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Abstract. We analyze the classical discontinuous Galerkin method for a general parabolic equation.
Symmetric error estimates for schemes of arbitrary order are presented. The ideas we develop allow
us to relax many assumptions freqently required in previous work. For example, we allow different
discrete spaces to be used at each time step and do not require the spatial operator to be self adjoint
or independent of time. Our error estimates are posed in terms of projections of the exact solution
onto the discrete spaces and are valid under the minimal regularity guaranteed by the natural energy
estimate. These projections are local and enjoy optimal approximation properties when the solution is
sufficiently regular.

1. Introduction. We consider the parabolic PDE of the form,

ut + A(t)u = F (t), u(0) = u0. (1.1)

The operators act on Hilbert spaces related through the standard pivot construc-
tion, U ↪→ H ' H ′ ↪→ U ′, where each embedding is continuous and dense. Then,
A(.) : U → U ′ is a linear map and F (.) ∈ U ′. Our goal is to analyze the classical
discontinuous Galerkin (DG) scheme and derive fully-discrete error estimates under
mimimal regularity assumptions. The class of DG schemes we consider are classical in
the sense that the discrete solutions may be discontinuous in time but are conforming
in space, i.e. are in (a subspace of) U at each time.

Our techniques also apply to the more general implicit evolution equation [22, 23]

(M(t)u)t + A(t)u = F (t), u(0) = u0, (1.2)

where M(.) : H → H is a self adjoint possitive definite operator. The extension of our
analysis to this equation will be taken up seperatly. The analysis below addresses the
following issues which have not yet been adequately considered in the literature.

• The operator A(.) may depend upon time and is not required to be self adjoint.
To date the sharpest estimates for DG approximations exploit classical spectral
theory for self adjoint positive definite operators, so require A to be such an op-
erator and to be independent of time. When A(.) is not self adjoint, multiplying
(1.1) by ut does not give an estimate for the time derivative.

• The subspaces of U used for the DG approximations may be different on each
time interval (tn−1, tn]. This adds a significant complication to the analysis
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which is present even when A = 0. Indeed, the first step in our analysis is to
consider the DG scheme for ordinary differential equations in the Hilbert space
H.

Different subspaces are an essential ingredient of adaptive strategies used in
conjunction with a-posteriori error estimates to give guaranteed error bounds.
Retriangulation is also necessary for many algorithms based upon a Lagrangian
coordinate system; below we present such an example.

• DG approximations of equations of the form (1.2) have not been considered in
the past. Below we show that equations of this form arise when Lagrangian
schemes are constructed for the convection diffusion equation [6, 7, 8].

• The operator A(.) is not required to be strictly coercive; we only require an
assumption of the form 〈A(.)u, u〉 ≥ c|u|2U − C‖u‖2

H . Here |.|U is a semi-norm
such that ‖.‖2

U = |.|2U + |.|2H . This causes significant problems in the analysis
of DG schems since the classical Gronwall argument, used for the continuous
problem, fails in the discrete setting. This failure is due to the elemenary obser-
vation that functions of the form χ[0,t̂)u are not polynomial in time unless t̂ is a
partition point, so are not available as test functions in the discrete setting.∗ In
the past this problem has been circumvented by bounding temporal derivatives
of the solution [5, 24] so that the solution between the partition points can be
controlled by the values at these points. This line of argument fails for solutions
having minimal regularity. Below we circumvent these issues by constructing
polynomial approximations to the characteristic functions χ[0,t̂).

As stated above, our analysis does not require any regularity above and beyound the
natural bounds that follow from the usual energy estimate. This is essential for control
problems where solutions of the dual problem typically will not enjoy any additional
regularity. Our estimates show that the error can be bounded by the “local truncation
error” of the ordinary differental equation obtained by setting A = 0. These local
truncation errors can also be viewed as the approximation error of local projections of
the solution onto the discrete subspaces. In our analysis we are careful to keep track
of how the various constants depend upon the coercivity constant on A(.). This is
important for the analysis of problems like the convection diffusion equation where the
coercivity constant is small.

We present and example of equations which can be analyzed within the general frame-
work developed here but fall outside of the theory developed, for example, in Thomée’s
text [24].

Convection Diffusion Equation: The classical convection diffusion equation is

ūt + V.∇ū− ε∆ū = 0,

and the problems that arise when ε is small are notorious. To address these problem
this equation is sometimes considered in a Lagrangian variable. Specifically, let Ṽ be a

∗Here χ[0,t̂) is the characteristic function equal to 1 on [0, t̂) and zero otherwise.
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(numerical) approximation of V and let x = χ(t, X) be the change of variables defined
by the flow map associated with Ṽ, i.e.

ẋ(t, X) = Ṽ(t, x(t, X)), x(0, X) = X.

If u(t, X) = ū(t, x(t, X)) then

ut + (V − Ṽ).(F−T∇Xu)− ε(1/J)divX

(
JF−1F−T∇Xu

)
= 0,

where Fij = ∂xi/∂Xj is the Jacobian of the mapping and J = det(F ). The natural
weak problem for this equation is∫

Ω

((
ut + (V − Ṽ).(F−T∇Xu)

)
v + ε(F−T∇Xu).(F−T∇Xv)

)
J = 0.

Using the properties of determinants we find

utJ = (Ju)t − J ′u = (Ju)t − J div(Ṽ)u.

If div(Ṽ) = 0 then J is constant the transformed problem takes the form of (1.1);
otherwise, it takes the form of (1.2) with M(.)u = Ju, and

A(.)u = −div(Ṽ)uJ + (V − Ṽ).(F−T∇Xu)J − ε divX

(
JF−1F−T∇Xu

)
.

This statement of the problem generalizes the idea behind the “characteristic Galerkin”
scheme introduced by Douglas and Russel in [6] and DuPont in [7].

This change of variables reduces the effective Peclet number, |V−Ṽ|/ε, to order O(1) if
Ṽ is a sufficiently accurate approximation of V. This will eliminate many of the numer-
ical difficulties encountered by algorithms based upon the classical statement; however,
other problems arise. While the Jacobian of the transformation satisfies F (0, X) = I,
its condition number grows exponentially if Ṽ is anything other than a rigid motion.
In the context of a numerical scheme this problem is circumvented by reinitalizing the
transformation at each (or every few) time step(s). This reinitialization corresponds to
changing the subspace for the numerical solution every (few) time step(s). In essence, a
trianglular mesh in the X coordinate system will be a distorted mesh in the x-coordinate
system, and reinitializing the transform corresponds to projecting the solution onto a
(straight sided) triangular mesh in the x coordinates. This gives rise to different sub-
spaces at each time step.

1.1. Related Results. The discontinuous Galerkin method was first introduced
to model and simulate neutron transport by Lasaint and Raviart in [15]. There is an
abundant literature concerning applications of the DG scheme in hyperbolic problems,
see e.g. [4, 14, 25] and references within. The DG method for ordinary differential
equations was considered by Delfour, Hager and Trochu in [5]. They showed that the
DG scheme was super convergent at the partition points (order 2k+2 for polynomials of
degree k). The super convergence results (and better rates in the H norm) use a duality
argument, and space considerations do not permit us to develop the corresponding
estimates in the current setting.
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In the context of parabolic equations DG schemes were first analyzed for linear parabolic
problems by Jamet in [13] where O(kq) results were proved and by Eriksson, Johnson
and Thomée in [11] where O(k2q−1) results were proved for “smooth” initial data among
others. An excellent exposition of their results and, more generally, the DG method
for parabolic equations, can be found in Thomée’s book [24]. In [24] nodal and interior
estimates are presented in various norms. One may also consult [18] for the analysis
of a related formulation based on the backward Euler scheme. The relation between
the DG scheme and adaptive techniques was studied in [9] and [10]. Finally, some re-
sults concerning the analysis of parabolic integro-differential equations by discontinuous
Galerkin method are presented in [16] (see also references therein).

In [8] DuPont and Liu introduce the concept of “symmetric error estimates” for parabolic
problems. They define such an error estimate to be one of the form

9u− uh9 ≤ C inf
wh∈Uh

9u− wh9,

where u and uh are the exact and approximate solutions respectively, 9.9 is an ap-
propriate norm, and Uh is the discrete subspace in which approximation solutions are
sought. While estimates of this form are standard for elliptic problems, this is not the
case for evolution problems. For example, error estimates for evolution problems ap-
proximated by the implicit Euler scheme frequently involve terms of the form ‖utt‖L2(Ω).
Symmetric error estimates are useful for problems where the solution u may not be very
regular, such as control problems, and are used to develop a-posteriori error estimates
for adaptive schemes. Symmetric error estimates for moving mesh finite element meth-
ods were studied in [8, 17] (see also references within). Mesh modification techniques
for finite elements have also been introduced in [19] and [20]. For some earlier work
on convection-dominated problems based on the methods of characteristics and mesh
modification one may consult [6] and [7] respectively.

An alternative to the symmetric error estimates are estimates of the form

9u− uh9 ≤ C 9 u− Phu9, (1.3)

where Ph : U → Uh is a projection which exhibits optimal interpolation properties if u is
sufficiently smooth. Estimates of this form enjoy the same advantages of those proposed
by DuPont and Liu. Below we construct an estimate of the form (1.3) for parabolic
equations of the form (1.1); where the projection Phu is the numerical approximation
of an ODE, so is not local. However,

9u− Phu9 ≤ 9u− Ploc
h u 9 + 9 Phu− Ploc

h u9,

where Ploc
h is a local projection, so the first term can be estimated using classical in-

terpolation theory. The second term 9Phu − Ploc
h u9 vanishes if the same subspace of

U is used in each partition (tn−1, tn); otherwise, it depends solely upon the jump in
the interpolant of the exact solution at the partition points {tn}N

n=0. The size of the
constant C in (1.3), and its dependence on various constants, play an important role;
below we are careful to state the dependence of the constant upon the various coercivity
constants and bounds assumed for the operator A.
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Error estimates for Lagrange-Galerkin approximations of convection dominated prob-
lems for divergence-free velocity fields vanishing on the boundary are presented in [3].
Issues related to the stability of Lagrange-Galerkin approximations are also discussed
in [21]. Recently there has been a lot of work on the development and analysis of
discontinuous Galerkin methods for elliptic problems. A comprehensive survey and
comparison of this work can be found in [2] which contains many references related to
this approach.

1.2. Outline. In Section 2, we formulate and analyze the DG scheme for the
ordinary differential equation corresponding to A(.) ≡ 0. In this section we focus on
the difficulties that arise when different subspaces of U may be used at every time
step. Error estimates are first derived at times corresponding to the partition point.
Additional arguments using “discrete characteristic functions” are developed to estimate
the error and at times inbetween the partition points. The arguments we use appear to
be new.

A priori estimates for the DG approximations of (1.1) are developed in Section 3. Es-
timates are derived in the natural norms associated with the parabolic problem; by
“natural” we mean norms that arise in the natural energy estimates obtained by multi-
plying (1.1) by u. The results of Section 2 are used in an essential fashion. Indeed, the
difficulties associated with different subspaces of U at each time step are circumvented
by comparing the discrete solution of the parabolic equation with and appropriate so-
lution of an ODE. By using the “discrete characteristic functions” developed in Section
2 we can avoid the self adjoint assumptions typically imposed upon A(.).

When the same discrete subspace of U is used for each time step our techniques gener-
alize, and to some extend simplify, the classical analysis. The reader interested in this
case only needs to read Sections 2.3 and 2.5 on the construction of discrete characteris-
tic functions, and Definition 2.2 for Ploc

h from Section 2 before proceeding to Section 3.
Remark 4 in Section 3 amplifies upon this.

1.3. Notaton. Throughtout we assume that the evolution of the solution to (1.1)
takes place in a Hilbert space H and the operators A(.) are defined on another Hilbert
space U with U ↪→ H ' H ′ ↪→ U ′, where each of the embeddings are dense and
continuous. The inner product on H is denoted by (., .) and the induced duality pairing
between U and U ′ will be dentoted by 〈., .〉. The norm on H is often denoted by
|.| ≡ ‖.‖H , and we assume that the norm on U can be written as ‖.‖2

U = |.|2U + ‖.‖2
H

where |.|U is a semi-norm on U (the “principle” part) and is often denoted by ‖.‖;
‖.‖2

U = ‖.‖2 + |.|2. Standard notation of the form L2[0, T ;U ], H1[0, T ;U ′] etc. is used
to indicate the temporal regularity of functions with values in U , U ′ etc.

Approximations of (1.1) will be constructed on a partition 0 = t0 < t1 < . . . < tN = T
of [0, T ]. On each interval of the form (tn−1, tn] a subspace Un

h of U is specified, and
the approximate solutions will lie in the space

Uh = {uh ∈ L2[0, T ;U ] | uh|(tn−1,tn] ∈ Pk(tn−1, tn;Un
h )}.

Here Pk(tn−1, tn;Un
h ) is the space of polynomials of degree k or less having values in

Un
h . Notice that, by convention, we have chosen functions in Uh to be left continuous
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with right limits. We will write un for uh(tn) = uh(tn−), and let un
+ dentote u(tn+). This

notation will is also used with functions like the error e = u − uh. We always assume
the exact solution, u, is in C[0, T ;H] so that the jump in the error at tn, dentoted by
[en] is equal to [un] = un

+ − un.

2. DG scheme for an ODE.

2.1. Background. In this section we address the issues that arise when different
discrete subspaces are used for each step of a time of the DG scheme. It suffices
to consider such DG schemes in the context of an ODE in a Hilbert space since the
additional terms appearing in the error estimates are the same for both the ODE and
parabolic PDE case. Also, the solution of the ODE will be used to obtain error estimates
for the parabolic PDE under minimal regularity assumptions.

We consider the problem of recovering a function u ∈ C[0, T ;H] ∩ H1[0, T ;U ′] given
the initial value u(0) and its derivative f = ut. Specifically, we consider the DG finite
element approximations for the initial value problem

ut = f, u(0) = u0. (2.1)

Recall that H and U are related through a pivot space construction, U ↪→ H ' H ′ ↪→
U ′. In this situation there exists a unique u ∈ C[0, T ;H] ∩ H1[0, T ;U ′] which is the
solution of the weak problem,

(u(T ), v(T ))−
∫ T

0
〈u, vt〉 = (u0, v(0)) +

∫ T

0
〈f, v〉 (2.2)

∀ v ∈ C[0, T ;H] ∩H1[0, T ;U ′].

Recall that we write | · | for the norm | · |H and write the inner product in H as (., .).
We also write ‖u‖2

U = |u|2 +‖u‖2 where ‖.‖ is a semi-norm on U (the “principle” part).
The (U ′, U) duality pairing is denoted by 〈·, ·〉
To approximate the solution of (2.2) we introduce a partition 0 = t0 < t1 < ... < tN = T
of [0, T ] and a collection {Un

h }N
n=0 of subspaces of U . The DG method constructs an

approximate solution

uh ∈ Uh ≡ {u ∈ L2[0, T ;H] | u|(tn−1,tn] ∈ Pk(tn−1, tn;Un
h )}

such that

(un, vn)−
∫ tn

tn−1

(uh, vht)− (un−1, vn−1
+ ) =

∫ tn

tn−1

〈f, vh〉, (2.3)

for all vh ∈ Uh and each n = 1, 2, . . . N . Recall that un ≡ uh(tn) = uh(tn−) and we
employ the standard notation un

+, un
− for the traces from above and below respectively.

Integration by parts gives the following alternative form of (2.3)∫ tn

tn−1

(uht, vh) + (un−1
+ − un−1, vn−1

+ ) =
∫ tn

tn−1

〈f, vh〉. (2.4)
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2.2. Error Estimate at Partition Points. In this elementary context it is pos-
sible to explicitly write an expression for the error at each nodal (partition) point tn,
see equation (2.5) below. A simple consequence of this formula is the following theorem
which provides a decomposition of the error into the errors due to the changing of the
spaces and the initial projection error.

Theorem 2.1. Let uh ∈ Uh be the approximate solution of (2.1) computed using the
discontinuous Galerkin shceme (2.3)and let Pn : H → Un

h denote the projection operator
in H, and write ên = Pnu(tn)− un. Then

ên =
n∑

i=1

( n∏
j=i

Pj

)
(I − Pi−1)u(ti−1) +

(
Pn ◦ Pn−1 ◦ ... ◦ P1

)
ê0. (2.5)

In particular,

|ên| ≤
n∑

i=1

|Pi(I − Pi−1)u(ti−1)|+ |ê0|. (2.6)

Remark 1. (1) Note that Pi(I − Pi−1) = 0 when U i
h ⊂ U i−1

h , so |ên| ≤ |ê0| when the
same discrete subspace is used at each time.

(2) If en = u(tn)− un is the total error at time tn then

|en| ≤ |(I − Pn)u(tn)|+ |ên|.

When the same space is used at each step the first term becomes (I −P0)u(tn) which is
useful only if u(tn) can be well approximated in U0

h at all times. When this is not the
case, an ideal strategy would chose the spaces {Un

h } to “track” the solution so that both
(I − Pn)u(tn) and the jump terms in equation (2.6) are small.

Proof. Let e = u−uh be the total error and note that the Galerkin orthogonality gives,

(en, vn)−
∫ tn

tn−1

(e, vht)− (en−1, vn−1
+ ) = 0. (2.7)

If vh(t) ≡ vn is independent of time, then the middle term vanishes to give

(en, vn) = (en−1, vn), vn ∈ Un
h .

It follows that
ên = Pnen−1 (2.8)

so that

ên = Pnen−1 = Pn(u(tn−1)− un−1)

= Pn

(
u(tn−1)± Pn−1u(tn−1)− un−1

)
= Pn(I − Pn−1)u(tn−1) + Pnên−1.

Using the above relation inductively yields (2.5).
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2.3. Discrete Characteristic Functions. To compute the error at arbitrary
times t ∈ [tn−1, tn) we would like to substitute vh = χ[tn−1,t)uh into equation (2.4)
where χ[tn−1,t) is the characteristic function on [tn−1, t). Clearly this function is not
in Uh so in this section we construct discrete approximations of such characteristic
functions to circumvent this problem.

The construction of the discrete characteristic functions is invariant under translation so
it is convinient to work on the interval [0, τ) with τ = tn−tn−1. We begin by considering
polynomials p ∈ Pk(0, τ). A discrete approximation of χ[0,t)p is the polynomial p̃ ∈ {p̃ ∈
Pq(0, τ)|p̃(0) = p(0)} satisfying∫ τ

0
p̃q =

∫ t

0
pq ∀ q ∈ Pk−1(0, τ).

The above construction is motivated by the fact that we may put q = p′ to obtain∫ τ
0 p′p̃ =

∫ t
0 pp′ = p2(t)− p2(0).

We next extend this elementary construction to approximate functions of the form
χ[0,t)vh for vh ∈ Pk(0, τ ;Uh) where Uh is any subspace of H. If vh ∈ Pk(0, τ ;Uh)
we can write vh =

∑k
i=0 pi(t)vi where {pi} ⊂ Pk(0, τ) and {vi} ⊂ Uh. If we define

ṽh =
∑k

i=0 p̃i(t)vi it is clear that ṽh ∈ Pk(0, τ ;Uh) satisfies

ṽh(0) = vh(0), and
∫ τ

0
(ṽh, wh) =

∫ t

0
(vh, wh) ∀wh ∈ Pk−1(0, τ ;Uh). (2.9)

In the ODE setting we could have directly defined ṽh directly from equation (2.9) instead
of the two stage construction given here. However, for parabolic equations it is useful
to observe that vh is independent of the choice of the space Uh.

2.4. Error Estimates at Arbitrary Times. To estimate the error at an arbi-
trary time t ∈ [tn−1, tn) we use the projection operator Ploc

n introduced in [11].

Definition 2.2. (1) The projection Ploc
n : C[tn−1, tn;H] → Pk(tn−1, tn;Un

h ) satisfies
(Ploc

n u)n = Pnu(tn), and∫ tn

tn−1

(u− Ploc
n u, vh) = 0, ∀ vh ∈ Pk−1(tn−1, tn;Un

h ).

Here we have used the convention (Ploc
n u)n ≡ (Ploc

n u)(tn) and Pn : H → Un
h is the

projection operator onto Un
h ⊂ H.

(2) The projection Ploc
h : C[0, T ;H] → Uh satisfies

Ploc
h u ∈ Uh and (Ploc

h u)|(tn−1,tn] = Ploc
n (u|[tn−1,tn]).

This projection satisfies the the standard approximation properties, [24, Theorem 12.1],
and can be thought of as the one step DG approximation of ut = f on the interval
(tn−1, tn] with exact inital data u(tn−1). To see this, write uh = Ploc

n u and write test
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the function as the derivative vht of a function vh ∈ Pk(tn−1, tn;Un
h ). Integration by

parts then gives

(un, vn)−
∫ tn

tn−1

(uh, vht)− (u(tn−1), vn−1
+ ) =

∫ tn

tn−1

〈ut, vh〉

which is identical in form to (2.3). For the parabolic problem we will use the analogus
global projection, (Ph below) which is the DG approximation of ut = f on all of [0, T ].
We are now ready to prove the main result of this section which shows that the error
estimate of Theorem 2.1, which held at the discrete times, holds for every time.

Theorem 2.3. Let uh ∈ Uh be the approximate solution of (2.1) computed using the
discontinuous Galerkin shceme (2.3). Let ê = Ploc

h u − uh where Ploc
h is the projection

defined in Definition 2.2. Then

|ê(t)| ≤
n∑

i=1

|Pi(I − Pi−1)u(ti−1)|+ |ê0|, t ∈ (tn−1, tn],

and

|[ên−1]| ≤
n∑

i=1

|Pi(I − Pi−1)u(ti−1)|+ |ê0|.

where [ên−1] = ên−1
+ − ên−1 is the jump in ê at tn−1.

More generally, if (., .)V is a (semi) inner product on Un
h then

‖ê(t)‖V ≤ ‖ên‖V = ‖
n∑

i=1

( n∏
j=i

Pj

)
(I − Pi−1)u(ti−1) +

(
Pn ◦ Pn−1 ◦ ... ◦ P1

)
ê0‖V ,

for t ∈ (tn−1, tn].

Remark 2. (1) In Theorem 2.1 we used the notation ên to denote Pnen = Pne(tn−).
This is consistant with the notation for ê(t) above, since by construction (Ploc

n e)n =
Pnen.

(2) Notice that discreteness plays an essential role in the last inequality. We have not
assumed, for example, that u ∈ C[0, T ;U ], yet the last inequality gives an expression
for estimate the error of Pnu in this norm.

Proof. Recalling the Galerkin orthogonality relation (2.7) and applying the definition
of the projection Ploc

n shows that

(ên, vn)−
∫ tn

tn−1

(ê, vht)− (en−1, vn−1
+ ) = 0,

or equivalently, ∫ tn

tn−1

(êt, vh) + (ên−1
+ − en−1, vn−1

+ ) = 0.

Define zh ∈ P(tn−1, tn;Un
h ) to be the “discrete Laplacian” of ê; that is, for each t ∈

[tn−1, tn]
(zh(t), wh) = (ê(t), wh)V , for all wh ∈ Un

h .
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Then set vh = z̃ ' χ[tn−1,t)zh to be the approximate characteristic function of zh

constructed in Section 2.3. This choice of test function gives

(1/2)
(
‖ê(t)‖2

V − ‖ên−1
+ ‖2

V

)
+ (ên−1

+ − Pen−1, ên−1
+ )V = 0,

so that
(1/2)‖ê(t)‖2

V + (1/2)‖ên−1
+ ‖2

V − (Pnen−1, ên−1
+ )V = 0. (2.10)

From equation (2.8) we find ên = Pnen−1, so an application of the Cauchy Schwarz
inequality and ab ≤ (1/2)(a2 + b2) shows ‖ê(t)‖V ≤ ‖ên‖V as claimed.

To establish the bound on the jump term we set V = H in (2.10) and rearrange the
terms to get

(1/2)|ê(t)|2 + (1/2)|ên−1
+ |2 − (ên−1, ên−1

+ ) = ((I − Pn−1)u(tn−1), ên−1
+ ).

Next let t ↘ tn−1
+ and complete the square on the left to obtain

(1/2)|ên−1
+ |2 + (1/2)|ên−1

+ − ên−1|2 = (1/2)|ên−1|2 + ((I − Pn−1)u(tn−1), ên−1
+ ).

It follows that

|ên−1
+ − ên−1|2 ≤ |ên−1|2 + |Pn(I − Pn−1)u(tn−1)|2

≤
(
|ên−1|+ |Pn(I − Pn−1)u(tn−1)|

)2
,

and again we use the estimate established in Theorem 2.1 to complete the proof.

The following definition and corollary provide a concise synopsis of the results of this
section in a form useful for the analysis of the parabolic problem in the next section.

Definition 2.4. The projection Ph : C[0, T ;H]∩H1[0, T ;U ′] → Uh is the discontinuous
Galerkin approximation of the function reconstructed from it’s derivative and initial
data. That is, if uh = Phu, then uh is the solution of (2.3) where f = u′.

The previous theorem can then be interprated as an estimate of the difference between
the global projection Phu and the local projection Ploc

h u.

Corollary 2.5. Let u ∈ C[0, T ;H] ∩H1[0, T ;U ′], then

|(Phu− Ploc
h u)(t)| ≤

n∑
i=1

|Pi(I − Pi−1)u(ti−1)|+ |ê0|, t ∈ (tn−1, tn],

and

|[(Phu− Ploc
h u)n−1]| ≤

n∑
i=1

|Pi(I − Pi−1)u(ti−1)|+ |ê0|,

where ê0 = P0u(0)− u0. More generally, if (., .)V is a (semi) inner product on Un
h then

‖(Phu− Ploc
h u)(t)‖V ≤ ‖

n∑
i=1

( n∏
j=i

Pj

)
(I − Pi−1)u(ti−1) +

(
Pn ◦ Pn−1 ◦ ... ◦ P1

)
ê0‖V ,

10



for t ∈ (tn−1, tn].

Remark 3. An alternative to using the last expression to estimate the error in other
norms is to postulate an inverse inequality. For example, if ‖vh‖ ≤ Cinv(h)|vh| for all
vh ∈ ∪nUn

h , then for t ∈ (tn−1, tn]

‖(Phu− Ploc
h u)(t)‖ ≤ Cinv(h)

( n∑
i=1

|Pi(I − Pi−1)u(ti−1)|+ |ê0|
)
.

If the solution has sufficent regularity projection errors in the different norms typically
satisfy Cinv(h)|e| ∼ ‖e‖.

2.5. Estimates for Discrete Characteristic Functions. Our construction of
the discrete characteristic functions in Section 2.3 was purely algebraic and, for the
ODE, no bounds were required for the mapping e 7→ ẽ. The analysis of the parabolic
problem requires the bounds developed next.

In the next two lemmas, the function p 7→ p̃ will refer to the map constructed in Secton
2.3.

Lemma 2.6. The mapping p 7→ p̃ in Pk(0, τ) is linear, continuous and there exists a
constant Ĉk depending only upon k such that ‖p̃− p‖L2(0,τ) ≤ Ĉk‖p‖2

L2(t,τ). Moreover,

‖p̃− χ[0,t)p‖L2(0,τ) ≤ ‖p̃− p‖L2(0,τ) + ‖p− χ[0,t)p‖L2(0,τ) ≤ (1 + Ĉk)‖p‖L2(t,τ)

and ‖p̃‖L2(0,τ) ≤ (1 + Ĉk)‖p‖L2(0,τ).

Proof. Since p̃(0) = p(0) we can write p̃ − p = tp̄ with p̄ ∈ Pk−1(0, τ). Then using the
definition of p̃, ∫ τ

0
tp̄q =

∫ τ

0
(p̃− p)q = −

∫ τ

t
pq ∀ q ∈ Pk−1(0, τ).

Setting q = p̄ we obtain,

ckτ

∫ τ

0
p̄2 ≤

∫ τ

0
tp̄2 = −

∫ τ

t
pp̄,

where we use the equivalence of norms on Pk, and scale to make ck independent of τ . It
follows that the matrix corresponding to the bilinear form is non-singular, so solutions
exist. The Cauchy-Schwarz inequality gives

(ckτ)2
∫ τ

0
p̄2 ≤

∫ τ

t
p2,

which implies,

c2
k

∫ τ

0
(p̃− p)2 = c2

k

∫ τ

0
t2p̄2 ≤ c2τ2

∫ τ

0
p̄2 ≤

∫ τ

t
p2.

11



We next consider the induced mapping v 7→ ṽ on Pk(0, τ ;V ) where V is any (semi)
inner product space. Recall that if v =

∑k
i=0 pi(t)vi then ṽ =

∑k
i=0 p̃i(t)vi. Since this

construction is purely algebraic it follows that ṽ ∈ Pk(0, τ ;V ) satisfies

ṽ(0) = v(0) and
∫ τ

0
(ṽ, w)V =

∫ t

0
(v, w)V ∀w ∈ Pk−1(0, τ ;V )

Lemma 2.7. Let V be a semi-inner product space, then the mapping
∑k

i=0 pi(t)vi 7→∑k
i=0 p̃i(t)vi on Pk(0, τ ;V ) is continuous in ‖ · ‖L2[0,τ ;V ]. In particular,

‖ṽ‖L2[0,τ ;V ] ≤ Ck‖vh‖L2[0,τ ;V ],

and
‖ṽ − χ[0,t)vh‖L2[0,τ ;V ] ≤ Ck‖vh‖L2[0,τ ;V ],

where Ck = (k + 1)1/2(1 + Ĉk).

Proof. Without loss of generality write v =
∑k

i=0 pi(t)vi where {pi} form an orthonormal
basis of Pk(0, τ) in L2(0, τ), so that ‖v‖2

L2[0,τ ;V ] =
∑k

i=0 ‖vi‖2
V . The lemma then follows

by direct computation:

∫ τ

0
‖ṽ‖2

V =
∫ tn

tn−1

k∑
i,j=0

p̃i(t)p̃j(t)(vi, vj)V

≤
k∑

i,j=0

‖p̃i‖L2(0,τ)‖p̃j‖L2(0,τ)‖vi‖V ‖vj‖V

≤ (1 + Ĉk)2
k∑

i,j=0

‖vi‖V ‖vj‖V

≤ (1 + Ĉk)2(k + 1)

(
k∑

i=0

‖vi‖2
V

)

≤ (1 + Ĉk)2(k + 1)
∫ τ

0
‖vh‖2

V .

The second estimate follows similarly.

3. DG Scheme for Parabolic PDE’s.

3.1. Formulation of the DG scheme.. We turn our attention on the approx-
imation of (1.1) using the discontinuous Galerkin scheme. In order to derive optimal
error estimates we extend the ideas introduced in Section 2. We denote by a(·, ·) the
natural bilinear form associated with A(·). We assume a(., .) satisfies the following
continuity and coercivity conditions.

Assumption 1. There exist non-negative constants Ca, Cα, ca, cα such that

12



1. Continuity of the bilinear form and data:

|a(t;u, v)| ≤
(
ca‖u‖2 + Ca|u|2

) 1
2
(
ca‖v‖2 + Ca|v|2

) 1
2

and
|〈f, v〉| ≤ ‖f‖∗

(
ca‖u‖2 + Ca|u|2

) 1
2

2. Corecivity of the bilinear form:

a(t;u, u) ≥ cα‖u‖2 − Cα|u|2

In this context the natural weak formulation of (1.1) is to find u ∈ U ≡ L2[0, T ;U ] ∩
H1[0, T ;U ′] such that

(u(T ), v(T )) +
∫ T

0

(
〈−u, vt〉+ a(t, u, v)

)
= (u0, v(0)) +

∫ T

0
〈F, v〉, (3.1)

for all v ∈ U . We emphasize that U is the natural space to seek convergence, so ideally
we would like to derive estimates in a related norm. To approximate the solution of the
above weak formulation we introduce a partition 0 = t0 < t1 < ... < tN = T of [0, T ] and
on each partition we construct a closed subspace Un

h ⊂ U . The discontinuous Galerkin
method constructs an approximate solution uh|(tn−1,tn] ∈ Pk(tn−1, tn;Un

h ) satisfying

(un, vn) +
∫ tn

tn−1

(
− 〈uh, vht〉+ a(·;uh, vh)

)
(3.2)

= (un−1, vn−1
+ ) +

∫ tn

tn−1

〈F, vh〉 ∀ vh ∈ Pk(tn−1, tn;Un
h ).

Integration of the temporal term by parts yields the representation:∫ tn

tn−1

(
〈uht, vh〉 + a(·;uh, vh)

)
+ (un−1

+ − un−1, vn−1
+ ) (3.3)

=
∫ tn

tn−1

〈F, vh〉 ∀ vh ∈ Pk(tn−1, tn;Un
h ).

3.2. Preliminary Estimates. Classical bounds for the parabolic equation (3.2)
are obtained upon selecting u = v in equation (3.1); the discrete analogue would be to
set vh = uh in (3.3). Upon observing that∫ tn

tn−1

〈uht, uh〉+ (un−1
+ − un−1, un−1

+ ) =
1
2
|un|2 − 1

2
|un−1|2 +

1
2
|un−1

+ − un−1|2,

standard enery arguments use the continuity and coercivity assumptions 1 lead to the
inequality

|un|2 + cα

∫ tn

tn−1

‖uh‖2 + |un−1 − un−1
+ |2 (3.4)

≤ |un−1|2 +
∫ tn

tn−1

(
(1 + ca/cα)‖F‖2

∗ + (2Cα + Ca)|uh|2
)
.

13



When uh ∈ Pk(tn−1, tn;Un
h ) with k ≥ 2 this inequality does not control |uh(s)| for

s ∈ (tn−1, tn). When uh is piecewise constant or linear in time (k = 0 or 1) the terms
on the left hand side will dominate the last term on the right for sufficiently small time
steps [24, Theorem 12.4]. The case k > 2 has not been completly addressed previouly;
typically strict coercivity is assumed so that Cα ≤ 0. In this situation it is possible to
write ∫ tn

tm−1
〈F, uh〉 ≤

∫ tn

tm−1
(1/2ε)‖F‖2

∗ + (ε/2)(|uh|2 + ‖uh‖2)

and using the Poincare inequality to control the last term.

Similar difficulties are encountered with error estimates when k ≥ 2. Letting e = u−uh

the orthogonality condition becomes

(en, vn) +
∫ tn

tn−1

(
− 〈e, vht〉+ a(·; e, vh)

)
= (en−1, vn−1

+ )

for all vh ∈ Pk(tn−1, tn;Un
h ). Writing

e = u− uh = (u− Phu) + (Phu− uh) ≡ eh + ep,

where Ph is the projection defined in Definition 2.4 we compute

(en
h, vn) +

∫ tn

tn−1

(−〈eh, vht〉+ a(·; eh, vh))− (en−1
h , vn−1

+ )

= −(en
p , vn) +

∫ tn

tn−1

〈ep, vht〉+ (en−1
p , vn−1

+ )−
∫ tn

tn−1

a(·; ep, vh))

Since Phu is the discontinuous Galerkin solution of an ordinary differential equation it
follows that ep = u−Phu satisfies the orghogonality condition (2.7). We then conclude
that all but the last term on the right hand side of the above expression vanishes so
that

(en
h, vn

h) +
∫ tn

tn−1

(
〈−eh, vht〉 + a(·; eh, vh)

)
(3.5)

= (en−1
h , vn−1

h+ )−
∫ tn

tn−1

a(·; ep, vh).

This expresion is identical in form to the original scheme (3.2) for uh with F (.) =
−a(ep, .). Putting vh = eh we obtain the analogue of equation (3.4),

|en
h|2 + cα

∫ tn

tn−1

‖eh‖2 + |en−1
h − en−1

h+ |2 (3.6)

≤ |en−1
h |2 +

∫ tn

tn−1

(
(1 + ca/cα)

(
ca‖ep‖2 + Ca|ep|2

)
+ (2Cα + Ca)|eh|2

)
.

Again the natural energy arguments for the DG scheme fail to control eh(t) for t ∈
(tn−1, tn).
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Remark 4. The projection constructed using the discrete solution of the corresponding
ODE is necessary when different subspaces are used in each time step, i.e., Un

h 6= Un−1
h .

Using the “standard” projection, Ploc
h u in place of Ph (as in [24]) gives

(en
h, vn

h) +
∫ tn

tn−1

(
〈−eh, vht〉+ a(·; eh, vh)

)
= (en−1

h , vn−1
h+ )−

∫ tn

tn−1

a(·; en−1
p , vh) + (ep, v

n−1
h+ ).

with ep = u − Ploc
h u. Note that the last term is equal to (en−1

p , vn−1
h+ − w−) for every

w− ∈ Un−1, so when Un
h = Un−1

h we may pick w− = vn−1
h+ to obtain (3.5).

3.3. Stability and Error Estimates. In this section we show how the estimates
in (3.4) and (3.6) can be augmented to provide bounds on the solution and the error
for all times; in particular, for the intermediate times t ∈ (tn−1, tn). To do this we use
the discrete characteristic functions developed in Section 2.3. Since equations (3.2) for
uh and (3.5) for eh are identical in form, the same line of argument can be applied to
either of them. For this reason we will only prove the theorem for the error estimate
and will simply state the analogous bound for uh.

Theorem 3.1. Let U ↪→ H ↪→ U ′ be a dense embedding of Hilbert spaces and Uh be the
subspace of L2[0, T ;U ] defined in Section 2.1 and let the bilinear form a : U × U → R
and linear form F : U → R satisfy Assumptions 1. Let u ∈ L2[0, T ;U ] ∩ H1[0, T ;U ′]
be the solution of (3.1) and uh ∈ Uh be the approximate solution computed using the
discontinuous Galerkin scheme (3.2) on the partition 0 = t0 < t1 < . . . < tN = T and
set τ ≡ maxn tn − tn−1.

Then there exists a constant C > 0 depending only on k (through the constant Ck of
Lemma 2.7), the constants Ca, Cα, and the ratio ca/cα, such that

(1− λ)|un|2 + λ sup
tn−1≤s≤tn

|u(s)|2 +
n−1∑
i=0

eC(tn−1−ti)|ui − ui
+|2

+(1− λ)
cα

2

∫ tn

0
eC(tn−s)‖uh(s)‖2ds

≤
(
1 + TO(τ)

)(
eCtn |u0

h|2 + Cλ

∫ tn

0
eC(tn−s)‖F (s)‖2

∗ ds

)
,

and

(1− λ)|en
h|2 + λ sup

tn−1≤s≤tn
|eh(s)|2 +

n−1∑
i=0

eC(tn−1−ti)|ei
h − ei

h+|2

+(1− λ)
cα

2

∫ tn

0
eC(tn−s)‖eh(s)‖2ds

≤
(
1 + TO(τ)

)(
eCtn |e0

h|2 + Cλ

∫ tn

0
eC(tn−s)

(
ca‖ep(s)‖2 + Ca|ep(s)|2

)
ds

)
,
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provided Cτ < 1. Here λ = 1/(2Ck + 4Ckca/cα + 1) ∈ (0, 1), and ep = u − Phu and
eh = Phu − uh where Ph : C[0, T ;H] ∩ H1[0, T ;U ′] → Uh is the projection defined in
Definition 2.4.

Proof. Since the line of argument to prove each inequality is identical we only prove
the second.

Let ẽh ∈ Pk(tn−1, tn;Un
h ) be the discrete approximation of χ[tn,t)eh(t) constructed in

Lemma 2.7. Setting vh = ẽh in equation (3.5) and moving the term a(.; eh, ẽh) to the
right hand side gives

1
2
|eh(t)|2 +

1
2
|en−1 − en−1

+ |2 =
1
2
|en−1|2 −

∫ tn

tn−1

a(.; ep, ẽh) + a(·; eh, ẽh).

We estimate the each of the last two terms seperatly.∫ tn

tn−1

a(.; eh, ẽh) ≤
∫ tn

tn−1

(ca‖eh‖2 + Ca|eh|2)1/2(ca‖ẽh‖2 + Ca|ẽh|2)1/2

≤
(∫ tn

tn−1

ca‖eh‖2 + Ca|eh|2
)1/2(∫ tn

tn−1

ca‖ẽh‖2 + Ca|ẽh|2
)1/2

≤ Ck

∫ tn

tn−1

(
ca‖eh‖2 + Ca|eh|2

)
.

Lemma 2.7 was used to bound ẽh in terms of eh in the last line. A similar computation
shows∫ tn

tn−1

a(.; ep, ẽh) ≤ Ck

2

∫ tn

tn−1

(
(ca/cα + 1)(ca‖ep‖2 + Ca|ep|2) + cα‖eh‖2 + Ca|eh|2

)
.

Combining the above gives

|eh(t)|2 + |en−1 − en−1
+ |2 ≤ |en−1|2 (3.7)

+Ck

∫ tn

tn−1

(
(ca/cα + 1)(ca‖ep‖2 + Ca|ep|2) + cα(1 + 2ca/cα)‖eh‖2 + 3Ca|eh|2

)
We now consider the convex combination of (1−λ) equation (3.4) and λ equation (3.7).
We choose the coefficient, λ, so that the term involving ‖eh‖2 on the right of (3.7) is
dominated by the corresponding term on the left of (3.4). Speciffically, let

λCk(1 + 2ca/cα) = (1/2)(1− λ), or λ =
1

(2Ck + 4Ckca/cα + 1)
.

This gives an estimate of the form

(1− λ)|en
h|2 + λ|eh(t)|2 + (1− λ)

cα

2

∫ tn

tn−1

‖eh‖2 + |en−1
h − en−1

h+ |2 (3.8)

≤ |en−1
h |2 + Cλ

∫ tn

tn−1

(
ca‖ep‖2 + Ca|ep|2 + |eh|2

)
16



where C depends only upon the coercivity constant cα and ca through the ratio ca/cα.
Bound the first and last terms on the right by

|en−1
h |2 ≤ (1− λ)|en−1

h |2 + λ sup
tn−2<s≤tn−1

|eh(s)|2

and ∫ tn

tn−1

|eh|2 ≤ τn sup
tn−1<s≤tn

|eh(s)|2, τn ≡ tn − tn−1,

respectivly, and select the time t on the left so that |eh(t)| = suptn−1<s≤tn |eh(s)| to get

(1− λ)|en
h|2 + λ(1− Cτn) sup

tn−1<s≤tn
|eh(t)|2 + (1− λ)

cα

2

∫ tn

tn−1

‖eh‖2 + |en−1
h − en−1

h+ |2

≤ (1− λ)|en−1
h |2 + λ sup

tn−2<s≤tn−1

|eh(s)|2 + Cλ

∫ tn

tn−1

(ca‖ep‖2 + Ca|ep|2).

Upon introducing a factor (1−Cτn) in front of the first term, this inequality takes the
form

(1− Cτn)αn + βn ≤ αn−1 + fn,

and the theorem follows from the discrete Gronwall inequality.

Remark 5. Note that the above estimate consists of norms that measure the behaviour
of the solution at the nodal, interior and jump points. All norms included are the
“natural” ones and no additional regularity is required on the right hand side.

Theorem 3.1 essentially shows that the error for the parabolic equation can be bounded
by the error of the ODE. If the norms 9.9∞, 9.92 and jump term JN (e) are defined by

9v92
∞ = sup

0≤s≤T
|v(s)|2 + cα

∫ T

0
eC(T−s)‖v(s)‖2 ds

9v92
2 =

∫ T

0
eC(T−s)|v(s)|2 ds + ca

∫ T

0
eC(T−s)‖v(s)‖2 ds,

and

J2
N (v) =

N−1∑
i=0

eC(T−ti)|vi − vi
+|2,

then Theorem 3.1 states

9Phu− uh 92
∞ +J2

N (Phu− uh) ≤ C(T )
(
|P0u(0)− u0|2 + 9u− Phu 92

2

)
.

Since
∫ T
0 eC(T−s)|ep(s)|2 ≤ eCT sup0≤s≤T |ep(s)|2 various symetric error estimates follow.

For example, setting u0 = P0u(0) and using the triangle inequlality gives

9u− uh92 ≤ C(T ) 9 u− Phu92, and 9 u− uh9∞ ≤ C(T ) 9 u− Phu 9∞ .

Since Phu is not a local projection, classical interpolation theory does not immediatly
yield rates of convergence for a specific problem. However, we can use the results of
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Section 2.4 to estimate the right hand sides of the above in terms of the local projection
Ploc

h u.

Theorem 3.2. Under the assumptions in theorem 3.1 there exists a positive constant
C(T ) depending only on k (through the constant Ck of Lemma 2.7), the constants
C, λ, Ca, Cα, and the ratio ca/cα, and the final time T such that the following estimate
holds

9u− uh9∞ ≤ C(T )
(
|e0

h|+ 9u− Ploc
h u 92 + 9 Phu− Ploc

h u 9∞
)

≤ C(T )
(
|e0

h|+ 9u− Ploc
h u 92 +

N∑
i=1

|Pi(I − Pi−1)u(ti−1)|

+
√

ca max
1≤n≤N

‖
n∑

i=1

( n∏
j=i

Pj

)
(I − Pi−1)u(ti−1) + (Pn ◦ ... ◦ P1)e0

h‖
)
,

where e0
h = P0u(0)− u0, and Ploc

h u is the local projection defined in Definition 2.2, and
Pn : H → Un

h is the orthogonal projection.

Remark 6. 1) Upon assuming an inverse inequality of the form ‖vh‖ ≤ Cinv(h)|vh| for
all vh ∈ Un

h , n = 0, 1, . . ., and h > 0, the above estimate simplifies to

9u−uh9∞ ≤ C(T )

(
9u− Ploc

h u 92 +
(
1 +

√
caCinv(h)

)( N∑
i=1

|Pi(I − Pi−1)u(ti−1)|+ |e0
h|
))

.

2) Estimates for the jump terms JN (u − uh) can also be obtained; however, they will
converge at a reduced rate; specifically,

JN (u− uh) ≤ C(T )
(

9 u− Ploc
h u 92 +JN (u− Ploc

h u)

+
√

N
( N∑

i=1

|Pi(I − Pi−1)u(ti−1)|+ |e0
h|
)

+
√

ca max
1≤n≤N

‖
n∑

i=1

( n∏
j=i

Pj

)
(I − Pi−1)u(ti−1) + (Pn ◦ ... ◦ P1)e0

h‖
)
,

Appendix A. Discrete Gronwall Inequality. If (1−Cτn)an + bn ≤ an−1 + fn the
discrete Gronwall inequality states that if maxn Cτn < 1 then

aN +
N∑

n=1

bn∏N
i=n(1− Cτ i)

≤ a0∏N
i=1(1− Cτ i)

+
N∑

n=1

fn∏N
i=n(1− Cτ i)

.

Since

exp

(
N∑

i=n

Cτ i

)
≤ 1∏N

i=n(1− Cτ i)
≤

(
1−

N∑
i=n

(Cτ i)2
)−1

exp

(
N∑

i=n

Cτ i

)
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and (1−
∑N

i=n(Cτ i)2) ≥ 1− C2Tτ , where τ = maxn τn we may write

aN +
N∑

n=1

eC(tN−tn)bn ≤
(
1 + TO(τ)

)(
eCtN a0 +

N∑
n=1

eC(tN−tn)fn

)
,

where tn =
∑n

i=1 τn.
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