
Math 128

Problem set #3

Feb. 19, 2004, due Feb 26
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1 The Heisenberg group and algebra.

1. Let H be the group of all real three by three matrices of the form 1 a c
0 1 b
0 0 1

 .

Consider the algebrea of all operators on functions of one real variable. Let h
denote three dimensional space of operators spanned by the identity operator,
1, the operator x consisting of multiplication by x, and the operator d/dx:

1 : f 7→ f

x : f(x) 7→ xf(x)
d

dx
: f 7→ df

dx
.

Show that h is a Lie subalgebra of the algebra of operators on smooth functions
defined on R. (It is called the Heisenberg algebra.) Show that h is isomorphic
to the Lie algebra of H.
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2 Poisson bracket.

We consider an even dimensional space with coordinates q1, q2, . . . , p1, p2, . . . .
The polynomials have a Poisson bracket

{f, g} :=
∑ (

∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
. (1)

This is clearly anti-symmetric, and direct computation will show that the Jacobi
identity is satisfied. Here is a more interesting proof of Jacobi’s identity: Notice
that if f is a constant, then {f, g} = 0 for all g. So in doing bracket computations
we can ignore constants. On the other hand, if we take g to be successively
q1, . . . , qn, p1, . . . , pn in (1) we see that the partial derivatives of f are completely
determined by how it brackets with all g, in fact with all linear g. If we fix f ,
the map

h 7→ {f, h}

is a derivation, i.e. it is linear and satisfies

{f, h1h2} = {f, h1}h2 + h1{f, h2}.

This follows immediately from from the definition (1). Now Jacobi’s identity
amounts to the assertion that

{{f, g}, h} = {f, {g, h}} − {g, {f, h}},

i.e. that the derivation
h 7→ {{f, g}, h}

is the commutator of the of the derivations

h 7→ {f, h} and h 7→ {g, h}.

It is enough to check this on linear polynomials h, and hence on the polynomials
qj and pk. If we take h = qj then

{f, qj} =
∂f

∂pj
, {g, qj} =

∂g

∂pj

so

{f, {g, qj}} =
∑ (

∂f

∂pi

∂2g

∂qi∂pj
− ∂f

∂qi

∂2g

∂pi∂pj

)
{f, {f, qj}} =

∑ (
∂g

∂pi

∂2f

∂qi∂pj
− ∂g

∂qi

∂2f

∂pi∂pj

)
so

{f, {g, qj}} − {g, {f, qj}} =
∂

∂pj
{f, g}

= {{f, g}, qj}

as desired, with a similar computation for pk.
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3 The Heisenberg algebra again.

2. Consider the subspace spanned by the functions 1, q1, · · · , qn, p1, · · · , pn. In
other words, the space of inhomogeneous linear functions. Show that this is a
Lie subalgebra of the algebra of all functions under Poisson bracket. Show that
for n = 1 this subalgebra is isomorphic to the Lie algebra of Problem 1.

So now we generalize the notation of Problem 1 and call this 2n+1 dimensional
algebra the Heisenberg algebra h.

4 The symplectic algebra.

3. Show that the space of all inhomogeneous quadratic polynomials, i.e. the
space spannec by 1, q1, . . . , qn, p1, . . . , pn, qi, qj .qipj , p1pj , (i.j = 1, . . . n) is a Lie
subalgebra under Poisson bracket and that h is an ideal in this algebra. Fur-
thermore, the subspace consisting of homogeneous quadratic polynomials is a
subalgebra complementary to h.

The symplectic algebra sp(2n) is defined to be the subalgebra consisting
of all homogeneous quadratic polynomials.

4. Show that sp(2) is isomorphic to sl(2).

For the rest of this problem set we will let g denote the symplectic algebra
sp(2n).

Let
E :=

1
2
(p1q1 + · · ·+ pnqn).

5. Show that
g = g−1 ⊕ g0 ⊕ g1

where

[E,X] = X, X ∈ g1, [E,X] = 0 X ∈ 0, [E,X] = −X. X ∈ g−1

and describe each of these subspaces. Show that this makes g into a graded Lie
algebra with ad E as the degree derivation. Show that g0 is isomorphic to the
Lie algebra gl(n) of all n×n matrices and describe the action of g0 on g−1 and
on g1. Conclude that sp(2n) is simple.

5 The symplectic group.

We have shown that the symplectic algebra is simple, but we haven’t really
explained what it is. Consider the space of V of homogenous linear polynomials,
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i.e all polynomials of the form

` = a1q1 + · · ·+ anqn + b1pq + · · ·+ bnpn.

Define an anti-symmetric bilinear form ω on V by setting

ω(`, `′) := {`, `′).

From the formula (1) it follows that the Poisson bracket of two linear functions
is a constant, so ω does indeed define an antisymmetric bilinear form on V ,
and we know that this bilinear form is non-degenerate. Furthermore, if f is a
homogenous quadratic polynomial, and ` is linear, then {f, `} is again linear,
and if we denote the map

` 7→ {f, `}

by A = Af , then Jacobi’s identity translates into

ω(A`, `′) + ω(`A`′) = 0 (2)

since {`, `′} is a constant. Condition (2) can be interpreted as saying that A
belongs to the Lie algebra of the group of all linear transformations R on V
which preserve ω, i.e. which satisfy

ω(R`,R`′) = ω(`, `′).

This group is known as the symplectic group. The form ω induces an iso-
morphism of V with V ∗ and hence of Hom(V, V ) = V ⊗ V ∗ with V ⊗ V , and
this time the image of the set of A satisfying (2) consists of all symmetric ten-
sors of degree two, i.e. of S2(V ). (Just as in the orthogonal case we got the
anti-symmetric tensors). But the space S2(V ) is the same as the space of ho-
mogenous polynomials of degree two. In other words, the symplectic algebra as
defined above is the same as the Lie algebra of the symplectic group.

It is an easy theorem in linear algebra, that if V is a vector space which
carries a non-degenerate anti-symmetric bilinear form, then V must be even
dimensional, and if dim V = 2n then it is isomorphic to the space constructed
above. We will not pause to prove this theorem.

6 The root structure of the symplectic algebra.

Let h consist of all linear combinations of

p1q1, . . . , pnqn.

6. Show that h is a maximal commutative subalgebra of g = sp(2n). In
other words, show that any two elements of h commute, and that if X ∈ sp(2n)
commutes with all elements of v = h then X ∈ h.
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As usual, we will let h∗ denote the dual space of h, In other words, h∗ consists
of the space of all linear functions on h. Let Li be defined by

Li (a1p1q1 + · · ·+ anpnqn) = ai

so L1, . . . , Ln is the basis of h∗ dual to the basis p1q1, . . . , pnqn of h.
Since h is commutative, we know that

(adX)(adY ) = (adY )(adX) ∀ X, Y ∈ h.

So it makes sense to look for simultaneous eigenvectors for the operators adX, X ∈
h. That is, we look for elements Z ∈ g such that there is an α ∈ h∗ so that

[X, Z] = α(X)Z ∀X ∈ h.

For example, if Z ∈ h then the above equation holds with α ≡ 0. We want to
find the non-zero α (and Z) satisfying the above equation. Such a non-zero α
satisfying the above equation with an appropriate Z is called a root.

7. Show that If X = a1p1q1 + · · ·+ anpnqn then

[X, qiqj ] = (ai + aj)qiqj

[X, qipj ] = (ai − aj)qipj

[X, pipj ] = −(ai + aj)pipj

so
±(Li + Lj) all i, j and Li − Lj i 6= j

are roots, and that these are all the roots.

We let Φ denote the collection of all roots. We can divide the set Φ into two
subsets, the “positive roots” and the “negative roots” by setting

Φ+ = {Li + Lj}all ij ∪ {Li − Lj}i<j

and
Φ− = −Φ+.

Define
α1 := L1 − L2, . . . , αn−1 := Ln−1 − Ln, αn := 2Ln.

8. Show that every positive root can be written in a unique way as a linear
combination of the αi with non-negative integer coefficients.

If we set

h1 := p1q1 − p2q2, . . . , hn−1 := pn−1qn−1 − pnqn, hn := pnqn
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then
αi(hi) = 2

while for i 6= j

αi(hi±1) = −1, i = 1, . . . , n− 1
αi(hj) = 0, j 6= i± 1, i = 1, . . . , n (3)

αn(hn−1) = −2.
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