Models of Sea Shells

Joceline Lega

These notes give a brief explanation of the significance of the parameters used in the Sea_Shells MATLAB GUI

Sea shells as surfaces

- A sea shell is a surface in 3 -space, which can be thought of as resulting from the motion of a generating curve along a structural curve. The latter describes the global shape of the shell while the former models the shape of the shell aperture.
- These notes describe a 13-parameter model of sea shells, based on [1]. The equations we use are a slight modification of those presented in [1], but the notation is similar.
- The parameters values used for predefined shells in the MATLAB GUI Sea_Shells are taken from [1] and [2].

1 M.B. Cortie, Models for mollusc shell shape, S. Afr. J. Sci. 85, 454-460 (1989).

2 M.B. Cortie, Modelling the surface bumps and spikes of molluscan shells, in the Proceedings of the First International Conchology Conference, Edited by C.R. Illert, Hadronic Press, Palm Harbor, 1995; pp. 46-65.

Model parameters

- The basic structure of a shell is defined by a curve in 3-space, the structural curve, shown in yellow on the figures.
- Seen from above, this curve looks like a logarithmic spiral of equation

$$
\rho=A \sin (\beta) \exp (\theta \cot (\alpha)),
$$

where A, α and β are parameters of the model.

- The distance R illustrated in the lower figure is given by

$$
R=A \exp (\theta \cot (\alpha))
$$

Model parameters (continued)

- A second curve, whose basic shape is an ellipse parametrized by s (see figure), is used to generate the outer surface of the shell.
- The parameters a and b are the half lengths of respectively the major and minor axes of the ellipse.
- The ellipse is further rotated by and angle μ about its major axis, by an angle Ω about the vertical axis, and by an angle Φ about a vector normal to its plane.

Model parameters (continued)

For shells with "bumps", five extra parameters are needed:
(1) P is an angle measuring the position of the bump along the ellipse;
(2) L measures the height of each bump;
(3) W1 measures the width of each bump along the ellipse;
(9) W2 measures the width of each bump along the logarithmic spiral;
(3) N is the number of bumps encountered as the angle θ is rotated by 2π.

Model equations

Based on the above description, the parametric equations describing the shell surface are as follows.

$$
\begin{aligned}
x= & \exp (\theta \cot (\alpha))[A \sin (\beta) \cos (\theta)+h(s, \theta) \\
& (\cos (s+\Phi) \cos (\Omega+\theta)-\sin (s+\Phi) \sin (\mu) \sin (\theta+\Omega))] \\
y= & \exp (\theta \cot (\alpha))[-A \sin (\beta) \sin (\theta)-h(s, \theta) \\
z= & (-\cos (s+\Phi) \sin (\Omega+\theta)+\sin (s+\Phi) \sin (\mu) \cos (\theta+\Omega))] \\
h(s, \theta)= & \left(\left(\frac{\cos (s)}{a}\right)^{2}+\left(\frac{\sin (s)}{b}\right)^{2}\right)^{-1 / 2} \\
& +L \exp \left(-\left(\frac{2(s-P)}{W 1}\right)^{2}-\left(\frac{2 I(\theta)}{W 2}\right)^{2}\right) \\
I(\theta)= & \frac{2 \pi}{N}\left(\frac{N \theta}{2 \pi}-\operatorname{int}\left(\frac{N \theta}{2 \pi}\right)\right) .
\end{aligned}
$$

