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1. Introduction.

Our purpose is to give some conditions sufficient to guarantee the local existence,
uniqueness, extendibility, and continuity of solutions of a general Volterra integral
equation with multiple, variable lags. Specifically we consider, for 7 ¢ [a, b), a<
b< + o, the system

x) = fO)+ j Fult, 5, 5,(gu(®), - Xn(@en@Nds,  i=1,2,-+,n,

where x;, f;, F;, and g,; are scalar valued functions of their arguments. Using the
simplifying notation x(f)=col (x;(¢)), f(#)=col (f;(?), F(,s, x(g(s)))=col (F,(t, s,
X,(94(5)), - - -, X2(9:2(5)))) we may write the system more concisely as

) x() =1(t) +j F(t, s, x(g(s)))ds.

Throughout it is assumed that g;;(s)<s for all a<s<<b. The solution of (E) is to
be prescribed on a suitable initial interval which depends on the g;;; namely, if
A={s: a<s<b, g,;;(s)<a for some i,j} and I={t: t<a, t=¢,;,(s) for some s € A}
then it is required that

o) x(t)=h(1), tel

for a given function h(f) defined on I. We seek conditions on F, f, and g,; under
which the “initial value problem” (E) and (IC) has a local solution x(#) on [a, c] for
some c ¢ (a, b) ; we also consider the problem of the uniqueness of this solution, its
extendibility in ¢ as a solution and the dependence of x on f and F.

We point out that the problem (E)—(IC) includes the initial value problem for
ordinary differential and integrodifferential systems with or without lags as well as
the familiar Volterra equation without lags. Problems of the type (E)-(IC), however,
have arisen in certain applications to impulse theory [4, 5] and have been considered
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in a few recent papers [2, 7] where, in these references, comparison theorems and
resulting uniqueness theorems for (E) are presented without proof, and some prop-
erties of a resolvent for a linearized version of (E) are asserted, again without
proof. Our main motivation here is simply to establish the basic theory for (E)-(I1C)
for future reference. Although there are no particular surprises in the results, the
complications introduced by variable time-lags require care, and it seems advisable
to set down the explicit results here, separate from other more detailed considerations
regarding the system (E)-(IC). Our results serve as generalizations of such results
for ordinary differential systems [1] as well as Volterra integral equations (without
lags) [3].

We will make the following assumptions throughout the paper: F(¢,s, x) is
measurable in (s, x) € [a, 1] X 2, 2=openC R" and bounded in (s, x) on compact sub-
sets of [a, t] X 2 for every t ¢ [a, b) ; F(t,s,x)=0 for s>¢ and all x € 2; f(¢) is con-
tinuous on [a, b) ; the sets 4 and I are measurable ; and A(?) and g,,() are bounded
and measurable on / and A respectively. It is also assumed that A(f) e 2 for te I
and f(a) € 2. A solution of (E)-(IC) on an interval [a, b), a<b< + « (or [a,c],
¢< + o) is a function continuous on [a, b) (or [a, c]), satisfying (IC) on I and (E)
on [a, b) (or [a, c]).

2. Local existence and uniqueness.

We will prove two existence theorems, one by using the Schauder-Tychonoff
fixed point theorem and the other by using the contraction principle on the operator
T defined by

ro— {f(t) +[ s g, telaatal
h(?), tel

for a §>0 sufficiently small.
We will need the following hypotheses :

) {For every t ¢ [a, b) and almost all s ¢ [a, t] the function F(¢, s, x) is con-
" ltinuous for x € 2;

There exists a constant ¢’ € (a, b) and a function m(z, s)>0 for which
m(t, -) is integrable for every 7 ¢ [a, ¢’],
H2:
|F(, s, x)|<mlt, 5)
for all a<s<t<c¢’ and x e 0.

Let c € (a, b) and denote by B, the Banach space of functions ¢: I U [a, c]—R” which
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are continuous on [a, c] and equal to A(¢) on I with norm |¢|,=sup, . |#()|. Let
B.(Q)={peB,: p(t) e 2,teIU[a,cl}; B,(2) is an open subset of B,. It is not
difficult to see that under the assumptions made, F(Z, s, #(g(s))) is bounded and
measurable in s ¢ [a, 7] for each ¢ ¢ [a, c] and ¢ € B.(£2) and hence T'¢ is well-defined.
In order to guarantee that T'¢ is itself continuous in ¢ it is necessary to make a further
assumption on F(z, s, x) with respect to its first variable.

There exists a constant ¢’ € (a, b) such that

3. sup, [ |F(t, 5, g(g () —FG. 5, (g(5))] ds—0
as t—1 for all 7 e [a, ¢’] where the supremum is taken over any bounded
subset of B..(£2).

Note that if H2 or H3 hold for some ¢’ ¢ (a, b) then they hold for all ¢’ closer
to a (with the same m(z,s) in H2). This hypothesis is a little clumsy as it stands
but it is a natural one for our purposes below. It would not be difficult to put
conditions on F(¢, s, x) as a function of (¢, s, x) sufficient to guarantee H3 (an obvious
one would be a Lipschitz type condition in ¢ with suitable Lipschitz “constant”
k(s, x)) ; we will refrain from doing this however, as H3 is a more straightforward
assumption for our work below. Under H3, T'¢ is continuous on [a, c] for ¢ € B,(£2),
c<c.

Theorem 1. Assume H1, H2, and H3. Then 3c € (a, b) > problem (E)-(1C)
has a solution x(¥) on la, cl.

Proof. Let ¢’ be asin H3 and H2. Since it is assumed that f(¢) is continuous
on [a, b) and f(a) € 2 we conclude that for all ¢”’<c¢’ close to a we have f(f) e 2 for
tela,c”]. Thus the function

__[f@, tela,c”’]
$= {h(t), tel

lies in B,..(2). For c<c” define S,={¢ € B.(2): |¢()—f(®)|<1, te[a,c]}; S.isa
closed, convex subset of the Banach space B,. Using H3 with =a we see that
there exists ¢ € (a, b) close enough to a such that

Sups,. j IF(t, s, $(9(s))| ds< 1

for t e [a, c] and hence

sups, [ IFG,5, 60| ds<1,  telacl
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We will show: (i) T: S,—S, continuously and (ii) 7S, is precompact. It will then
follow by the Schauder-Tychonoff fixed point theorem [3, 6] that there exists a least
one x € S, such that Tx=x. This function x is a solution of (E)-(IC) on I U[a,c],
continuous on [a, c].

(i) For ¢ € S, we have for ¢ ¢ [a, c] the estimate

| Tg—1(2)] g[ IF(t, 5, §(g(s))) | ds< 1

which shows T maps S, into itself.

Next we show that TS, is an equicontinuous family of functions at each 7 ¢ [a, c].
Given ¢>0, by H3 (for ¢ closer to a if necessary) and the continuity of f, there
exists a §=0(¢) >0 such that |t—7|<é (or I <t<t+0 if 7=a) implies

THO—THDISIO— 1D+ [ IF(t,5, 06 —F . 5, plg(s))| ds<e

forall ¢ € S,; i.e., TS, is equicontinuous at € [a, c].

Now we can show T is continuous on S.. Suppose ¢, €S, and ¢,—¢ € S,
uniformly on [a,c]. Then ¢,(9(s))—¢(9(s)) for each s ¢ [a, c] (since ¢,=¢=~h on
I) and, by H1, F(,s, $,(9(s))—F(t, s, $(g(s))) for every te [a,c] and almost all
sela,t]. Then H2 and Lebesgue’s Dominated Convergence Theorem imply
T¢,—T¢ at each t € [a,c]. Since TS, is equicontinuous at each ¢ € [a, c] it follows
that T¢,—T¢ uniformly on [a, c]; i.e., T: S,—S, is continuous.

(i) The precompactness of 7S, follows from Ascoli’s Lemma since TS, has
been shown equicontinuous at each ¢ € [a, c] and since, by H2, the family 7'S, is
bounded at each ¢ € [a, c] as is seen by the estimate

i(Tgﬁ)(t)lglf(z)JJrf m(t, $)ds < oo

foreach te[a,c]and allg e S... |}
Our next result is obtained by making 7" a contraction on S,. In place of H1
and H3 we need

3 a function k(z,s)>0 > k(z, s) is integrable in s on [a, 7] for all a<t<<b

satisfying r k(z, s)ds—0 as t—a-+ and a constant ¢’ € (a, b) >
H1 “
‘F(t: g, I)—F(t, 5, y)ng(ts S) |x_yl

for each ¢ € [a, ¢’], almost all s € [a, ¢], and all x,y e 2.

3¢’ e (a, b) j F(t,s, g;.(g(s)))dhr F(i, s, $(9(s)))ds
Hsf @ @

(as t—f for all ¢, 7 € [a, ¢’] and for all ¢ in any bounded subset of B,.(£2).
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If H1’ and/or H3’ hold for ¢’ e (a, b) then they hold for ¢’ closer to a. Hypothesis
H3’ guarantees that T'¢ is continuous on [a, ¢’] for ¢ € S, and H2 guarantees (as in
the proof of Theorem 1) that 7" maps S, into itself for ¢ close enough to a.

t
Theorem 2. Assume H1’, H3’, and H2 with lim,_, I m(t, s)ds=0. Then

3 c e (a, b) > problem (E)-(IC) has a unique solution on [a, c].

Proof. From H3’ follows easily the continuity of T'¢ for ¢ € S, and for c<c’
't
(¢’ asin H1’, H3’, and H2). Let c<c’ be chosen so close to a that I m(t, 8)ds<1,
tela,c]. Then, for ¢ € S., by H2

|T¢—f|gf m(t, s)ds <1

and T maps S, into itself.
We need only show that T is a contraction on S, for ¢ close to a. On [a,c],
c<c’, we have from H3’ the estimate, for ¢ and + € S,

(1) ITp—T|< [ K(t.9)|(0(6) — G ds.

Now since g=+=h on I and g,,(s) <s on [a, b) we see that sup, .;|6(g(s)) —(g(s))|
<SUPp4,e |9(s) —4(s)|. Using this in (1), with z replacing ¢, and then taking the
supremum of both sides of the resulting inequality over the interval z ¢ [a, t] we
obtain

| T6—T4 | <SUPea | Kt )ds|g— V..

From H1’, there exists a ¢ (closer yet to a if necessary) so that r k(t, s)ds<1/2 for

tela,cl. Forsuchace(a,b), |T¢—Tv|.<%6—vl.. W
The final result of this section is a uniqueness result independent of question
of existence.

Theorem 3. (a) Assume H1’. Then 3c e (a, b) such that problem (E)—(1C)
can have at most one solution on [a, c].
(b) Assume H1’ holds for every ¢’ € (a, b) for a function k(t, s) satisfying the

L+
stronger condition I h(t, s)ds—0 as p—0+ uniformly in t on compact subintervals
t

of [a, b). Then problem (E)—(IC) can have at most one solution on [a, b).

Proof. (a) Suppose x(2), y(#) are two solutions of (E)-(IC) continuous on a
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common interval [a,c] where ¢ is so close to a that -r k(t,s)ds<} for te[a,c]
(see H1’). Then x=y=h on I and *

X)) —y(O) = j " IF(, 5, x(9(s))) — F(¢t, 5, y(9(s)))1ds

on [a,c]. Thus, by H1’, we find
t
0 —y@|< [ ke, ds|x—yl.<3lx—l.

on [a,c]. Since the continuous function x—y assumes its supremum |x—y|, some-
where in [a, c] we have a contradiction, unless x=y on [a, c].

(b) Suppose x and y are two solutions continuous on [a, b). Let d ¢ (a, b)
be arbitrary. We wish to show x=y on [a,d]. By (a) we know x=y on [a, c] for
some c € (a, b). If c>d then the assertion is proved. Thus we assume d_>c.

The solutions x and y both solve problem (E)-(IC) on the interval [c, d] with
the lag interval I and A modified in the obvious manner, f replaced by f(#) =f(?)

+r F(t, s, x(g(s)))ds and a replaced by c¢. Noting that the assumptions made on

k in (b) insures
f k(t, s)ds <}

on [c, 2c] (considering how ¢ was chosen in the proof of (a)), we find that
Ix(t) _y(t)‘£% Sup[c,zel fx—J’J

which again leads to a contradiction unless x=y on [c, 2c]. Thus, x=y on [a, 2¢c].
If 2c>d we have the desired result that x=y on [a, d] ; if not the argument may be
repeated m times where m is a positive integer such that mc>d in order to conclude
x=yon [a,d]. |}

3. Extendibility.

We treat the problem of extending a local solution on [a, c¢] until (¢, x(¢)) reaches
the boundary of [a, b) X 2 in the standard way from the theory of differential and
integral equations. The problem (E)-(IC) is translated so that (c, x(c)) becomes
the new “‘initial point” and Theorem 1 or 2 is reapplied. In order to do this it is
necessary to assume that H2, H3 or H1’, H3’ hold for every ¢’ € [a, b) instead of
for some ¢’ € [a, b) as stated above. These corresponding hypotheses will be denoted
by H2, H3, or H1’, H3’ respectively.



Existence, Uniqueness, and Extendibility 107

Suppose x(%) is a solution on [a, c] and that H1, H2, H3 or H1’/, H2, H3’ hold.
Consider the translated system

(EY 2(0)=7(0) +j F(t, s, 2(g(s)))ds
for t>c where
=1+ j " P, 5, x(9(5)))ds.

Define A’={s: g,,(s)<c for some s ¢ [c, b) and some i, j} and I'’={g;,(s): s e A’}
and impose the initial condition

(ICy )= {x(t), tel'’N]a,c]
h(®), tel’NI.

It is not difficult to see that if x(#) solves (E)—(IC) on [a, d] for d > c then z(¢£) = x(?)
for t e [c, d] solves (E)—(IC)’ on [c,d]. Conversely, if z(f) solves (E)—(IC)’ on
[c, d] for some d>c, then x(r) extended to [a, d] by defining x(¢) =z(¢) for ¢ ¢ [c, d]
solves (E)—(IC) on [a,d]. Theorem 1 or 2 can be applied to (E)’'—(IC)’ provided
f(c)=x(c) € 2 and consequently either (c, x(c)) is on the boundary of [a, b) X 2 or
x(f) can be extended as a solution of (E)-(IC) to a larger interval [a,d], d>c.
Continuing in this manner we see that one of the following possibilities arises: (i)
(c, x(c)) € d([a, b) X 2) or (ii) x(#) can be extended as a solution to an interval
[a,c)Z(a, b).

We now examine the latter case more closely when ¢<<b. Let ¢, € [a,c) be
any sequence for which #,—c; we wish to show that the sequence x(z,) ¢ 2 con-
verges. Suppose m<n (and hence 7,,<t?,) ; then

12(t) — x(t) | < |1t — (tw) |+ U F(t,, s, §(g(s)))ds — j " Fltn, 5, $(g(s))ds

=|{t.) —f(tn) |+ _r; F(tm 8, $(9()) —F(tm, 5, $(9(s)))ds 1 -

By either H3 or H3’ the integral tends to zero as n, m—o. Thus, since in addi-
tion f is assumed continuous on [a, b) (and, hence, at ¢) we see that x(z,) is a Cauchy
sequence and consequently under the stated conditions the solution x(f) can be ex-
tended to [a, c] as a solution (by defining x(c~) to be the limit of x(¢,)). But then
either x(c™) € 82 or x can be extended to a larger closed interval as described above.
Thus, even in case (ii) we see that either x(c™) € 32 or x can be extended beyond
¢, provided ¢c<b. In this way we conclude in case (ii) that x can be extended as
a solution to an interval [a, ¢) such that either x(c™) € 92 or ¢=b.
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Theorem 4. Assume either H1, H2, H3 or H1’, H2, H3'. Then the local
solution whose existence is guaranteed by Theorems 1 or 2 respectively can be ex-
tended as a solution of (E)-(I1C) until (¢, x(¢¥)) reaches the boundary of [a, b) X 2 ;
that is, x(f) can be extended to an interval [a, ¢) such that either x(c™) € 052 or c=b.

Note that b can be + o in everything done above and if [a, b) X 2 is unbounded
then oo is said to be on its boundary. :

4. Local dependence of solutions on f, 4, and F.

Suppose x(¢) is a solution of (E)-(IC) with kernel F, forcing function f, and
initial function £ as described in § 1 and assume F satisfies H1’. Without loss of
generality we suppose x(f) is a solution on an interval [a, c] where c is such that

j‘s k(t,s)ds| =k, <1 (cf. H1’ and recall that |@|.=sup, |d(®)[). Let x,(¢) be a

solution of (E)-(IC) on the same interval [a, c] with kernel F,, forcing function f,
and initial function A, as described in § 1 where F,(¢, s, x) and F(t, 5, x) satisfy the
condition

H4: |F(@t,s,x)—Ft,s,x)|<e for all (¢, s, x) € [a,c]l X[a, t] X 2.

Then we can prove the following theorem :

Theorem 5. If x(2), x,(¢) are solutions of (E)-(IC) as described above then
lx_xllcgmax {Supl Ih—hl |9 [1 '_ke]_l[”_fl |c+cs]}‘
Proof. Observe that

lx(g)—xl(g)]cﬁmax {Sl.lp; |h_“h1|’ |x__y|c}glx_yic
unless sup; |A—h,|>|x—y|,. Thus, from (E) for 7 ¢ [a, c]

O =y OI<IHO—A@1+ [ 15, GO —Fit, 5, %g)] ds
<If—hle+ [ 15, (96N —FGt, 5, 59| ds
+[ 1F@, s, 10N —Fit, 5, 596D ds
<If—hle+ | ke, 9ds|3(0) —x,(@) o +-oc.

Taking the supremum of both sides of this inequality for ¢ € [a, c¢] we get

|x—yle <|f—file + ke |X(9) —x,(9) | +ec.
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Thus, either sup;|h—h,|>|x—y|, or
ix_y|c£|f_"f1|c+kc |x—y]c—|—sc

from which the theorem follows. .

5. An application.

The many uses of “variation of constants” formulas for solutions of linear
systems of differential, integro-differential, and integral equations are of course well
known. For example, many stability, boundedness, and other qualitative results
for linear and for nonlinear perturbations of linear systems rely on such representa-
tion formulas. It is possible to derive a “variation of constants” formula for the
solution of linear systems of the form (E) as we will show below. This representa-
tion formula is of course dependent on the concept of a “fundamental solution™ of
linear systems (E). As an application of our results above we will prove the global
existence and uniqueness of such a fundamental solution. (The authors plan to use
the variation of constants formula in future work on the stability of solutions of
problem (E)-(IC).)

Consider system (E) with a linear kernel

@) x(0) =1(t) + j C(t, )x(g(s))ds

where C(t, s) is an n X n matrix with properties sufficient to guarantee the hypotheses
of Theorem 2 on F used above. Let S(©)=A4N|[a,1] for t>a,

i =10) +Lm C(t, Hh(g(s)ds

and

0 forse A, a<s<t

C(t,s)=
C(t,s) fors¢ A, a<s<t.

Note that S(a)=0 so that f(a)=f(a). Then system (L)—(IC) is equivalent to (L')-
(IC) where

@) x(t):i'(t)+£ Ct, x(g(s)ds,  t>a.

We define the fundamental solution of (L) to be the nXn matrix solution X(¢, 5)
of the matrix problem
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) xa, s)={~' +[ X, Hde,  ass<t
0, a<t<s.

Here I is the nXxn identity matrix. Formally, one can show by straightforward
substitution and verification that, if f(¢) is of bounded variation on finite subintervals
of [a, b), then the function defined by the “variation of constants” formula

() {X(r, af@+[ X 9di©,  1>a
h(t)a tel

solves (L")-(IC) and hence (L)—(IC).

To justify the meaningfullness of this formula we apply our theorems above to
assert that the fundamental solution X (¢, s) exists for all a<s<t and is continuous
in ¢t>s for each fixed s>a. (One can also prove the X(¢, s) is continuous in s € [a, 7]
for fixed t>a, a fact which is used in the manipulations to prove that the above
formula for x(¢) actually solves (L")—(IC). This fact, however, is not an application
of our theorems above and consequently will not be proved here. A rather straight-
forward proof can be made by use of the standard Gronwall inequality.)

If we let e; be the i™ column of I and if x,(?) is a solution of

(X)) X, $)=e;+ j Ct, Wx(g@w), )du,  a<s<t
and
(IO x,(t,8)=0 on I,

then X(z, s) is the n X n matrix constructed from the n column vectors x; (with X(z, s)
formally defined to be zero for all a<t<ls, t ¢ I,). The linear problem (X,)—(IC)
is of the form (E)—(IC) with s replacing a to which our theorems apply. Hence
under any suitable assumptions on C(¢, s) which will guarantee H1’, H2, and H3’
(for example, C(t, s) continuous in ¢, s is sufficient) we can conclude from Theorem
2 the local existence and uniqueness of X(¢, s) for ¢ e [s, ¢,) for each fixed s>a where
c,>> s is some constant.

Finally we use Theorem 4 to show that X (¢, s) exists as a fundamental solution
for all a<s<t. We do this by ruling out the alternative x(c;) € dR™ in Theorem
4 and concluding as a result that ¢,= + o (in this application of Theorem 4 we use
2=R" and b= + ). In order to accomplish this we suppose this C(z, s) is bounded
on compact subsets of R*. Then from equation (X;) we find that for fixed s>a

5 9I<14+M, [x(0@, 9ldu,  s<t<e,
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where M, is a bounded for |C(¢,s)| on s<t<c,. Inasmuch as x,(¢, s)=0 for t<s
and g(u)<u for all u>a we have that

max,.. ., |x;(9(c), 8)|<max,.. ., |x(z, 8)|=m,;(u, s)

and hence
|x,(2, 8)| <1+ M, r m,(u, s)du, s<t<c,.

Replacing ¢ by the symbol 7 and taking the maximum on s<z<? of both sides of
this inequality we find that

13
my(t, s)gl—I—MSI my(u, s)du, s<t<c,

from which follows by Gronwall’s inequality the estimate
|x:(2, )| <my(2, ) <exp (M (t—s5)),  s<t<c,.

This clearly shows that x,(c;,s) ¢ dR" and Theorem 4 now yields the global ex-
istence of the fundamental solution X(z, s) for a<s<t.
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