Correction to the paper Entire functions with two radially distributed values

In the 4 -th paragraph after Theorem 5 we wrote that $1 / \Gamma(-z)$ has zeros on the positive ray and 1-points close to the imaginary axis. This is a blunder: some 1-points are near the zeros.

To construct the example that we need, take a sequence $x_{k} \sim k \log ^{2} k, k \rightarrow$ ∞, and consider the product

$$
f(z)=\prod\left(1-z / x_{k}\right)
$$

This function has the required property which follows from the asymptotics

$$
\log \left|f\left(r e^{i \theta}\right)\right| \sim-r(\log r)^{-1} \cos \theta, \quad c>0
$$

when $r \rightarrow \infty$, and $r e^{i \theta}$ avoids small discs around x_{k}. See, for example, B. Ya. Levin, Distribution of zeros of entire functions, AMS Providence, RI, 1970, Appendix VIII, p. 484.

