscosity in static σ-model evolves
inside the AAA geometry measuring the ratio between the subgrid-scale vis-
cosity and the molecular one. From this analysis we found that LES models
are active in particular during the mid deceleration and early diastolic phase,
with the turbulent viscosity reaching values up �ve time greater than those
of molecular one.

The results demonstrate the suitability of the considered LES σ-models
to describe turbulent transitional e�ects in the AAA.
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Achievements

The achievements of this thesis are summarized in what follows:

1. we implemented in LIFEV a complete version of SUPG-PSPG able to
shows less numerical dissipation with respect to the steady old version;

2. we studied the contribution of LES σ models in describing the �uid
dynamics inside a patient speci�c AAA. The main di�erences with
respect to a DNS simulation are shown to be during mid-deceleration
and diastolic phases;

3. we built an high resolution reference solution based on a simpli�ed
shear layer 2D model to estimate the grid size and time discretization
parameter needed to capture all the important features of the �uid �ow
in a AAA. We referred to this simulation as DNS;

4. we post-process the obtained numerical solutions to asses hemodynamic
signi�cant quantities, such as TAWSS and vortical structures enduced
via the Q-criterion;

5. we studied where and when turbulent viscosity in static σ-model evolves
inside the AAA geometry measuring the ratio between the subgrid-scale
viscosity and the molecular one.
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Possible future improvements

Many improvements can be made in future works. In particular:

• We made the assumption of rigid walls which represents a �rst limita-
tion of the present work. Indeed �exible walls could a�ect the velocity
�uctuations and WSS values. Thus, a Fluid-Structure Interaction sim-
ulation with LES turbulent model could increase the accuracy of the
results presented in this thesis.

• Another approximation introduced is related to the boundary condi-
tions. In absence of measures, we prescribed a parabolic velocity pro�le
with a representative �ow rate at the inlet, whereas zero stresses are
set at the iliac outlets. These boundaries conditions do not take into
account the rest of the cardiovascular system. Hence, the prescription
of patient-speci�c velocity data could provide more accurate results.

• As we have seen, for most of the ensemble average quantities evaluated,
six heartbeats are not enough to remove most of the �uctuations, and to
capture the average trends. We need to perform many more heartbeats
in order to access at smooth average trends.

• In order to further validate the suitability of LES σ-models we can
compare these models with other LES approaches, like the Variational
Multiscale Large Eddy Simulation (VMS-LES) [61].
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