
On sums of sixteen biquadrates.

Jean-Marc Deshouillers1, Koichi Kawada and Trevor D. Wooley2

1 Introduction.

The investigation of sums of biquadrates occupies a distinguished position in
additive number theory, largely on account of the relative success with which
the basic problems of Waring-type have been addressed. Although progress
on such problems was dominated for the greater part of the 20th century
by advances in technology at the heart of the Hardy-Littlewood method, the
older ideas involving the use of polynomial identities have recently resurfaced
in work of Kawada and Wooley [15], though now interwoven with the analytic
machinery of the circle method itself. The primary goal of this paper is
to apply this new circle of ideas to obtain an explicit analysis of sums of
sixteen biquadrates, and, moreover, one suitable for determining the largest
integer not represented in such a manner. A separate paper [12] reports on
computations of Deshouillers, Hennecart and Landreau which complement
the main conclusion of this memoir, and as will shortly become apparent, the
union of these results leads to the following definitive statement concerning
sums of sixteen biquadrates.

Theorem 1. Every integer exceeding 13792 can be written as a sum of at
most 16 biquadrates.

Although we avoid a detailed historical account of the various contribu-
tions to Waring’s problem for biquadrates, our subsequent discussion will be
clarified by a sketchy overview of such matters (we refer the reader to the
survey [11] for a more comprehensive account). For the sake of concision, we
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refer to a number n as being a Bs (number) when n can be written as a sum
of at most s biquadrates. In accordance with the familiar notation in War-
ing’s problem, we then denote by g(4) the least integer s with the property
that every natural number is a Bs, and we denote by G(4) the least natural
number s such that every sufficiently large number is a Bs. The problem
central to this paper has as its origin the assertion made by Waring in 1770
to the effect that g(4) = 19. This conjecture was in large part resolved by
Hardy and Littlewood [13], who established by means of their newly devised
circle method that G(4) ≤ 19. Indeed, the work of Hardy and Littlewood
shows that one may compute an explicit constant C with the property that
every number exceeding C is a B19. Although a computational check of the
integers of size at most C would determine whether or not g(4) is equal to 19,
the astronomical size of this constant C entirely precluded any such attempt
to resolve this problem. While for other exponents k, advances in the circle
method rapidly wrought an effective determination of the value of g(k), it
was only in the late 1980’s that, with new ideas and substantial effort, it
became possible to reduce the value of C to a size within the grasp of exist-
ing supercomputers. Thus Balasubramanian, Deshouillers and Dress at last
announced a proof of g(4) = 19 in [3], [4]. A complete proof of the result can
be found in the series of papers [7], [8], [9] and [10].

While it has only recently been established that every natural number is
a B19, as Waring had claimed, it has been known for many years that G(4)
is less than 19. Indeed, Davenport [5] had shown by 1939 that G(4) = 16,
so that with only finitely many exceptions, all natural numbers are B16. We
recall at this point that the lower bound G(4) ≥ 16 is immediate from the
observation that 31 · 16m is not a B15 for any non-negative integer m. As
announced in [11], by combining the work of Balasubramanian, Deshouillers
and Dress with the central idea of the recent memoir [15] of Kawada and
Wooley, it is now possible to determine all numbers that are not B16. The
object of this treatise is the detailed proof of the following result.

Theorem 2. Every integer exceeding 10216 that is not divisible by 16 can be
written as the sum of 16 biquadrates.

A companion paper of Deshouillers, Hennecart and Landreau [12] shows
that all natural numbers not exceeding 10245 are B16, with the exception of
precisely 96 numbers, the largest of which is 13792. In view of the latter
conclusion, Theorem 1 follows from Theorem 2 by noting that integers ex-
ceeding 10216 divisible by 16 are harmless. For if N > 10216 and 16|N , then
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there exist natural numbers m and n with the property that N = 16mn, and
either n > 10216 and 16 - n, or else 10216/16 < n ≤ 10216. In the former
case, Theorem 2 shows that n is a B16, and in the latter case the above cited
conclusion of Deshouillers, Hennecart and Landreau [12] shows that n is a
B16. Thus, in either case, it is evident that N = (2m)4n is a B16.

We remark that Deshouillers, Hennecart and Landreau [12] have deter-
mined in addition the 31 numbers that are not B17 (the largest of which is
1248), and also the 7 numbers that are not B18, these being simply described
as the integers 80k − 1 for 1 ≤ k ≤ 7. We refer the reader to the aforemen-
tioned paper [12] for a complete list of the exceptional numbers which are
not B16, and those which are not B17 (this information may also be found in
the survey [11]).

We next provide a brief overview of our basic strategy, deferring to section
2 a more detailed discussion of our plan of attack on the proof of Theorem 2.
We employ the Hardy–Littlewood method, aiming to exploit the polynomial
identity

x4 + y4 + (x + y)4 = 2(x2 + xy + y2)2 (1.1)

that was the key innovation of Kawada and Wooley [15]. In order to efficiently
exploit the relation (1.1), we introduce the set M, which we define by

M = {m ∈ N : m = x2 + xy + y2 for some x, y ∈ Z with xy(x + y) 6= 0 }.
(1.2)

In view of (1.1), for each m ∈M one finds that 2m2 is a sum of 3 biquadrates.
Thus one is led to consider the number, Z(X), of solutions of the equation

2m2
1 + u4

1 + u4
2 = 2m2

2 + u4
3 + u4

4,

with m1, m2 ∈ M∩ [1, X1/2] and 1 ≤ ui ≤ X1/4 (1 ≤ i ≤ 4). By employing
a modified divisor function estimate to determine the number of solutions
of the latter equation with u4

1 + u4
2 6= u4

3 + u4
4, and an immediate counting

argument when u4
1 + u4

2 = u4
3 + u4

4, one derives the efficient upper bound
Z(X) ¿ X(log X)ε without any undue effort (see the proof of Theorem 1 in
Kawada and Wooley [15, §2], and also the related discussion of Lemma 3.4
of [15]).

In order to establish that a given large number N is a B16, the most
obvious strategy suggested by the above discussion is that of considering
representations of N in the form

N = 2m2
1 + 2m2

2 + x4
1 + · · ·+ x4

10, (1.3)
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with m1, m2 ∈ M and xj ∈ N (1 ≤ j ≤ 10). It is now apparent that
whenever N admits a representation of the shape (1.3), then N may be
written as the sum of 16 biquadrates. Unfortunately, since a biquadrate is
congruent to 0 or 1 modulo 16 according to whether it is even or odd, one finds
from (1.1) that whenever m ∈M, the expression 2m2 is necessarily congruent
to 0 or 2 modulo 16. Thus, whereas an unrestricted sum of three biquadrates
is congruent to 0, 1, 2 or 3 modulo 16, our surrogate 2m2 is restricted to the
classes 0 and 2 modulo 16. It follows that whether or not the integer N is a
B16, it fails to possess a representation in the shape (1.3) whenever N ≡ 15
(mod 16), and thus our initial strategy is doomed to failure. Nonetheless,
by making use of the tools developed within this memoir, the authors have
employed this approach to establish that whenever N ≥ 10156, and N is not
congruent to 0 or 15 modulo 16, then N can be written in the shape (1.3),
and hence is a B16. We omit the details of such an argument in the interest
of saving space.

As is apparent from the deliberations of the previous paragraph, one may
recover the missing congruence class 15 modulo 16 by considering instead
representations of N in the form

N = 2m2 + x4
1 + · · ·+ x4

13, (1.4)

with m ∈ M and xj ∈ N (1 ≤ j ≤ 13). By combining the mean value
estimate discussed above with an explicit version of Hua’s inequality provided
by Deshouillers and Dress [9], a careful application of the Hardy-Littlewood
method would establish that whenever N ≥ 10300 and 16 - N , then N is a
B16. Unfortunately, even anticipated advances in computational technology
would seem insufficient to permit the methods of Deshouillers, Hennecart
and Landreau [12] to check that all numbers not exceeding 10300 are B16,
with the above-mentioned exceptions. We are therefore forced in our proof
of Theorem 2 to introduce a further new idea.

Motivated by the identity (1.1), and the similar identity

x2 + y2 + (x + y)2 = 2(x2 + xy + y2),

we obtain from the relation

(w + x)4 + (w − x)4 = 2w4 + 12w2x2 + 2x4
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the new identity

(w + x)4 + (w − x)4+(w + y)4 + (w − y)4 + (w + x + y)4 + (w − x− y)4

= 4(x2 + xy + y2)2 + 24(x2 + xy + y2)w2 + 6w4

= 4(x2 + xy + y2 + 3w2)2 − 30w4.

(1.5)

The use of (1.1) in the representations (1.3) and (1.4) might reasonably be
regarded as effectively replacing three biquadrates by a square. The use of
the identity (1.5), meanwhile, effectively replaces six biquadrates by a square
and a biquadrate, which in applications amounts to trading five biquadrates
for a square. While the latter exchange is clearly less efficient than the former
so far as consequent mean value estimates are concerned (see Lemmata 2.4
and 2.5 below), in compensation one finds that the six biquadrates on the left
hand side of (1.5) may be simultaneously odd. Moreover, despite the relative
inefficiency of the identity (1.5) as compared to (1.1), one may nonetheless
recover a mean value estimate associated with only 14 biquadrates of es-
sentially the same strength as that available from Hua’s inequality for 16
biquadrates (compare Theorem 4 of Deshouillers and Dress [9] with Lemma
2.5 below). Thus it transpires that the new identity (1.5) is crucial to the
success of this paper.

In order to establish that a given large integer N is a B16, therefore, the
strategy which we adopt in this memoir is to consider representations of N
in the form

N = 2m2
1 + 4m2

2 + 24m2w
2 + 6w4 + x4

1 + · · ·+ x4
7,

with m1, m2 ∈ M and w, xj ∈ N (1 ≤ j ≤ 7). In view of the identities
(1.1) and (1.5), it follows that whenever N can be written in the latter form,
then N is necessarily a sum of 16 biquadrates. A discussion of the details
associated with putting this strategy into practice may be found in §2 below,
wherein an outline of the proof of Theorem 2 is also provided.

Equipped now with the powerful new weapons developed for our attack
on sums of 16 biquadrates, it is difficult to resist the temptation to return
to the topic of sums of 19 biquadrates. As mentioned earlier, Deshouillers
and Dress showed first in [9] that every number exceeding 10367 is a B19,
and subsequently in [10], with heavy use of powerful computers, that every
number up to 10448 is a B19. In an appendix to this paper we apply our idea
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based on the use of the identity (1.1) in order to substantially reduce the
computations necessary to establish that g(4) = 19. We show in fact that
every number N exceeding 10146 can be represented in the form

N = 2m2
1 + 2m2

2 + x4
1 + · · ·+ x4

13,

with m1, m2 ∈ M and xj ∈ N (1 ≤ j ≤ 13), whence by (1.1) it follows that
every such N is a B19. The computational verification that every number
up to 10147 is a B19 can be completed even on a modest personal computer
within a day.

We finish our opening remarks with a few comments concerning the ex-
tent to which numerical computations underlie the main conclusions of this
memoir. While the contribution of Deshouillers, Hennecart and Landreau
[12] to the proof of Theorem 1 is necessarily heavy in its use of powerful
computers, we have expended considerable effort in our proof of Theorem 2
in avoiding serious computations, either explicit, or implicit in results cited
from the literature. Indeed, a moderately energetic reader equipped only
with a hand-held calculator should encounter no difficulties in verifying the
computations involved in this analytic argument. A more cavalier approach
to the use of computational results, and especially those to be found in the
literature, would improve the conclusion of Theorem 2 somewhat. In par-
ticular, our Lemma 3.2 below could be replaced by Theorem 5 of Rosser
and Schoenfeld [19], our Lemma 3.3 could be replaced by Theorem 5.3 of
McCurley [17], and our Lemma 2.3 could be improved by the use of the nu-
merical estimates for infinite products recorded on p.295 of Deshouillers [7].
One might also make use of numerical integration to evaluate the singular
integral, rather than using Lemma 4.2 below. Incorporating such computa-
tional refinements into our basic argument, one may show that every integer
exceeding 10196, and not divisible by 16, can be written as the sum of 16
biquadrates, thereby improving the corresponding bound of Theorem 2 by a
factor of 1020.

Throughout this paper, we write e(z) for e2πiz. Also, we denote the largest
integer not exceeding x by [x], and we write dxe for the least integer y with
y ≥ x. Also, the letter p will always be reserved to denote a prime number.
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2 Outline of the proof of Theorem 2.

As promised in the introduction, we now outline the proof of Theorem 2 in
some detail. We begin by defining the exponential sums and arc dissections
at the heart of our application of the Hardy-Littlewood method. Here, in
order more easily to exploit previous work on the problem, we make heavy
use of the notation of [6] and [9]. Thus, when P is a natural number and
ε ∈ {0, 1}, we define the exponential sum Sε(α) by

Sε(α) =
∑

P−ε/2<x≤2P−ε/2

e((2x + ε)4α). (2.1)

We define the unit interval U by

U = [975P−3, 1 + 975P−3].

Also, when a ∈ Z and q ∈ N, we define the set

M(q, a) = {α ∈ U : |qα− a| ≤ 975P−3}, (2.2)

and then define the set of major arcs M to be the union of the intervals
M(q, a) with 0 ≤ a ≤ q ≤ P 1/2 and (a, q) = 1. Note that the intervals
occurring in the latter union are disjoint whenever P is large enough, and
such is certainly the case for P ≥ 100. Finally, we define the minor arcs m

by m = U \M.
We next turn our attention to the important set M defined in (1.2),

extending our earlier notation by writing, for η ∈ {0, 1},

Mη = {m ∈M : m ≡ η (mod 2) }

and
Mη(X) = Mη ∩ [1, X].

Notice that whenever m ∈ M0, one necessarily has 4|m, and so it follows
that when m ∈Mη with η ∈ {0, 1}, then

2m2 ≡ 2η (mod 16). (2.3)

Also, when m ∈M0 and ζ ∈ {0, 1}, we find that for any integer w, one has

4m2 + 24m(2w + ζ)2 + 6(2w + ζ)4 ≡ 6ζ (mod 16). (2.4)
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Since it is possible, without excessive inconvenience, to restrict all the
biquadrates employed in our representation to be non-zero, we define our
generating functions in such a way as to make this possible. Accordingly,
when m ∈ M0, we consider the unique integers x and y satisfying m =
x2+xy+y2 with x ≥ y and x+y largest amongst all the latter representations,
and then put

W(m) = {|x|, |y|, |x + y| }. (2.5)

On recalling the identity (1.5), we may express the left hand side of (2.4)
as a sum of six biquadrates. When w > 0 and 2w + ζ 6∈ W(m), moreover,
it is apparent that all six biquadrates occurring in the latter expression are
non-zero. When P is a natural number, and η, ζ ∈ {0, 1}, we define the
exponential sums

Fη(α) =
∑

m∈Mη(P 2)

e(2m2α), (2.6)

and

Dζ(α) =
∑

m∈M0(3P 2/7)

∑

1≤w<P/6
2w+ζ 6∈W(m)

e((4m2+24m(2w+ζ)2+6(2w+ζ)4)α). (2.7)

Motivated by the need to satisfy relevant congruence conditions, when
N ≡ r (mod 16) with 1 ≤ r ≤ 15, we define the integers η, ζ and t by





η = 0, ζ = 0 and t = r for 1 ≤ r ≤ 2,
η = 1, ζ = 0 and t = r − 2 for 3 ≤ r ≤ 8,
η = 1, ζ = 1 and t = r − 8 for 9 ≤ r ≤ 15.

(2.8)

We note that in any case, our choices for η, ζ and t ensure that

1 ≤ t ≤ 7 and N − 2η − 6ζ ≡ t (mod 16). (2.9)

Also, when N is a natural number and ν is a positive real number, we define
the positive numbers P0 = P0(N, ν) and P = P (N, ν) by means of the
relations

N = 16νP 4
0 and P = [P0]. (2.10)

Equipped with the above notation, we denote by R(N) = R(N, ν) the
number of representations of the natural number N in the form

N = 2m2
1 + 4m2

2 + 24m2(2w + ζ)2 + 6(2w + ζ)4 +
7−t∑
j=1

(2xj)
4 +

t∑

l=1

(2yl + 1)4,
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subject to

m1 ∈Mη(P
2), m2 ∈M0(3P

2/7), 1 ≤ w < P/6, 2w + ζ 6∈ W(m2),

P < xj ≤ 2P (1 ≤ j ≤ 7− t) and P ≤ yl < 2P (1 ≤ l ≤ t).

Thus, in view of the identities (1.1) and (1.5), together with the definitions
of the sets Mη(X) and W(m), it follows that whenever R(N) > 0, then N
can be written as a sum of 16 biquadrates.

Next, when L ⊆ U, we define R(N ; L) = R(N, ν; L) by

R(N ; L) =

∫

L

Fη(α)Dζ(α)S0(α)7−tS1(α)te(−Nα)dα, (2.11)

and observe that by orthogonality, one has

R(N) = R(N ; U) = R(N ; M) + R(N ; m). (2.12)

We emphasise here that the quantities P , R(N ; M) and R(N ; m) should be
regarded as functions of both N and ν. By evaluating R(N ; M) and R(N ; m),
we aim to show that when N ≥ 10216, then there exists a positive number ν
with the property that R(N) > 0. Theorem 2 evidently follows immediately
from the latter conclusion.

We estimate the contribution of R(N ; M) by making use of the tools
supplied in [6] and [9]. After preparing some auxiliary estimates for expo-
nential sums in §5, we estimate the singular series in §6. Combining the
latter with an estimate for the singular integral obtained in §4, we derive in
§7 the following lower bound for R(N ; M).

Lemma 2.1. Suppose that P ≥ 1050, and write

Mη = card
(Mη(P

2)
)

and M̃0 = card
(M0(3P

2/7)
)
. (2.13)

Then there exists a positive real number ν, with ν < 64, such that

R(N ; M) > 0.00021MηM̃0P
4.

In order to deduce a satisfactory lower bound for R(N ; M), we require

explicit lower bounds for Mη and M̃0, and these we establish in §3. We
summarise these bounds in the following lemma.
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Lemma 2.2. When X ≥ 1060, one has

card
(M0(X)

)
> 0.0508

X√
log X

and card
(M1(X)

)
> 0.1524

X√
log X

.

We estimate the contribution of R(N ; m) by combining an explicit version
of Weyl’s inequality with certain mean value estimates based on the polyno-
mial identities (1.1) and (1.5). So far as Weyl’s inequality is concerned, we
note that Deshouillers [7] has made use of an idea of Balasubramanian [2]
in order to provide an explicit bound valid for P ≥ 1080. Since our applica-
tion demands the use of smaller values of P , in §8 we modify the argument
described in [7] so as to establish the following conclusion.

Lemma 2.3. Suppose that ε ∈ {0, 1}. Then whenever P ≥ 1030 one has

sup
α∈m

|Sε(α)| ≤ 77P 0.884(log P )0.25,

and when P ≥ 1053 one has the sharper bound

sup
α∈m

|Sε(α)| ≤ 16.7P 0.884(log P )0.25.

We turn our attention next to mean value estimates employed on the
minor arcs, and it is at this point that we profit handsomely from the iden-
tities (1.1) and (1.5). By making use of a well-known property of the divisor
function, one swiftly deduces that for each ε, η, ζ, one has upper bounds of
the shape ∫ 1

0

|Fη(α)2Sε(α)4|dα ≤ A1P
4(log P )C1

and ∫ 1

0

|Dζ(α)2Sε(α)2|dα ≤ A2P
4(log P )C2 ,

for suitable constants Ai, Ci (i = 1, 2). For example, the general methods
of van der Corput, and of Wolke, would be adequate to prove such an in-
equality. However, such general methods yield excessively large values of
Ci, and in such circumstances the quality of these bounds becomes com-
pletely ineffective for the purpose at hand. We therefore adopt a strategy
modelled on the argument described in Deshouillers and Dress [8] and [9],
deriving an auxiliary upper bound for the divisor function in §9 (see, in par-
ticular, the conclusion of Lemma 9.10), bounding the number of solutions of
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congruences employed within the argument in §10, and finally establishing
the crucial mean value estimates in §11. Thus we obtain the following two
lemmata.

Lemma 2.4. Suppose that P ≥ 1025 and ε, η ∈ {0, 1}. Then one has
∫ 1

0

|Fη(α)2Sε(α)4|dα < 60MηP
2(log P )4 + 500P 4(log P )3 + 15360P 4(log P )2,

where Mη is defined as in (2.13).

Lemma 2.5. Suppose that P ≥ 1050 and ζ ∈ {0, 1}. Then one has
∫ 1

0

|Dζ(α)2S1(α)2|dα < 10M̃0P
2(log P )4 + 45P 4(log P )3,

where M̃0 is defined as in (2.13).

Equipped with the previous five lemmata, the proof of Theorem 2 is
swiftly overwhelmed via a straightforward computation, as we now demon-
strate. We suppose in what follows that P ≥ 1053, and begin by observing
that as a consequence of Lemma 2.2, one has

Mη >
0.0508P 2

√
2 log P

and M̃0 >
0.0217P 2

√
2 log P

.

Then Lemmata 2.4 and 2.5 imply respectively that for ε, η ∈ {0, 1}, one has
∫ 1

0

|Fη(α)2Sε(α)4|dα

< M2
η (log P )9/2

(
60P 2

Mη(log P )1/2
+

P 4

M2
η

( 500

(log P )3/2
+

15360

(log P )5/2

))

< M2
η (log P )9/2

( 60
√

2

0.0508
+

1000

0.05082(log P )1/2
+

30720

0.05082(log P )3/2

)

< 45578M2
η (log P )9/2, (2.14)

and also, for ζ ∈ {0, 1},
∫ 1

0

|Dζ(α)2S1(α)2|dα < M̃2
0 (log P )9/2

(
10P 2

M̃0(log P )1/2
+

45P 4

M̃2
0 (log P )3/2

)

< M̃2
0 (log P )9/2

(
10
√

2

0.0217
+

90

0.02172(log P )1/2

)

< 17953M̃2
0 (log P )9/2. (2.15)
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Next write S(α) = max{|S0(α)|, |S1(α)|}. Then by Schwarz’s inequality
we obtain

|R(N ; m)| ≤
∫

m

|Fη(α)Dζ(α)S0(α)7−tS1(α)t|dα

≤
(

sup
α∈m

S(α)
)4

(∫ 1

0

|Fη(α)2Sε(α)4|dα

)1/2

×
(∫ 1

0

|Dζ(α)2S1(α)2|dα

)1/2

,

where ε is 0 or 1 according to whether 1 ≤ t ≤ 2 or 3 ≤ t ≤ 7. Then by
applying Lemma 2.3 in combination with (2.14) and (2.15), we deduce that

|R(N ; m)| < 16.74
√

45578× 17953MηM̃0P
3.536(log P )5.5.

In view of (2.12), it thus follows from Lemma 2.1 that for a certain positive
number ν with ν < 64, one has

R(N) ≥ R(N ; M)− |R(N ; m)| > 0.00021MηM̃0P
4(1− E), (2.16)

where
E = 1.0595× 1013P−0.464(log P )5.5. (2.17)

A modest calculation reveals that the expression on the right hand side of
(2.17) is less than 1 whenever P > 7× 1052, and thus we deduce from (2.16)
that R(N) > 0 whenever P ≥ 1053. On recalling (2.10) and the hypothesis
0 < ν < 64, we find that the latter condition on P is satisfied whenever
N ≥ N0, where

N0 = 16ν(1053)4 < 1.1× 10215.

Thus we may conclude that whenever N ≥ 10216 and 16 - N , then N is
indeed the sum of 16 biquadrates. The proof of Theorem 2 therefore follows
on establishing Lemmata 2.1–2.5, this task being our primary concern in
§§3-11.

3 The cardinarity of the sets Mη(X).

Our goal in this section is the proof of Lemma 2.2, which provides the explicit
control of the distribution of integers of the shape x2 + xy + y2 essential to
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the main body of our argument. We begin by establishing some preliminary
lemmata that provide basic information concerning the distribution of prime
numbers. In this context, we remark that sharper versions of our Lemmata
3.1, 3.2 and 3.3 follow swiftly from the work of McCurley [17] and Rosser and
Schoenfeld [19]. However, in order to avoid dependence on the heavy com-
putations inherent in the latter work, we seek here to provide self-contained
proofs of conclusions sufficient for the applications at hand.

Let Λ(n) denote the von Mangoldt function, defined to be log p when n
is a prime power pr, and zero otherwise. Also, define

ψ(x) =
∑
n≤x

Λ(n).

Our first lemma provides an estimate for ψ(x) via an argument of Chebyshev.

Lemma 3.1. For x ≥ 41, one has

0.9212x− 5 log x < ψ(x) < 1.1056x + 3(log x)2.

Proof. Define the function f(t) by

f(t) = [t]− [t/2]− [t/3]− [t/5] + [t/30].

Then one readily verifies that f(t) is equal to 0 or 1 for every real number t,
and further that f(t) = 1 for 1 ≤ t < 6. Write

Ψ(x) = log([x]!)− log([x/2]!)− log([x/3]!)− log([x/5]!) + log([x/30]!). (3.1)

Then, on recalling the well-known formula

∑
n≤x

Λ(n)
[x

n

]
=

∑
n≤x

log n = log([x]!) (3.2)

(see, for example, Theorem 3.12 of Apostol [1]), we deduce that

ψ(x)− ψ(x/6) ≤ Ψ(x) ≤ ψ(x). (3.3)

An application of Euler’s summation formula (see, for example, Theorem 3.1
of [1]) reveals that

∑
n≤x

log n =

∫ x

1

log t dt +

∫ x

1

t− [t]

t
dt− (x− [x]) log x.
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But for x ≥ 1 one has the trivial estimates

0 ≤
∫ x

1

(t− [t])t−1dt ≤ log x

and
0 ≤ (x− [x]) log x ≤ log x,

and hence we deduce that
∣∣log([x]!)− (x log x− x + 1)

∣∣ ≤ log x. (3.4)

On writing
c = log(21/231/351/530−1/30), (3.5)

and combining (3.1) and (3.4), we deduce that for x ≥ 30 one has

|Ψ(x)− cx + 1| ≤ log x + log(x/2) + log(x/3) + log(x/5) + log(x/30)

= 5 log x− 2 log 30. (3.6)

Collecting together (3.3) and (3.6), we obtain the lower bound

ψ(x) ≥ Ψ(x) ≥ cx− 5 log x. (3.7)

On the other hand, the inequalities (3.3) and (3.6) yield also

ψ(x)− ψ(x/6) ≤ Ψ(x) ≤ cx + 5 log x− 1− 2 log 30,

from which one deduces that

ψ(x) ≤
∑

h≥0
x/6h≥30

(
ψ(x/6h)− ψ(x/6h+1)

)
+ ψ(30)

< c

∞∑

h=0

x

6h
+

(
1 +

log(x/30)

log 6

)
(5 log x− 1− 2 log 30) + ψ(30).

A modest computation reveals that ψ(30) < 28.48, and thus a minor calcu-
lation demonstrates that for x ≥ 41 one has

ψ(x) <
6

5
cx +

5

log 6
(log x)2 − log x

log 6
(5 log 5 + 1 + 2 log 30) + 35.5

<
6

5
cx + 3(log x)2. (3.8)
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The number c defined by (3.5) satisfies 0.9212 < c < 0.9213, and thus the
lemma follows immediately from (3.7) and (3.8).

We obtain a bound for the sum of reciprocals of the primes up to X via
a familiar partial summation argument.

Lemma 3.2. When X ≥ 1025, one has

∑
p≤X

1

p
< log log X + 0.281.

Proof. We begin by estimating the sum

B(x) =
∑
p≤x

log p

p
. (3.9)

Observe first that in view of the formulae (3.2) and (3.4), when x ≥ 1025 one
has

∑
n≤x

Λ(n)

n
≥ 1

x

∑
n≤x

Λ(n)
[x

n

]
≥ log x− 1− log x− 1

x

> log x− 1− 10−23. (3.10)

Similarly, from (3.2), (3.4), and the conclusion of Lemma 3.1, when x ≥ 1025

one has

∑
n≤x

Λ(n)

n
≤ 1

x

(∑
n≤x

Λ(n)
[x

n

]
+

∑
n≤x

Λ(n)

)

≤ log x− 1 +
log x + 1

x
+ 1.1056 +

3(log x)2

x
< log x + 0.1056 + 10−21. (3.11)

In order to remove the contribution to the latter sums arising from the
higher prime powers, we note next that

∑

p≤√x

∑
m≥2
pm≤x

log p

pm
=

∑

p≤√x

log p

p(p− 1)
−

∑

p≤√x

log p

pmp(p− 1)
, (3.12)

15



where mp = [log x/ log p]. On making use of the trivial bound pmp(p− 1) ≥
pmp+1/2 > x/2, it follows that for x ≥ 1025 one has

0 ≤
∑

p≤√x

log p

pmp(p− 1)
≤ 2 log

√
x

x

∑

p≤√x

1 ≤ log x√
x

< 10−10. (3.13)

Moreover, when x ≥ 1025 one has also

0 ≤
∑

p>
√

x

log p

p(p− 1)
< 2

∑

n>
√

x

log n

n2
< 2

∫ ∞

√
x−1

log t

t2
dt

= 2
log(

√
x− 1) + 1√
x− 1

< 10−10. (3.14)

We now write

A0 =
∑

p

∑
m≥2

log p

pm
=

∑
p

log p

p(p− 1)
,

and conclude from (3.12), (3.13) and (3.14) that

A0 − 10−9 <
∑

p≤√x

∑
m≥2
pm≤x

log p

pm
≤ A0. (3.15)

Finally, defining the function r(x) by means of the relation

B(x) = log x + r(x), (3.16)

we may conclude from (3.9), (3.10), (3.11) and (3.15) that for x ≥ 1025 one
has

−A0 − 1.0001 < r(x) < −A0 + 0.1057. (3.17)

By applying a partial summation argument along the lines applied in the
proof of Theorem 7 of Ingham [14, Chapter I], one deduces from (3.16) that

∑
p≤X

1

p
= log log X + B0 +

r(X)

log X
−

∫ ∞

X

r(x)

x(log x)2
dx, (3.18)

where

B0 = γ0 +
∑

p

(
log

(
1− 1

p

)
+

1

p

)
, (3.19)
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and γ0 = 0.5772... denotes Euler’s constant. We obtain an upper bound for
the infinite sum in (3.19) by the following simple device. We note first that
the Riemann zeta function ζ(s) satisfies

ζ(2) =
∏

p

(1− p−2)−1 =
π2

6
. (3.20)

Then on noting that for 0 < t < 1, one has log(1− t)+ t < log(
√

1− t2), one
finds that

∑
p

(
log

(
1− 1

p

)
+

1

p

)

<
∑
p≤23

(
log

(
1− 1

p

)
+

1

p
− 1

2
log

(
1− 1

p2

))
− 1

2
log ζ(2)

< −0.0668− 0.2488 = −0.3156.

We therefore deduce from (3.19) that

B0 < 0.2617. (3.21)

Finally, on recalling (3.17) one finds that for X ≥ 1025 one has

r(X)

log X
−

∫ ∞

X

r(x)

x(log x)2
dx <

−A0 + 0.1057

log X
+

∫ ∞

X

A0 + 1.0001

x(log x)2
dx

=
1.1058

log X
< 0.0193.

The conclusion of the lemma now follows by substituting (3.21) and the latter
estimate into (3.18).

We next consider the distribution of primes in arithmetic progressions
modulo 6. We define

π1(x) =
∑
p≤x

p≡1 (mod 6)

1.

Lemma 3.3. When x ≥ 1020, one has

π1(x) ≥ 0.3687
x

log x
.
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Proof. We bound π1(x) from below by employing a lower bound for ψ1(x),
which we define by

ψ1(x) =
∑

1≤n≤x
n≡1 (mod 6)

Λ(n).

Denote by χ1 the non-trivial character modulo 6, and write χ0 for the corre-
sponding trivial character. Define also ψ(x, χ) for χ = χ0, χ1 by

ψ(x, χ) =
∑

1≤n≤x

χ(n)Λ(n).

Then by using simple properties of characters, one finds that

2ψ1(x) = ψ(x, χ0) + ψ(x, χ1). (3.22)

We observe that

ψ(x, χ0) ≤ ψ(x) ≤ ψ(x, χ0) +
∑

1<2r≤x

log 2 +
∑

1<3r≤x

log 3

≤ ψ(x, χ0) + 2 log x,

whence
ψ(x)− 2 log x ≤ ψ(x, χ0) ≤ ψ(x). (3.23)

It is useful at this point to derive some simple properties of alternating
series associated with certain character sums. We assume first that f(t) is
a function that is monotone decreasing for t > 0, and satisfies the condition
that f(t) = 0 when t exceeds some real number x with x ≥ 1. Then on
noting that −f(6m − 1) + f(6m + 1) ≤ 0 and f(6m + 1) − f(6m + 5) ≥ 0
for every integer m, one finds that the alternating series

∑
1≤n≤x

χ1(n)f(n) = f(1)− f(5) + f(7)− f(11) + f(13)− f(17) + · · ·

satisfies the property that for each natural number n0, one has

f(1) ≥
∑

1≤n≤x

χ1(n)f(n) ≥
6n0−1∑
n=1

χ1(n)f(n). (3.24)
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Suppose next that f(t) is a function that is monotone and non-negative in
the range x ≤ t ≤ y. Then one obtains in a similar manner the upper bound

∣∣∣∣∣
∑

x<n≤y

χ1(n)f(n)

∣∣∣∣∣ ≤ max{f(x), f(y)}. (3.25)

Returning now to the main task of bounding ψ1(x) from below, we begin
by noting that

∑
1≤n≤x

χ1(n) log n =
∑

1≤n≤x

χ1(n)
∑

m|n
Λ(m)

=
∑

1≤d≤x

χ1(d)
∑

1≤m≤x/d

χ1(m)Λ(m),

so that an application of (3.25) with f(t) = log t yields the bound

∣∣∣∣∣
∑

1≤d≤x

χ1(d)ψ(x/d, χ1)

∣∣∣∣∣ =

∣∣∣∣∣
∑

1≤n≤x

χ1(n) log n

∣∣∣∣∣ ≤ log x. (3.26)

Next applying the first inequality in (3.24) with f(t) = ψ1(x/t), and then
recalling (3.22), we find that

ψ1(x) ≥
∑

1≤n≤x

χ1(n)ψ1(x/n)

=
1

2

( ∑
1≤n≤x

χ1(n)ψ(x/n, χ0) +
∑

1≤n≤x

χ1(n)ψ(x/n, χ1)

)
.

Estimating the second sum in the latter inequality by means of (3.26), and
the first by applying (3.24) with f(t) = ψ(x/t, χ0) and n0 = 4, we deduce
that

ψ1(x) ≥ 1

2

23∑
n=1

χ1(n)ψ(x/n, χ0)− 1

2
log x.

Consequently, it follows from (3.23) and Lemma 3.1 that when x ≥ 1020, one
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has

ψ1(x) ≥ 1

2
(ψ(x)− ψ(x/5) + ψ(x/7)− ψ(x/11)

+ψ(x/13)− ψ(x/17) + ψ(x/19)− ψ(x/23))− 9

2
log x

>
x

2

(
0.9212

(
1 +

1

7
+

1

13
+

1

19

)
− 1.1056

(1

5
+

1

11
+

1

17
+

1

23

))

− 6(log x)2 − 15(log x)

> 0.368705x. (3.27)

In order to establish the desired lower bound for π1(x), we note first that

∑
m≥2

∑
pm≤x

pm≡1 (mod 6)

log p ≤ log x
∑

p≤√x

1 ≤ √
x log x.

It therefore follows from (3.27) that for x ≥ 1020, one has

π1(x) ≥ 1

log x

(
ψ1(x)−

∑
m≥2

∑
pm≤x

pm≡1 (mod 6)

log p

)

> (0.368705x−√x log x)/ log x > 0.3687x/ log x.

This completes the proof of the lemma.

Lemma 3.4. When X ≥ 1025, one has

∑
p≤X

p≡−1 (mod 6)

1

p
<

1

2
log log X − 0.195.

Proof. Before proceeding to the main part of our argument, we require
several preliminary estimates. Let χ0 and χ1 denote the trivial and non-
trivial characters modulo 6, as in the proof of the previous lemma, and denote
by L(s, χ) the Dirichlet L-function

L(s, χ) =
∞∑

n=1

χ(n)n−s
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associated with the character χ. For the sake of concision, it is convenient
to write

L = L(1, χ1) =
∞∑

n=1

χ1(n)

n
, and L′ = L′(1, χ1) = −

∞∑
n=1

χ1(n) log n

n
.

Let χ∗ denote the non-trivial character modulo 3, so that χ∗ is the primitive
character which induces χ1. Then it is known that L(1, χ∗) = π/(3

√
3) (see,

for example, Theorems 12.11 and 12.20 of Apostol [1]), from which it follows
that

L =
∏

p

(1− χ1(p)/p)−1 =
(
1 +

1

2

)
L(1, χ∗) =

π

2
√

3
. (3.28)

So far as L′ is concerned, we remark that it is possible to confirm that

L′ =
π

2
√

3

(
3 log Γ(2/3)− 3 log Γ(1/3) + (2/3) log 2 + log π + γ0

)
,

where we use Γ to denote the gamma function, and γ0 again denotes Euler’s
constant. Instead of establishing the latter formula, we note that

L′ =
∞∑

k=1

(
log(6k − 1)

6k − 1
− log(6k + 1)

6k + 1

)
.

Plainly, one has

∞∑

k=17

(
log(6k − 1)

6k − 1
− log(6k + 1)

6k + 1

)
<

∫ ∞

16

(
log(6t− 1)

6t− 1
− log(6t + 1)

6t + 1

)
dt

=
(log 97)2 − (log 95)2

12
< 0.016,

and a straightforward calculation confirms that

16∑

k=1

(
log(6k − 1)

6k − 1
− log(6k + 1)

6k + 1

)
< 0.109.

Thus one obtains the estimate

0 < L′ < 1/8. (3.29)
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We next estimate some partial sums required in our subsequent deliber-
ations. First, we deduce from the argument leading to (3.24) that for each
x ≥ 1, one has

1 ≥
∑

1≤n≤x

χ1(n)

n
≥ 1− 1

5
=

4

5
.

Thus, in view of (3.28) and (3.25), one deduces that
∣∣∣∣∣L−

∑
1≤m≤x

χ1(m)

m

∣∣∣∣∣ =

∣∣∣∣∣
∑
m>x

χ1(m)

m

∣∣∣∣∣ ≤ min
{1

x
,

π

2
√

3
− 4

5

}
. (3.30)

We also find from (3.25) that
∣∣∣∣∣L

′ +
∑

1≤m≤x

χ1(m) log m

m

∣∣∣∣∣ =

∣∣∣∣∣
∑
m>x

χ1(m) log m

m

∣∣∣∣∣ ≤
log x

x
. (3.31)

Write µ(n) for the Möbius function, and observe next that

∑

1≤md≤x

χ1(md)µ(d)

md
=

∑
1≤n≤x

χ1(n)

n

∑

d|n
µ(d) = 1.

Consequently, on making use of (3.30), we deduce that for x ≥ 1010, one has

∣∣∣∣∣L
∑

1≤d≤x

χ1(d)µ(d)

d
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

1≤d≤x

χ1(d)µ(d)

d

(
L−

∑

1≤m≤x/d

χ1(m)

m

)∣∣∣∣∣∣

≤
∑

1≤d≤x/9

1

d

(x

d

)−1

+
( π

2
√

3
− 4

5

) ∑

x/9<d≤x

1

d

≤ 1

9
+ 0.1069

∫ x

x/9−1

dt

t

=
1

9
+ 0.1069 log

( 9x

x− 9

)
< 0.346. (3.32)

We next recall that
Λ(n) =

∑

md=n

µ(d) log m,

and hence obtain the relation
∑

1≤n≤x

χ1(n)Λ(n)

n
=

∑

1≤d≤x/5

χ1(d)µ(d)

d

∑

1≤m≤x/d

χ1(m) log m

m
,
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Here we have observed that the innermost sum in the last expression is zero
for d > x/5. It therefore follows that

∑
1≤n≤x

χ1(n)Λ(n)

n
+

L′

L
=

∑

1≤d≤x/5

χ1(d)µ(d)

d


 ∑

1≤m≤x/d

χ1(m) log m

m
+ L′




− L′

L


L

∑

1≤d≤x/5

χ1(d)µ(d)

d
− 1


 . (3.33)

But by (3.31) and (3.4), when x ≥ 1010 one has

∑

1≤d≤x/5

1

d

∣∣∣∣∣∣
∑

1≤m≤x/d

χ1(m) log m

m
+ L′

∣∣∣∣∣∣
≤

∑

1≤d≤x/5

log(x/d)

x

≤ 1

x

(x

5
log x−

(x

5
log

(x

5

)
− x

5
+ 1− log

(x

5

)))

=
1 + log 5

5
+

log(x/5)− 1

x
< 0.5219. (3.34)

Finally, on recalling (3.28) and (3.29), and substituting (3.32) and (3.34) into
(3.33) we conclude that for x ≥ 5× 1010, one has

∣∣∣∣∣
∑

1≤n≤x

χ1(n)Λ(n)

n
+

L′

L

∣∣∣∣∣ < 0.5219 +
1

8
· 2
√

3

π
0.346 < 0.5696. (3.35)

It is now time to estimate the contribution of the higher powers of primes
to the sum central to this lemma. To this end, we put

A1 =
∑

p

∑
m≥2

χ1(p
m) log p

pm
=

∑
p

log p

p(p− χ1(p))
,

and note that

∑

p
√

x

∑
m≥2
pm≤x

χ1(p
m) log p

pm
= A1 −

∑

p>
√

x

log p

p(p− χ1(p))
−

∑

p≤√x

χ1(p)mp+1 log p

pmp(p− χ1(p))
,
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where mp = [log x/ log p]. On recalling (3.13) and (3.14), we therefore obtain
for x ≥ 1025 the bound

∣∣∣∣∣
∑

1≤n≤x

χ1(n)Λ(n)

n
−

∑
p≤x

χ1(p) log p

p
− A1

∣∣∣∣∣

=

∣∣∣∣∣
∑

p≤√x

∑
m≥2
pm≤x

χ1(p
m) log p

pm
− A1

∣∣∣∣∣

≤
∑

p>
√

x

log p

p(p− 1)
+

∑

p≤√x

log p

pmp(p− 1)
< 10−9. (3.36)

Write cj = −L′/L−A1 +(−1)j ·0.57 for j = 1, 2. Then it follows from (3.35)
and (3.36) that for x ≥ 1025, one has

c1 <
∑
p≤x

χ1(p) log p

p
< c2,

Consequently, whenever y > x ≥ 1025, it follows via partial summation that

∑
x<p≤y

χ1(p)

p
=

1

log y

∑
p≤y

χ1(p) log p

p
− 1

log x

∑
p≤x

χ1(p) log p

p

+

∫ y

x

∑
p≤t

χ1(p) log p

p
· dt

t(log t)2

<
c2

log y
− c1

log x
+ c2

∫ y

x

dt

t(log t)2
=

c2 − c1

log x
.

We therefore conclude that when x ≥ 1025, one has

∑
p>x

χ1(p)

p
≤ 1.14

log x
< 0.02. (3.37)

Next we examine the sum

A2 =
∑

p

χ1(p)

p
.
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Note first that the formulae (3.20) and (3.28) yield
∑
p≥5

log(1− χ1(p)/p)− 1

2

∑
p≥5

log(1− 1/p2)

= log(1/L) +
1

2
log

(
(1− 2−2)(1− 3−2)ζ(2)

)

= log(2/
√

3).

Thus, on writing

F (p) =
χ1(p)

p
+ log

(
1− χ1(p)

p

)
− 1

2
log

(
1− 1

p2

)
,

we arrive at the formula

A2 =
∑
p≥5

F (p)− log(2/
√

3). (3.38)

We estimate the sum on the right hand side of (3.38) by appealing to the
Taylor expansion

log(1− t) = −
∞∑

m=1

tm

m
,

which is valid whenever |t| < 1. Thus, for each prime p with p ≥ 5, we find
that

F (p) = −
∞∑

m=2

χ1(p)m

mpm
+

1

2

∞∑
n=1

1

np2n
= −χ1(p)

∑
m≥3

m≡1 (mod 2)

1

mpm
.

In particular, when p ≡ 5 (mod 6) it is apparent that F (p) > 0, and when
p ≡ 1 (mod 6) one has

F (p) ≥ −1

3

∞∑

l=1

p−1−2l = − 1

3p(p2 − 1)
=

1

6

( 1

p(p + 1)
− 1

p(p− 1)

)
.

Consequently,
∑
p>43

F (p) >
1

6

∑
p>43

p≡1 (mod 6)

( 1

p(p + 1)
− 1

p(p− 1)

)

>
1

6

∑
n≥61

( 1

n(n + 1)
− 1

n(n− 1)

)
= − 1

6 · 61 · 60

> −0.0000456, (3.39)

25



while a direct calculation yields

∑
5≤p≤43

F (p) > 0.00189. (3.40)

We therefore conclude from (3.38), (3.39) and (3.40) that

A2 > log(
√

3/2) + 0.00189− 0.0000456 > −0.142,

whence by (3.37), whenever x ≥ 1025, one has

∑
p≤x

χ1(p)

p
= A2 −

∑
p>x

χ1(p)

p
> −0.162. (3.41)

We are at last positioned to deliver the conclusion of the lemma. On
combining the conclusion of Lemma 3.2 with (3.41), we find that when x ≥
1025, one has

∑
p≤x

p≡−1 (mod 6)

1

p
=

1

2

( ∑
5≤p≤x

1

p
−

∑
p≤x

χ1(p)

p

)

<
1

2

(
log log x + 0.281− 1

2
− 1

3

)
+

1

2
(0.162)

<
1

2
log log x− 0.195,

and this completes the proof of the lemma.

At last we are equipped to dispose of the proof of Lemma 2.2.

The proof of Lemma 2.2. We begin by making the crucial observation,
familiar from the theory of binary quadratic forms, that a natural number n
is represented by x2 +xy + y2, with integers x and y, if and only if n satisfies
the condition that whenever p|n with p ≡ 2 (mod 3), then for some natural
number h one has p2h‖n. Denote by N (X) the set of odd integers up to X
that are represented by x2 + xy + y2, so that N (X) is the union of M1(X)
and the set of odd squares up to X. Then in view of the above comments,
every natural number n with n ≤ X can be uniquely expressed in the form
n = 2klm, where k ≥ 0, l ∈ N (X), and m is a product of distinct prime
numbers congruent to −1 modulo 6. We seek to obtain a lower bound for a
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weighted sum over the elements of N (X) by observing that our last remark
ensures that

( ∞∑

k=0

1

2k

)( ∏
p≤X

p≡−1 (mod 6)

(
1 +

1

p

)) ∑

m∈N (X)

1

m
>

∑
n≤X

1

n

>

∫ X

1

dt

t
= log X. (3.42)

But when 0 < t < 1, one has log(1 + t) < t, and thus Lemma 3.4 shows that
whenever X ≥ 1025,

log

( ∏
p≤X

p≡−1 (mod 6)

(
1 +

1

p

))
<

∑
p≤X

p≡−1 (mod 6)

1

p
<

1

2
log log X − 0.195.

Consequently, it follows from (3.42) that for X ≥ 1025 one has

∑

m∈N (X)

1

m
>

1

2
e0.195

√
log X > 0.6076

√
log X. (3.43)

We suppose next that X ≥ 1056, and write Y = X13/28. Plainly, one
has Y ≥ 1026. In view of our earlier remarks concerning the set of integers
represented by the quadratic form x2 + xy + y2, it is evident that

M1(X) ⊃ {mp : m ∈ N (Y ), Y < p ≤ X/m, p ≡ 1 (mod 6) },
whence it follows that

card
(M1(X)

) ≥
∑

m∈N (Y )

(
π1(X/m)− π1(Y )

)
.

Note here that X/m ≥ X15/28 > Y > 1020. Then on applying Lemma 3.3 in
combination with the trivial upper bound π1(Y ) ≤ 1 + Y/6, we obtain

card
(M1(X)

)
>

∑

m∈N (Y )

(0.3687X

m log X
− Y

6
− 1

)

≥ 0.3687X

log X

∑

m∈N (Y )

1

m
− Y 2

6
− Y,
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whence, on recalling (3.43), we find that card
(M1(X)

)
is greater than

(
0.3687

(
0.6076

√
13

28

)
−

√
log X

(1

6
X−1/14 + X−15/28

)) X√
log X

.

We therefore conclude that when X ≥ 1056, one has

card
(M1(X)

)
> 0.15245X/

√
log X. (3.44)

In order to obtain a satisfactory lower bound for card
(M0(X)

)
, we have

only to remark that the sets

{4km : m ∈M1(4
−kX)}

are pairwise disjoint for k ≥ 1, and moreover each such set is plainly contained
in M0(X). Furthermore, since 4−6X > 1056 whenever X ≥ 1060, we deduce
from (3.44) that whenever the latter condition holds, one has

card
(M0(X)

) ≥
6∑

k=1

card
(M1(4

−kX)
)

>
0.15245X√

log X

6∑

k=1

4−k > 0.0508
X√
log X

. (3.45)

The conclusion of Lemma 2.2 is immediate from (3.44) and (3.45).

4 An auxiliary singular integral.

We avoid serious computations in our estimation of the singular integral by
exploiting a probabilistic interpretation to obtain a simple lower bound, along
the lines applied by Deshouillers in §2.1 of [6]. We first prepare an auxiliary
lemma, and for this we require some notation. Write

J(β) =

∫ 2

1

e(βz4)dz, (4.1)

and, when m is a natural number with m ≥ 2, define

Km(ξ) =

∫ ∞

−∞
J(β)me(−ξβ)dβ. (4.2)
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It is simple to show that Km(ξ) is absolutely convergent for m ≥ 2 (see,
for example, inequality (4.3) below). We note for future reference that in
order to establish the lower bound for the major arc contribution recorded in
Lemma 2.1, it suffices to obtain a numerical lower bound for K7(ξ) holding
uniformly for ξ in a suitable interval.

Lemma 4.1. Suppose that δ is a positive number, and that ξ and ξ′ are real
numbers with |ξ − ξ′| ≤ δ. Then whenever m ≥ 3, one has

|Km(ξ)−Km(ξ′)| ≤ mδ

8(m− 2)π
.

Proof. When β is non-zero, it follows by partial integration that

J(β) =
e(16β)

64πiβ
− e(β)

8πiβ
+

3

8πiβ

∫ 2

1

z−4e(βz4)dz,

and thus we obtain the estimate

|J(β)| ≤ 1

64π|β| +
1

8π|β| +
3

8π|β|
∫ 2

1

z−4dz =
1

4π|β| .

Combining the latter estimate with the trivial bound |J(β)| ≤ 1, we deduce
that

|J(β)| ≤ min{1, (4π|β|)−1}. (4.3)

On the other hand, it is apparent that the hypotheses of the lemma imply
that

|e(−ξβ)− e(−ξ′β)| = |1− e((ξ − ξ′)β)|
= 2| sin(π(ξ − ξ′)β)| ≤ 2πδ|β|.

Thus, on making use of (4.3), we obtain the upper bounds

∣∣∣∣
∫

|β|≤(4π)−1

J(β)m(e(−ξβ)− e(−ξ′β))dβ

∣∣∣∣ ≤ 4πδ

∫ (4π)−1

0

β dβ =
δ

8π
,

and, when m ≥ 3,
∣∣∣∣
∫

|β|≥(4π)−1

J(β)m(e(−ξβ)− e(−ξ′β))dβ

∣∣∣∣ ≤ 4πδ

∫ ∞

(4π)−1

β(4πβ)−mdβ

=
δ

4(m− 2)π
.
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The conclusion of the lemma is immediate on combining the last two inequal-
ities.

We now make use of the promised probabilistic interpretation.

Lemma 4.2. Suppose that m ≥ 3. Then there exists a real number ν = ν(m)
satisfying the inequalities

31m

5
−
√

12378m

15
+

1

8
≤ ν ≤ 31m

5
+

√
12378m

15
+

1

8
,

with the property that whenever ν − 1
4
≤ ξ ≤ ν, one has

Km(ξ) ≥ 5√
12378m

− m

64(m− 2)π
.

Proof. Following the method of Deshouillers [6, §2.1], we consider m inde-
pendent random variables X1, . . . , Xm that are uniformly distributed on the
interval [1, 2]. On considering Fourier transforms and their inverses, as ex-
plained in [6] (see also §2.1 of [9]), we find that the integral Km(ξ) coincides
with the density of the random variable Zm = X4

1 + · · · + X4
m at ξ. Denote

by µ = µ(m) and σ = σ(m), respectively, the mean and standard deviation
of Zm. Then we find that

µ = m

∫ 2

1

X4dX =
31m

5
, (4.4)

and

σ2 = m

(∫ 2

1

X8dX −
(31

5

)2
)

=
4126m

225
. (4.5)

By the Bienaymé-Chebyshev theorem, therefore, one has

∫ µ+
√

3σ

µ−√3σ

Km(ξ)dξ ≥ 1−
( 1√

3

)2

=
2

3
,

whence it follows that there exists a real number ξm, with

µ−
√

3σ ≤ ξm ≤ µ +
√

3σ, (4.6)

such that

Km(ξm) ≥ 1

2
√

3σ
· 2

3
=

5√
12378m

.
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We may thus conclude from Lemma 4.1 that whenever |ξ − ξm| ≤ 1/8, one
has

Km(ξ) ≥ Km(ξm)− |Km(ξm)−Km(ξ)|
≥ 5√

12378m
− m

64(m− 2)π
.

On setting ν = ν(m) = ξm + 1/8, the conclusion of the lemma is now imme-
diate from (4.4)-(4.6).

We close this section by extracting from Lemma 4.2 the conclusion rele-
vant to our discussion in §7 involved in the proof of Lemma 2.1.

Corollary 4.3. There exists a real number ν, with 23 < ν < 64, satisfying
the property that whenever ξ is a real number with ν − 1/4 ≤ ξ ≤ ν, then
one has K7(ξ) ≥ 0.01.

Proof. The conclusion of the corollary is immediate from Lemma 4.2, on
setting m = 7.

We remark that numerical integration can be applied, with some compu-
tational expense, to establish that K7(ξ) > 0.0345 for 41.5 ≤ ξ ≤ 42.5.

5 Estimates for complete exponential sums.

In advance of our discussion of the singular series, we prepare some prelimi-
nary estimates associated with the complete exponential sums

S(q, a) =

q∑

h=1

e
(a

q
h4

)
(5.1)

and

Gε(q, a) =

q∑

h=1

e
(a

q
(2h + ε)4

)
(ε = 0, 1). (5.2)

In this context, we note that for odd q, one has

G0(q, a) = G1(q, a) = S(q, a). (5.3)
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In order to describe the known estimates for the above exponential sums,
we define the function c(q) for prime powers q as follows. We write

c(2) = 0, c(22) =
√

2, c(23) =
√

2 +
√

2, c(24) =

√
2 +

√
2 +

√
2,

c(5) = 1.32, c(13) = 1.138, c(17) = 1.269, c(41) = 1.142,

and define c(p) = 1 for the remaining odd primes p. We next define the
multiplicative function κ(q) by taking

κ(24u+v) =

{
1, when u = 0 and 1 ≤ v ≤ 4,

2−uc(2v), when u ≥ 1 and 1 ≤ v ≤ 4,
(5.4)

and, when p is an odd prime, by defining κ(ph) through the relations

κ(p) =

{
p−1/2, when p ≡ 3 (mod 4),

min{3p−1/2, c(p)p−1/4}, when p ≡ 1 (mod 4),
(5.5)

and

κ(p4u+v) =

{
p−uκ(p), when u ≥ 0 and v = 1,

p−u−1, when u ≥ 0 and 2 ≤ v ≤ 4.
(5.6)

In view of the assumed multiplicative behaviour of κ(q), these relations define
κ(q) for all natural numbers q.

We remark that 3p−1/2 < c(p)p−1/4 if, and only if, one has p ≥ 83.
Furthermore, for each natural number l one has κ(2l) ≤ 2c(24)2−l/4, and,
when p is an odd prime, one has also κ(pl) ≤ c(p)p−l/4. We therefore deduce
that for each natural number q, one has

κ(q) ≤ 2c(24)c(5)c(13)c(17)c(41)q−1/4 < 9q−1/4. (5.7)

Lemma 5.1. Let p be an odd prime, and suppose that l is a natural number.
Then whenever a ∈ Z satisfies (p, a) = 1, one has

|S(pl, a)| ≤ plκ(pl).

Proof. We begin by writing l = 4u + v with u ≥ 0 and 1 ≤ v ≤ 4. Then
according to Lemma 4.4 of Vaughan [21], one has

S(p4u+v, a) = p3uS(pv, a), (5.8)
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and when 2 ≤ v ≤ 4, one has S(pv, a) = pv−1. Thus we find that the
conclusion of the lemma is immediate when 2 ≤ v ≤ 4.

We next turn to the cases in which v = 1, noting initially that Lemma
4.3 of Vaughan [21] establishes the bound |S(p, a)| ≤ ((p− 1, 4)− 1)

√
p. The

latter estimate suffices to establish the lemma whenever p ≡ 3 (mod 4), and
also when p ≡ 1 (mod 4) and p ≥ 83. In the remaining cases we extract the
bound |S(p, a)| ≤ c(p)p3/4 from the argument of the proof of Lemma 2.2.2 of
Deshouillers and Dress [9] (see especially the inequalities (2.2.7) and (2.2.8)).
On recalling (5.8), the proof of the lemma is rapidly completed.

At this point we owe the reader a comment concerning the computations
implicit in the proof of Lemma 2.2.2 of [9]. The latter makes fundamental
use of the work of Nečaev and Topunov [18], which itself makes extensive use
of computers in bounding complete exponential sums over general quartic
polynomials. However, in the present context we require such bounds only for
the quartic polynomials of the shape bx4, and, moreover, it suffices to consider
a set of coefficients b providing a set of representatives of the cosets modulo
fourth powers. In any case, such computations as are implicit in [18] will be
easily dispatched in the present setting by an energetic reader equipped with a
hand-held calculator. The additional work required to establish the estimates
provided in the proof of Lemma 2.2.2 of [9] will be similarly accommodated,
since the primes 5, 13, 17, 29, 37, 41, 53, 61, 73 may be directly examined
according to the above comments.

The conclusion of Lemma 5.1 is readily applied to bound Gε(q, a) via
standard methods, although some attention must be paid to the prime 2.

Lemma 5.2. Whenever (q, a) = 1, one has

|G1(q, a)| ≤ |G0(q, a)| ≤ qκ(q).

Proof. The standard theory of complete exponential sums (see, for example,
the proof of Lemma 2.10 of Vaughan [21]) shows that the exponential sum
Gε(q, a) has the quasi-multiplicative property to the effect that, whenever
(q1, q2) = 1 and (ai, qi) = 1 (i = 1, 2), then one has

Gε(q1q2, a1q2 + a2q1) = Gε(q1, a1)Gε(q2, a2). (5.9)

Consequently, in view of (5.3) and Lemma 5.1, the conclusion of the lemma
will be established by verifying that whenever a is odd and l ≥ 1, one has

|G1(2
l, a)| ≤ |G0(2

l, a)| ≤ 2lκ(2l). (5.10)
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Note first that when ε ∈ {0, 1}, one has

(2h + ε)4 ≡ ε (mod 16), (5.11)

and thus we find that when 1 ≤ l ≤ 4, one has

|Gε(2
l, a)| = 2l = 2lκ(2l),

thereby confirming (5.10) for 1 ≤ l ≤ 4. Suppose next that l ≥ 5 and that
a is odd. In these circumstances, Lemma 4.4 of [21] asserts that S(2l, a) =
23S(2l−4, a), whence

G0(2
l, a) = 24S(2l−4, a) = 2S(2l, a). (5.12)

Since G0(2
l, a)+G1(2

l, a) = 2S(2l, a), it is immediate from (5.12) that when-
ever l ≥ 5 and a is odd, one has

G1(2
l, a) = 0. (5.13)

Meanwhile, on writing l = 4u + v with u ≥ 1 and 1 ≤ v ≤ 4, it follows from
(5.12) and Lemma 4.4 of [21] that

G0(2
l, a) = 2S(24u+v, a) = 23u+1S(2v, a).

But by (5.11) we have

|S(2v, a)| = 2v−1|1 + e(a2−v)| ≤ 2v−1|1 + e(2−v)|,
and moreover a simple calculation reveals that for 1 ≤ v ≤ 4, one has

|1 + e(2−v)| =
√

2(1 + cos(π21−v)) = c(2v).

Thus we deduce that whenever a is odd and l ≥ 5, one has

|G0(2
l, a)| ≤ 23u+vc(2v) = 2lκ(2l). (5.14)

On combining (5.13) and (5.14), we verify (5.10) for l ≥ 5, and in view
of our earlier discussion, the inequalities (5.10) therefore hold for each l ≥ 1.
This completes the proof of the lemma.

We next record a couple of simple lemmata of considerable utility. When
p is an odd prime number, define the integer bp by

bp = (p− 1, 4)− 1 =

{
1, when p ≡ 3 (mod 4),

3, when p ≡ 1 (mod 4).
(5.15)
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Lemma 5.3. When p is an odd prime, one has

p−1∑
a=1

|S(p, a)|2 = bpp(p− 1).

Proof. The sum in question is equal to

p∑
a=1

|S(p, a)|2 − p2 = p
∑

1≤x,y≤p
x4≡y4 (mod p)

1 − p2. (5.16)

But for any fixed x with 1 ≤ x < p, there are precisely (p− 1, 4) values of y
with x4 ≡ y4 (mod p) and 1 ≤ y ≤ p. Thus the final sum in (5.16) is equal
to 1 + (p− 1, 4)(p− 1), and the desired conclusion follows immediately from
(5.15).

Lemma 5.4. Let X ≥ 5 be an integer and let σ > 1 be a real number. Then
one has ∑

n≥X
n≡X (mod 4)

n−σ <
(X − 4)1−σ

4(σ − 1)
.

Proof. We merely note that (4z + X)−σ is a decreasing function of z for
z ≥ −1, and hence

∞∑
m=0

(4m + X)−σ <

∫ ∞

−1

(4z + X)−σdz =
(X − 4)1−σ

4(σ − 1)
.

This completes the proof of the lemma.

Next, we consider a sum which plays a role in our evaluation on the major
arc contribution R(N ; M). In this context, we write

V (q) = q−6

q∑
a=1

(a,q)=1

|G0(q, a)|6, (5.17)

Lemma 5.5. When X ≥ 1025, one has

∑
1≤q≤X

q1/4V (q) < 1.29× 106 log X.
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Proof. In view of the relation (5.9), a routine argument (see, for example, the
proof of Lemma 2.11 of Vaughan [21]) confirms that V (q) is a multiplicative
function of q. It therefore follows that

∑
1≤q≤X

q1/4V (q) ≤
∏
p≤X

W (p), (5.18)

where we write

W (p) =
∞∑

l=0

pl/4V (pl).

Observe first that in view of Lemma 5.2, one has

pl/4V (pl) ≤ κ(pl)6p5l/4−1(p− 1). (5.19)

In particular, it follows from (5.4) that

W (2) ≤ 1 +
4∑

l=1

25l/4−1κ(2l)6 +
∞∑

u=1

4∑
v=1

2
5
4
(4u+v)−1κ(24u+v)6

= 1 +
4∑

l=1

25l/4−1 +
∞∑

u=1

2−u−1

4∑
v=1

25v/4c(2v)6,

and thus a simple computation yields the estimate

W (2) < 28 + 2404
∞∑

u=1

2−u−1 = 1230. (5.20)

We now turn our attention towards the odd primes p. On recalling (5.3)
and (5.8), it follows from Lemma 5.1 that for u ≥ 0, one has

V (p4u+1) = p−6(4u+1)

p4u+1∑
a=1

(a,p)=1

p18u|S(p, a)|6

= p−2u−6

p−1∑
a=1

|S(p, a)|6 ≤ p−2u−2κ(p)4

p−1∑
a=1

|S(p, a)|2.

Consequently, we deduce from Lemma 5.3 that

p(4u+1)/4V (p4u+1) ≤ bp(p− 1)p−u−3/4κ(p)4. (5.21)
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When u ≥ 0 and 2 ≤ v ≤ 4, meanwhile, we deduce from (5.19) and (5.6)
that

p(4u+v)/4V (p4u+v) ≤ (p− 1)p−u+5v/4−7. (5.22)

On collecting together (5.21) and (5.22), we deduce that

W (p) = 1 +
∞∑

u=0

4∑
v=1

p(4u+v)/4V (p4u+v)

≤ 1 + (p− 1)
∞∑

u=0

p−u
(
bpp

−3/4κ(p)4 +
4∑

v=2

p5v/4−7
)

= 1 + bpp
1/4κ(p)4 + p−7/2 + p−9/4 + p−1. (5.23)

On recalling (5.5) and (5.15), therefore, a modest computation reveals that

W (3) < 1.586 and W (5) < 3.955. (5.24)

On the other hand, again by (5.5) and (5.15), for p > 5 one has bpp
1/4κ(p)4 ≥

p−7/4, and consequently,

1

2
(bpp

1/4κ(p)4+p−1)2 − (p−7/2 + p−9/4)

≥ 1

2
(p−7/2 + 2p−11/4 + p−2)− (p−7/2 + p−9/4)

=
1

2
p−2(1− p−1/2)((1− p−1/4)2 + p−1) > 0.

In this way, the inequality (5.23) leads to the upper bound

W (p) < 1 + bpp
1/4κ(p)4 + p−1 +

1

2
(bpp

1/4κ(p)4 + p−1)2

< exp(bpp
1/4κ(p)4 + p−1). (5.25)

Again recalling (5.5) and (5.15), applying Lemma 5.4, and making a
modest computation, we discover that

∑
p≥7

p≡3 (mod 4)

bpp
1/4κ(p)4 <

∑
n≥7

n≡3 (mod 4)

n−7/4 < 3−3/4/3 < 0.1463,
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and similarly,

∑
p≥7

p≡1 (mod 4)

bpp
1/4κ(p)4 = 3

∑
13≤p≤73

p≡1 (mod 4)

c(p)4p−3/4 + 35
∑
p≥89

p≡1 (mod 4)

p−7/4

< 2.8295 + 35(85−3/4/3) < 5.723.

Moreover, when X ≥ 1025 it follows from Lemma 3.2 that

∑
7≤p≤X

1

p
< log log X + 0.281− 1

2
− 1

3
− 1

5

< log log X − 0.752.

We therefore deduce from (5.25) that

∏
7≤p≤X

W (p) < exp

( ∑
7≤p≤X

(bpp
1
4 κ(p)4 + p−1)

)

< exp(0.1463 + 5.723− 0.752) log X

< 167 log X. (5.26)

The proof of the lemma is completed on combining (5.18), (5.20), (5.24) and
(5.26).

Finally, we take this occasion to discuss an estimate for the complete
exponential sum

S(q, a, b) =

q∑
r=1

e((ar4 + br)/q). (5.27)

We implicitly require the following result, which was first proved by Thomas
in his thesis (see Theorem 2.1 of [20]).

Lemma 5.6. Whenever (q, a, b) = 1, one has

|S(q, a, b)| ≤ 4.5q3/4.

Some comments are in order, before we launch our proof of this lemma.
In §7 below, we require Proposition 2.4 of Deshouillers and Dress [9], but
the latter proposition is in fact deduced from the aforementioned result of
Thomas via Proposition 2.2 of [9]. Since the argument of Nečaev and Top-
unov [18] is employed in the proof of this result of Thomas by Deshouillers
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and Dress [9], one finds that the proof of Proposition 2.4 of [9] ultimately
rests, implicitly, on the extensive computations within the work of Nečaev
and Topunov [18]. Our objective here is to substantially reduce the compu-
tational load required to confirm the above bound for S(q, a, b), and hence
to establish Proposition 2.4 of Deshouillers and Dress [9]. To this end, we
provide here a proof of this result of Thomas [20].
Proof of Lemma 5.6. By the standard theory of complete exponential sums
(see, for example, Lemma 2.10 of Vaughan [21]), one finds easily that when-
ever (q1, q2) = 1, then

S(q1q2, a1q2 + a2q1, b1q2 + b2q1) = S(q1, a1, b1)S(q2, a2, b2). (5.28)

Moreover, under the same condition it follows that

(q1q2, a1q2 + a2q1, b1q2 + b2q1) = 1

if and only if (q1, a1, b1) = (q2, a2, b2) = 1. We therefore find that, in order
to establish the conclusion of the lemma, it suffices to consider the sums
S(q, a, b) for prime powers q = ph and integers a and b with p - (a, b).

Observe next that whenever h and ν are integers with 1 ≤ ν ≤ h/2, one
has

a(x + yph−ν)4 + b(x + yph−ν) ≡ ax4 + bx + (4ax3 + b)yph−ν (mod ph).

When p = 2 or 3, moreover, this congruence remains valid under the slightly
weaker constraint 1 ≤ ν ≤ (h + 1)/2 and h ≥ 2. Suppose that q = ph

with h ≥ 2, and make the change of variable r = x + yph−ν in (5.27), where
1 ≤ x ≤ ph−ν and 1 ≤ y ≤ pν . Then one readily deduces from the above
congruence that when 1 ≤ ν ≤ h/2, or when 1 ≤ ν ≤ (h + 1)/2 in the cases
p = 2, 3, one has

S(ph, a, b) = pν

ph−ν∑
x=1

4ax3≡−b (mod pν)

e(p−h(ax4 + bx)). (5.29)

We begin by considering the even prime p = 2. When 1 ≤ h ≤ 3, the
trivial bound |S(2h, a, b)| ≤ 2h suffices for our purposes. When h = 4, we
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find from (5.11) that

S(24, a, b) =
1∑

ε=0

8∑
r=1

e(2−4(a(2r + ε)4 + b(2r + ε)))

= (1 + e((a + b)/16))
8∑

r=1

e(br/8),

and from this it plainly follows that whenever 2 - (a, b), one has

|S(24, a, b)| ≤ |1 + e(1/16)| · 8 =

√
2 +

√
2 +

√
2 · 8. (5.30)

When h ≥ 5, we first apply the formula (5.29) with p = 2 and ν = 3. Note
that when 4 - b, the congruence 4ax3 ≡ −b (mod 8) has no solution, and
that when 8|b and 2 - a, this congruence holds if and only if 2|x. Therefore
it follows immediately that

S(2h, a, b) =

{
0, when h ≥ 5 and 4 - b,
8S(2h−4, a, b/8), when h ≥ 5, 2 - a and 8|b. (5.31)

When h ≥ 5, 2 - a, 4|b but 8 - b, we apply (5.29) with p = 2 and ν =
[(h + 1)/2]. Then since h − ν ≥ ν − 2 and the congruence ax3 ≡ −b/4
(mod 2ν−2) possesses a unique solution x modulo 2ν−2 under the current
hypotheses, one obtains the estimate

|S(2h, a, b)| ≤ 2ν(2h−ν/2ν−2) = 2h−[(h+1)/2]+2 ≤
√

2 · 23h/4. (5.32)

On collecting together the relations (5.30)-(5.32), and noting also the trivial
bound for 1 ≤ h ≤ 3, an inductive argument demonstrates that whenever
2 - (a, b) and h ≥ 1, one has

|S(2h, a, b)| ≤
√

2 +
√

2 +
√

2 · 23h/4. (5.33)

We hereafter concentrate on odd primes p. Suppose first that h ≥ 2, p - a
and p|b. In this case we take ν = 1 in (5.29), and note that the congruence
4ax3 ≡ −b (mod p) is equivalent to the condition that p|x. When h ≤ 4,
the latter observation ensures that the sum on the right hand side of (5.29)
is easily evaluated, and thus one obtains

S(ph, a, b) =

{
ph−1, when 2 ≤ h ≤ 4 and ph−1|b,
0, when 3 ≤ h ≤ 4, p|b but ph−1 - b.

(5.34)
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When h ≥ 5, meanwhile, we may make the change of variable x = p(z +
wph−4) in (5.29), with 1 ≤ z ≤ ph−4 and 1 ≤ w ≤ p2. In this way, we deduce
that

S(ph, a, b) =

{
p3S(ph−4, a, b/p3), when h ≥ 5 and p3|b,
0, when h ≥ 5, p|b but p3 - b.

(5.35)

Suppose next that h ≥ 2 and p - b. Write θ(p, u, v) for the number of
solutions of the congruence 4ax3 ≡ −b (mod pu) with 1 ≤ x ≤ pv. Since
p - b, one finds for every natural number u that θ(p, u, u) ≤ (pu−1(p− 1), 3),
and also that θ(3, u, u − 1) ≤ 1. On taking ν = [h/2] when p > 3, and
ν = [(h + 1)/2] when p = 3, we therefore derive from (5.29) the bound

|S(ph, a, b)| ≤ θ(p, ν, h− ν)pν .

A modicum of computation therefore confirms that when h ≥ 2, one has

|S(3h, a, b)| ≤ 33h/4, (5.36)

and likewise that when h is even and p > 3,

|S(ph, a, b)| ≤ (p− 1, 3)ph/2. (5.37)

When p > 3 and h is odd, moreover, one has h = 2ν + 1, and on writing
x = z + wpν in (5.29), one deduces that

|S(ph, a, b)| ≤ pν

pν∑
z=1

4az3≡−b (mod pν)

∣∣∣∣∣
p∑

w=1

e
(
(6az2w2 + (4az3 + b)wp−ν)p−1

)
∣∣∣∣∣ .

(5.38)
Since, by hypothesis, we may suppose that p - 6b, we find that whenever an
integer z satisfies the congruence appearing in the summation condition on
the right hand side of the last inequality, one necessarily has p - 6az2. On
considering the associated Gauss sums, we therefore deduce from (5.38) that
|S(ph, a, b)| ≤ θ(p, ν, ν)pν+1/2, and thus the inequality (5.37) remains valid
for p > 3 and odd exponents h exceeding 2. On recalling the upper bounds
(5.36) and (5.37), we thus conclude that when p is odd, p - b, p 6= 7 and
h ≥ 2, or when p = 7, 7 - b and h ≥ 3, one has the bound

|S(ph, a, b)| ≤ p3h/4. (5.39)
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Before proceeding further, we remark that by a transparent change of
variable, and by considering complex conjugation, one finds that whenever r
is an integer with (q, r) = 1, then

|S(q, a, b)| = |S(q,±ar4, br)|. (5.40)

Equipped with the relation (5.40), we begin by disposing of the case in
which p = 7, 7 - b and h = 2. Here we appeal to (5.29) with ν = 1 just as
before. Since cubic residues are congruent to 0 or ±1 modulo 7, we find that
the congruence condition in (5.29) ensures that the sum S(49, a, b) vanishes
unless 4a ≡ ±b (mod 7). In view of (5.40), moreover, on noting that the
integers ±r4 with 7 - r represent all the reduced residue classes modulo 49,
it suffices to consider only the cases in which a = 1 and b ≡ 3 (mod 7) with
|b| ≤ 24. Indeed, a modicum of computation reveals that

max
|b|≤24

b≡3 (mod 7)

1√
7

∣∣∣∣∣∣
∑

x∈{1,2,−3}
e
(x4 + bx

49

)
∣∣∣∣∣∣
< 1.035.

It may be worth noting here that the maximum on the left hand side occurs
when b = −18. In any case, it follows from (5.29), combined with the above
observations, that whenever 7 - b, one has

|S(49, a, b)| < 1.035 · 493/4. (5.41)

It remains only to estimate S(p, a, b) for odd primes p with p - (a, b). But
when p|a the sum S(p, a, b) vanishes, and when p|b this sum is identical with
the Gauss sum S(p, a) already estimated in the course of the proof of Lemma
5.1. In any case, when p - (a, b) and p|ab, it follows that

|S(p, a, b)| ≤ c(p)p3/4, (5.42)

where c(p) is defined as in the preamble to (5.4) and (5.5) above.
Our subsequent treatment for the case with p - ab is motivated by the

method due to Mordell (see the proof of Theorem 7.1 of Vaughan [21], for
example). We consider the sums

Υ0 =

p−1∑
a=0

p−1∑

b=0

|S(p, a, b)|4 and Υ1 =

p−1∑
a=1

p−1∑

b=1

|S(p, a, b)|4.
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In order to derive a relation between these sums, we begin by applying
Cauchy’s inequality in combination with Lemma 5.3 to obtain the lower
bound

p−1∑
a=1

|S(p, a, 0)|4 ≥
(

p−1∑
a=1

|S(p, a)|2
)2(p−1∑

a=1

1

)−1

≥ p2(p− 1).

Observing next that S(p, 0, b) is p or 0 according to whether p|b or not, we
deduce that

Υ1 ≤ Υ0 − p4 − p2(p− 1). (5.43)

On the other hand, it follows from (5.40) that whenever p - ab, one has

Υ1 ≥ 2(p− 1)|S(p, a, b)|4. (5.44)

We thus conclude from (5.43) and (5.44) that whenever p - ab, one has

|S(p, a, b)| ≤
(

Υ0 − p4 − p3 + p2

2(p− 1)

)1/4

, (5.45)

and it is this relation that we employ in what follows.
We note next that orthogonality yields the equation

Υ0 = p2Υ2, (5.46)

where we write Υ2 for the number of solutions of the simultaneous congru-
ences

x4 + y4 ≡ z4 + w4 (mod p) and x + y ≡ z + w (mod p),

subject to 1 ≤ x, y, z, w ≤ p. Eliminating w from these congruences, one
finds that Υ2 is equal to the number of solutions of the congruence

(x− z)(y − z)((4x + 3y − z)2 + 7y2 − 2yz + 7z2) ≡ 0 (mod p),

subject to 1 ≤ x, y, z ≤ p. The number of these solutions with x = z or
y = z is 2p2 − p, and thus, on denoting the Legendre symbol modulo p by
χp, one obtains the upper bound

Υ2 ≤ 2p2 − p +
∑

1≤y, z≤p
y 6=z

(
1 + χp(−7y2 + 2yz − 7z2)

)
. (5.47)
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Familiar results for sums of Legendre symbols over quadratic sequences demon-
strate that for each prime p exceeding 3, one has

p∑
y=1

p∑
z=1

χp(−7y2 + 2yz − 7z2) = 0.

Then it follows swiftly from (5.47) that for p > 3, one has

Υ2 ≤ 3p2 − 2p− χp(−3)(p− 1) ≤ 3p2 − p− 1. (5.48)

We now collect together (5.45), (5.46) and (5.48) to conclude that when-
ever p > 3 and p - ab, one has

|S(p, a, b)| ≤ p3/4.

But when p = 3 and 3 - ab, one has

|S(3, a, b)| = |1 + e((a + b)/3) + e((a− b)/3)| = |2 + e(2/3)| =
√

3.

We therefore conclude that the inequality (5.42) is valid whenever p is an
odd prime number with p - (a, b).

Define now c∗(2) = c(24), c∗(7) = 1.035, and when p is an odd prime
number with p 6= 7, define c∗(p) = c(p). Then in view of (5.34), (5.35),
(5.39), (5.41) and the conclusion of the previous paragraph, we deduce via
an inductive argument that whenever p is odd, p - (a, b) and h ≥ 1, one has

|S(ph, a, b)| ≤ c∗(p)p3h/4.

Finally, on recalling (5.28) and (5.33), the proof of the lemma is completed
by observing that

c∗(2)c∗(5)c∗(7)c∗(13)c∗(17)c∗(41) < 4.42.

6 The singular series.

In the analysis of the major arc contribution described in the next section,
we encounter a partial sum of the singular series. The object of the present
section is to obtain a uniform lower bound for this partial sum adequate for
the aforementioned application. We begin by recording an elementary fact
concerning fourth power residues in a form suitable for frequent citation in
our later discussion.
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Lemma 6.1. When p is a prime number, define γ = γ(p) by

γ(p) =

{
4, when p = 2,

1, otherwise.

Suppose that s is a natural number, and that φ(x) ∈ Z[x1, . . . , xs]. Let
a1, . . . , as be fixed integers, and write m(a) for the number of solutions of
the congruence

x4 ≡ φ(a1, . . . , as) (mod pγ),

with 1 ≤ x ≤ pγ and p - x. When l is a natural number, denote by M(pl; a)
the number of solutions of the congruence

x4 ≡ φ(x1, . . . , xs) (mod pl),

with 1 ≤ x ≤ pl, p - x and

xj ≡ aj (mod pγ), 1 ≤ xj ≤ pl (1 ≤ j ≤ s). (6.1)

Then whenever l ≥ γ, one has

M(pl; a) = ps(l−γ)m(a).

Proof. When m(a) is zero, the conclusion of the lemma is trivial, so we
suppose henceforth that m(a) is non-zero. The theory of primitive roots
(see, for example, Chapter 10 of Apostol [1]) shows that when p is an odd
prime with p - n, and n is a fourth power residue modulo p, then for every
l ≥ 1 the congruence x4 ≡ n (mod pl) has precisely (p − 1, 4) solutions
distinct modulo pl. When p = 2, meanwhile, the condition 2 - x ensures that
x4 ≡ 1 (mod 16), and we see that it is only the congruence class 1 modulo 16
that is relevant. But when n ≡ 1 (mod 16), it follows from Theorem 10.11 of
Apostol [1], for example, that for every l ≥ 4 the congruence x4 ≡ n (mod 2l)
has precisely 8 solutions distinct modulo 2l. Then in either case one finds
that whenever m(a) > 0, one has m(a) = 8 when p = 2, and m(a) = (p−1, 4)
when p > 2. The proof of the lemma is therefore completed by noting that
the number of s-tuples x satisfying (6.1) is ps(l−γ).

We are now equipped to establish the desired lower bound for a partial
sum of the singular series.
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Lemma 6.2. Let t be an integer with 1 ≤ t ≤ 7, and suppose that n ≡ t
(mod 16). Define A(q, n; t) and S(n,Q; t) by

A(q, n; t) = q−7

q∑
a=1

(a,q)=1

G0(q, a)7−tG1(q, a)te(−an/q),

and
S(n,Q; t) =

∑
q≤Q

A(q, n; t).

Then whenever P ≥ 1050, one has

S(n, P 1/2; t) > 1.269 when n ≡ 3 (mod 5),

and
S(n, P 1/2; t) > 5.078 when n 6≡ 3 (mod 5).

Proof. We begin by showing that the truncated singular series S(n,Q; t) is
close to the corresponding infinite sum. On recalling the definition (5.17) of
V (q), we deduce from (5.7) and Lemma 5.2 that

|A(q, n; t)| ≤ 9q−1/4V (q).

Consequently, whenever Y ≥ P 1/2, it follows via partial summation that
∑

P 1/2<q≤Y

|A(q, n; t)| < 9
∑

P 1/2<q≤Y

q−1/4V (q)

= 9Y −1/2
∑

1≤q≤Y

q1/4V (q)− 9P−1/4
∑

1≤q≤P 1/2

q1/4V (q)

+
9

2

∫ Y

P 1/2

X−3/2
∑

1≤q≤X

q1/4V (q) dX.

On recalling the conclusion of Lemma 5.5, we therefore deduce that whenever
P ≥ 1050 one has

∑

P 1/2<q≤Y

|A(q, n; t)| < 9× 1.29× 106
(
Y −1/2 log Y +

1

2

∫ Y

P 1/2

X−3/2 log XdX
)

< 1.16× 107
(
P−1/4 log(P 1/2) + 2P−1/4

)

< 3× 10−4.
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We thus deduce that the infinite series S(n; t), defined by

S(n; t) =
∞∑

q=1

A(q, n; t),

converges absolutely, and moreover that whenever P ≥ 1050, one has

|S(n; t)−S(n, P 1/2; t)| < 3× 10−4. (6.2)

We next express the singular series S(n; t) as an absolutely convergent
infinite product amenable to our subsequent discussion. Denote by M(q, n; t)
the number of solutions of the congruence

7−t∑
j=1

(2xj)
4 +

t∑

l=1

(2yl + 1)4 ≡ n (mod q), (6.3)

with 1 ≤ xj ≤ q (1 ≤ j ≤ 7 − t) and 1 ≤ yl ≤ q (1 ≤ l ≤ t). The
standard theory of complete exponential sums (see, for example, Lemma
2.12 of Vaughan [21] or §2.3 of Deshouillers and Dress [9]) shows that

M(q, n; t) = q−1

q∑
a=1

G0(q, a)7−tG1(q, a)te
(
−a

q
n
)

= q6
∑

d|q
A(d, n; t). (6.4)

But M(q, n; t) is plainly a multiplicative function of q, and thus we deduce
that A(q, n; t) is likewise a multiplicative function of q. Consequently, on
defining B(p, n; t) by

B(p, n; t) =
∞∑

l=0

A(pl, n; t),

we may express S(n; t) as

S(n; t) =
∏

p

B(p, n; t). (6.5)

Here we note that the absolute convergence of the latter infinite product is
assured by that of the series

∑
q |A(q, n; t)|.
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We must now estimate the local factors B(p, n; t) in the infinite product
(6.5). While for larger p this estimation is essentially routine, we must obtain
estimates for smaller p of some precision, and this entails some moderately
painful computation. We first consider the factor B(2, n; t). Since we are
assuming that n ≡ t (mod 16), we deduce from (5.11) that when q = 16
the congruence (6.3) holds for every choice of x and y, whence we find that
M(24, n; t) = 228. On recalling (5.13) and (6.4), therefore, we arrive at the
relation

B(2, n; t) =
4∑

l=0

A(2l, n; t) = 2−24M(24, n; t) = 16. (6.6)

In order to estimate B(p, n; t) for odd primes p, we work with the number
of solutions of an auxiliary congruence. Denote by M1(q, n) the number of
solutions of the congruence

x4
1 + x4

2 + · · ·+ x4
7 ≡ n (mod q),

with 1 ≤ xj ≤ q (1 ≤ j ≤ 7), and let M∗
1 (q, n) denote the corresponding

number of solutions subject to the additional condition that (xj, q) = 1 for
some j. Then, on combining a trivial estimate with the conclusion of Lemma
6.1, one finds that for l ≥ 1 and every odd prime p, one has

M1(p
l, n) ≥ M∗

1 (pl, n) = p6(l−1)M∗
1 (p, n). (6.7)

But it is evident that when q is odd, one has M(q, n; t) = M1(q, n) for any
t with 1 ≤ t ≤ 7, and thus we conclude from (6.4) and (6.7) that for odd
primes p, one has

B(p, n; t) = lim
l→∞

p−6lM(pl, n; t) = lim
l→∞

p−6lM1(p
l, n) ≥ p−6M∗

1 (p, n). (6.8)

For each fixed value of p, it is possible to compute M∗
1 (p, n) for each value

of n modulo p in order to determine the minimal value of B(p, n; t). We begin
by noting that when p = 3 or 5, one has

x4 ≡
{

0 (mod p), when p|x,

1 (mod p), when p - x,

whence it is easily verified that

M∗
1 (p, n) =

∑
1≤s≤7

s≡n (mod p)

(
7

s

)
(p− 1)s.

48



By examining this formula for each value of n with 0 ≤ n < p, one swiftly
verifies that

min
n

M∗
1 (3, n) = M∗

1 (3, 1) = 702,

min
n

M∗
1 (5, n) = M∗

1 (5, 3) = 2240,

and moreover that

min
n 6≡3 (mod 5)

M∗
1 (5, n) = M∗

1 (5, 4) = 8960.

On recalling (6.8), we therefore deduce that

B(3, n; t) ≥ 26

27
, B(5, n; t) ≥ 448

3125
, (6.9)

and when n 6≡ 3 (mod 5), we find that

B(5, n; t) ≥ 1792

3125
. (6.10)

We next calculate the values M∗
1 (13, n) for 0 ≤ n ≤ 12. Observe first

that the number ρ(m) of solutions of the congruence h4 ≡ m (mod 13), with
0 ≤ h < 13, satisfies

ρ(m) =





4, when m ≡ 1, 3, 9 (mod 13),

1, when m ≡ 0 (mod 13),

0, otherwise.

Thus, on introducing the polynomial

f0(x) = x + x3 + x9,

we obtain the polynomial congruence

(1 + 4f0(x))7 ≡
12∑

n=0

M1(13, n)xn (mod x13 − 1). (6.11)

In order more easily to compute the left hand side of (6.11), we introduce
the auxiliary polynomials

f1(x) = x2 + x5 + x6, f2(x) = x4 + x10 + x12, f3(x) = x7 + x8 + x11,
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and observe that the following relations hold modulo x13 − 1:

f0(x)2 ≡ f1(x) + 2f2(x), f0(x)f1(x) ≡ f0(x) + f1(x) + f3(x),
f0(x)f2(x) ≡ f1(x) + f3(x) + 3, f0(x)f3(x) ≡ f0(x) + f2(x) + f3(x).

(6.12)
We infer that for m ≥ 0, there are integers aj(m) (0 ≤ j ≤ 4) for which

f0(x)m ≡ a0(m)f0(x) + a1(m)f1(x) + a2(m)f2(x) + a3(m)f3(x) + a4(m)

modulo x13 − 1. Furthermore, in view of (6.12), one has the relation

f0(x)m+1 ≡ a0(m)(f1(x) + 2f2(x)) + a1(m)(f0(x) + f1(x) + f3(x))

+ a2(m)(f1(x) + f3(x) + 3) + a3(m)(f0(x) + f2(x) + f3(x))

+ a4(m)f0(x)

modulo x13 − 1, and from this we obtain for m ≥ 0 the recurrence relations

a0(m + 1)=a1(m) + a3(m) + a4(m), a1(m + 1)=a0(m) + a1(m) + a2(m),
a2(m + 1)=2a0(m) + a3(m), a3(m + 1)=a1(m) + a2(m) + a3(m),
a4(m + 1)=3a2(m).

Since a4(0) = 1 and aj(0) = 0 for 0 ≤ j ≤ 3, one may apply the latter
formulae to calculate the values of aj(m) successively for m = 1, . . . , 7. The
following table displays the values of aj(m) thus obtained for 0 ≤ m ≤ 7 and
0 ≤ j ≤ 4.

m 0 1 2 3 4 5 6 7
a0(m) 0 1 0 1 12 10 51 217
a1(m) 0 0 1 3 4 21 61 147
a2(m) 0 0 2 0 5 30 35 168
a3(m) 0 0 0 3 6 15 66 162
a4(m) 1 0 0 6 0 15 90 105

We calculate the value of M1(13, n) for 0 ≤ n ≤ 12 by means of (6.11)
and the relation

(1 + 4f0(x))7 =
7∑

m=0

(
7

m

)
4mf0(x)m.
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In view of our expansion of f0(x)m in terms of the aj(m), we deduce that

12∑
n=0

M1(13, n)xn ≡ b0f0(x) + b1f1(x) + b2f2(x) + b3f3(x) + b4 (mod x13− 1),

where for 0 ≤ j ≤ 4 we write

bj =
7∑

m=0

(
7

m

)
4maj(m).

We remark that since the left and right hand sides of the last congruence have
degree at most 12, then they are in fact equal. We note also that M∗

1 (13, n)
is equal to M1(13, n) − 1 when 13|n, and otherwise is equal to M1(13, n).
Thus, on making use of the table of coefficients aj(m) presented above, we
deduce that

min
n

M∗
1 (13, n) = min{ min

0≤j≤3
bj, b4 − 1} = b2 = 4 446 624.

We consequently conclude from (6.8) that

B(13, n; t) ≥ 13−6 × 4 446 624 > 0.9212. (6.13)

We obtain a lower bound for B(17, n; t) in a similar manner. We write

g0(x) = x + x4 + x13 + x16, g1(x) = x2 + x8 + x9 + x15,
g2(x) = x3 + x5 + x12 + x14, g3(x) = x6 + x7 + x10 + x11,

and observe that modulo x17 − 1, one has

(1 + 4g0(x))7 ≡
16∑

n=0

M1(17, n)xn, (6.14)

and

g0(x)2≡g1(x)+2g2(x)+4, g0(x)g1(x)≡g0(x)+g1(x)+g2(x)+g3(x),

g0(x)g2(x)≡2g0(x)+g1(x)+g3(x), g0(x)g3(x)≡g1(x)+g2(x)+2g3(x).

We thus infer on this occasion that for m ≥ 0, there are integers cj(m)
(0 ≤ j ≤ 4) for which

g0(x)m ≡ c0(m)g0(x) + c1(m)g1(x) + c2(m)g2(x) + c3(m)g3(x) + c4(m),
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modulo x17 − 1, and as before we obtain for m ≥ 0 the recurrence relations

c0(m+1)=c1(m)+2c2(m)+c4(m), c1(m+1)=c0(m)+c1(m)+c2(m)+c3(m),
c2(m+1)=2c0(m)+c1(m)+c3(m), c3(m+1)=c1(m)+c2(m)+2c3(m),
c4(m+1)=4c0(m).

Since c4(0) = 1 and cj(0) = 0 for 0 ≤ j ≤ 3, one may apply the latter
formulae to calculate the values of cj(m) successively for m = 1, . . . , 7. The
following table displays the values of cj(m) thus obtained for 0 ≤ m ≤ 7 and
0 ≤ j ≤ 4.

m 0 1 2 3 4 5 6 7
c0(m) 0 1 0 9 5 100 147 1281
c1(m) 0 0 1 3 16 55 251 924
c2(m) 0 0 2 1 24 36 315 756
c3(m) 0 0 0 3 10 60 211 988
c4(m) 1 0 4 0 36 20 400 588

We calculate the value of M1(17, n) for 0 ≤ n ≤ 16 by means of (6.14)
and the relation

(1 + 4g0(x))7 =
7∑

m=0

(
7

m

)
4mg0(x)m.

By employing our expansions for g0(x)m in terms of the cj(m), we deduce
that

16∑
n=0

M1(17, n)xn ≡ d0g0(x)+d1g1(x)+d2g2(x)+d3g3(x)+d4 (mod x17−1),

where for 0 ≤ j ≤ 4 we write

dj =
7∑

m=0

(
7

m

)
4mcj(m).

We note again that M∗
1 (17, n) is equal to M1(17, n)− 1 when 17|n, and oth-

erwise is equal to M1(17, n). Thus, on making use of the table of coefficients
cj(m) presented above, we deduce that

min
n

M∗
1 (17, n) = min{ min

0≤j≤3
dj, d4 − 1} = d4 − 1 = 21 856 576.

52



In this way, we conclude from (6.8) that

B(17, n; t) ≥ 17−6 × 21 856 576 > 0.9055. (6.15)

For the remaining primes p, we apply the lower bound

M∗
1 (p, n) ≥ M1(p, n)− 1, (6.16)

in combination with the formula

M1(p, n) = p−1

p∑
a=1

S(p, a)7e(−an/p).

On applying Lemmata 5.1 and 5.3 to the latter sum, we obtain

M1(p, n) ≥ p6 − p4κ(p)5

p−1∑
a=1

|S(p, a)|2

= p6 − bpp
5(p− 1)κ(p)5,

whence by (6.8) and (6.16), we deduce that

B(p, n; t) ≥ 1− bp(1− p−1)κ(p)5 − p−6. (6.17)

When p ≡ 3 (mod 4), we obtain from (6.17) the lower bound

B(p, n; t) ≥ 1− (1− p−1)p−5/2 − p−6

≥ 1− p−5/2 +
1

2
p−5 > exp(−p−5/2).

Thus, as a consequence of Lemma 5.4, we conclude that

∏
p≥7

p≡3 (mod 4)

B(p, n; t) > exp

(
−

∑
p≥7

p≡3 (mod 4)

p−5/2

)

≥ exp(−3−3/2/6) > 0.9684. (6.18)

When p ≡ 1 (mod 4) and p ≥ 89, we find from (6.17) that

B(p, n; t) ≥ 1− 36p−5/2(1− p−1)− p−6 ≥ 1− 36p−5/2 +
1

2
312p−5

> exp(−729p−5/2).
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In this case, again by Lemma 5.4, we obtain

∏
p≥89

p≡1 (mod 4)

B(p, n; t) > exp

(
−729

∑
p≥89

p≡1 (mod 4)

p−5/2

)

> exp(−729× 85−3/2/6) > 0.8563. (6.19)

Meanwhile, on recalling the definition (5.5) of κ(p), we find from (6.17) that

B(p, n; t) ≥ 1− 3c(p)5p−5/4(1− p−1)− p−6,

and thus a modest computation reveals that
∏

29≤p≤73
p≡1 (mod 4)

B(p, n; t) > 0.8310. (6.20)

Finally, on collecting together (6.6), (6.9), (6.13), (6.15), (6.18), (6.19)
and (6.20), and recalling also (6.5), we obtain

S(n; t) =
∏

p

B(p, n; t) > 1.2696.

When n 6≡ 3 (mod 5), moreover, we may substitute (6.10) for the second
lower bound of (6.9) in the above calculation, thereby obtaining the stronger
lower bound

S(n; t) > 4× 1.2696 = 5.0784.

The conclusion of Lemma 6.2 is now immediate on recalling (6.2).

7 The major arc contribution.

The aim of this section is to evaluate the integral R(N ; M) defined in §2,
and thereby to establish Lemma 2.1. We begin by recording an estimate
associated with the major arc approximations to the generating functions
underlying our methods. Recall the notation of §2, noting especially (2.10),
and recall the definition (5.2) of Gε(q, a). We define I(β) = I(β; N) by

I(β; N) =

∫ 4P0

2P0

e(βz4)dz,

and when ε ∈ {0, 1}, we define also

Tε(q, a, β) = (2q)−1Gε(q, a)I(β).
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Lemma 7.1. Let α be a real number, and suppose that a ∈ Z and q ∈ N
satisfy the conditions 1 ≤ a ≤ q ≤ P 1/2, (q, a) = 1 and |qα − a| ≤ 975P−3.
Write β = α− a/q. Then whenever ε ∈ {0, 1}, one has

|Sε(α)− Tε(q, a, β)| ≤ 3× 106q1/4P 1/2.

Proof. The desired conclusion is immediate from Proposition 2.4 of Deshouillers
and Dress [9], but refer to our comment following the statement of our Lemma
5.6 above.

Equipped with the above estimate, it is essentially routine to exploit
our earlier work to derive the auxiliary major arc estimate recorded in the
following lemma. We first require some additional notation. Recalling the
notation introduced in §2, when 1 ≤ t ≤ 7 we define Φ(n; t) by

Φ(n; t) =

∫

M

S0(α)7−tS1(α)te(−nα)dα.

Lemma 7.2. There exists a real number ν, with 23 < ν < 64, for which the
following conclusion holds. Suppose that 1 ≤ t ≤ 7, and that n is an integer
with

N − 4P 4 ≤ n ≤ N and n ≡ t (mod 16).

Then whenever P ≥ 1050, one has

Φ(n; t) > 0.000789P 3 when n ≡ 3 (mod 5),

and
Φ(n; t) > 0.00316P 3 when n 6≡ 3 (mod 5).

Proof. Throughout this proof, it is convenient to abbreviate Tε(q, a, β) as Tε.
Also, when α = β + a/q, we write

Uε = Sε(α)− Tε and U = 3× 106q1/4P 1/2.

Our first objective is then to compare Φ(n; t) with the approximation Φ1(n; t),
which we define by

Φ1(n; t) =
∑

q≤P 1/2

q∑
a=1

(a,q)=1

∫

|β|≤975(qP 3)−1

T 7−t
0 T t

1e(−(a/q + β)n)dβ. (7.1)
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Suppose that a, q and β satisfy 1 ≤ a ≤ q ≤ P 1/2, (a, q) = 1 and |β| ≤
975(qP 3)−1, and write α = a/q + β. Then according to Lemma 7.1, one has
|Uε| ≤ U for ε ∈ {0, 1}. Also, by Lemma 5.2 one has |T1| ≤ |T0|. Thus we
find that

∣∣S0(α)7−tS1(α)t − T 7−t
0 T t

1

∣∣ =
∣∣∣

7−t∑
i=0

t∑
j=0

i+j≥1

(
7− t

i

)(
t

j

)
T 7−t−i

0 T t−j
1 U i

0U
j
1

∣∣∣

≤
7−t∑
i=0

t∑
j=0

i+j≥1

(
7− t

i

)(
t

j

)
|T0|7−i−jU i+j

= (|T0|+ U)7 − |T0|7 ≤ 127(|T0|6U + U7). (7.2)

Next, on writing

Φ1,1 =
∑

q≤P 1/2

q∑
a=1

(a,q)=1

∫ ∞

0

|T0|6Udβ

and

Φ1,2 =
975

P 3

∑

q≤P 1/2

U7,

we deduce from (7.1) and (7.2) that

|Φ(n; t)− Φ1(n; t)| ≤ 254(Φ1,1 + Φ1,2). (7.3)

Recalling the definition (5.17) of V (q), we see that

Φ1,1 = 3× 106 × 2−6P 1/2
∑

q≤P 1/2

q1/4V (q)

∫ ∞

0

|I(β)|6dβ.

Thus, whenever P ≥ 1050 it follows from Lemma 5.5 that

Φ1,1 < 3.03× 1010P 1/2 log P

∫ ∞

0

|I(β)|6dβ. (7.4)

In order to evaluate the integral in (7.4), we observe that by making a change
of variable in (4.1), we have

I(β) = 2P0J(16P 4
0 β), (7.5)
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We therefore deduce from (4.3) that

|I(β)| ≤ min{2P0, (32πP 3
0 |β|)−1}, (7.6)

whence we conclude that∫ ∞

0

|I(β)|6dβ ≤
∫ (64πP 4

0 )−1

0

(2P0)
6dβ +

∫ ∞

(64πP 4
0 )−1

(32πP 3
0 β)−6dβ

=
P 2

0

π
+

P 2
0

5π
=

6P 2
0

5π
.

On substituting the latter estimate into (7.4) and recalling (2.10), we find
that whenever P ≥ 1050, one has

Φ1,1 < 1.16× 1010P 5/2 log P. (7.7)

Meanwhile, one obtains with little effort the estimate

Φ1,2 ≤ 975× 37 × 1042P 1/2
∑

q≤P 1/2

q7/4

< 2.2× 1048P 15/8. (7.8)

Consequently, on substituting (7.7) and (7.8) into (7.3), we conclude that
whenever P ≥ 1050, one has

|Φ(n; t)− Φ1(n; t)| ≤ 254P 3(1.16× 1010P−1/2 log P + 2.2× 1048P−9/8)

< 3.2× 10−6P 3. (7.9)

Our next step in the estimation of Φ(n; t) is to complete the integral in
(7.1) to infinity. We therefore put

Φ2(n; t) =
∑

q≤P 1/2

q∑
a=1

(a,q)=1

∫ ∞

−∞
T 7−t

0 T t
1e(−(a/q + β)n)dβ, (7.10)

and seek to bound |Φ1(n; t) − Φ2(n; t)|. By (7.6) and the trivial bound
|Gε(q, a)| ≤ q, we obtain the upper bound

|Φ1(n; t)− Φ2(n; t)| ≤ 2
∑

q≤P 1/2

q

∫ ∞

975(qP 3)−1

2−7|I(β)|7dβ

≤ 2−6
∑

q≤P 1/2

q

∫ ∞

P−7/2

(P 3β)−7dβ

≤ 2−6(P 1/2)2 × 1

6
< P.
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Consequently, on substituting this estimate into (7.9), we deduce that

|Φ(n; t)− Φ2(n; t)| < 3.3× 10−6P 3. (7.11)

We next observe that by (7.5) one has
∫ ∞

−∞
I(β)7e(−nβ)dβ = (2P0)

7

∫ ∞

−∞
J(16P 4

0 β)7e(−nβ)dβ,

whence, on recalling (4.2) and making a change of variables, we deduce that
∫ ∞

−∞
I(β)7e(−nβ)dβ = 8P 3

0 K7

(
n/(16P 4

0 )
)
.

On recalling the notation introduced in the statement of Lemma 6.2, we
therefore deduce from (7.10) that

Φ2(n; t) = S(n, P 1/2; t)K7

(
n/(16P 4

0 )
)
P 3

0 /16.

By hypothesis, we have N − 4P 4 ≤ n ≤ N , and thus it follows from (2.10)
that ν − 1/4 ≤ n/(16P 4

0 ) ≤ ν. We therefore deduce from Corollary 4.3 that
there exists a real number ν, with 23 < ν < 64, satisfying the property
that K7(n/(16P 4

0 )) ≥ 0.01. We fix this value of ν for the remainder of our
argument. The truncated singular series may be bounded from below by
reference to Lemma 6.2, and so we conclude that whenever P ≥ 1050, one
has

Φ2(n; t) > (5.078× 0.01/16)P 3 > 0.003173P 3 when n 6≡ 3 (mod 5),

and

Φ2(n; t) > (1.269× 0.01/16)P 3 > 0.000793P 3 when n ≡ 3 (mod 5).

The proof of the lemma is therefore completed by combining the latter esti-
mates with (7.11).

We are now at last equipped to complete the proof of Lemma 2.1 by
summing Φ(n; t) over a suitable set of integers n.

The proof of Lemma 2.1. On recalling the definition (2.11) of R(N ; M), it is
evident that

R(N ; M) =
∑

m1∈Mη(P 2)

∑

m2∈M0(3P 2/7)

∑

1≤w<P/6
2w+ζ 6∈W(m2)

Φ(φ(N ; m1,m2, w); t), (7.12)
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where we write

φ(N ; m1, m2, w) = N − 2m2
1 − 4m2

2 − 24m2(2w + ζ)2 − 6(2w + ζ)4. (7.13)

When m1, m2 and w satisfy the conditions imposed by the summations in
(7.12), one has

N ≥ φ(N ; m1,m2, w) ≥ N −
(
2 + 4

(3

7

)2

+ 24
(3

7

)(1

3

)2

+ 6
(1

3

)4)
P 4

> N − 4P 4.

Furthermore, in view of the conditions (2.3), (2.4) and (2.9), one has

φ(N ; m1,m2, w) ≡ t (mod 16).

It follows that for each choice of m1, m2 and w in the summations of (7.12),
the integer n = φ(N ; m1,m2, w) satisfies the hypotheses of Lemma 7.2, and
thus we are able to employ the latter lemma to obtain a lower bound for
Φ(φ(N ; m1,m2, w); t).

Observe next that for each fixed pair of integers, m1 and m2, there exists
an integer b = b(m1,m2) such that φ(N ; m1,m2, w) 6≡ 3 (mod 5) whenever
w ≡ b (mod 5). In order to verify this assertion, we note from (7.13) that the
residue class of φ(N ; m1,m2, w) modulo 5 may be shifted by an appropriate
choice of w provided only that the polynomial 24m2ξ

2 − 6ξ4 takes at least
two distinct values modulo 5. But since for 5 - ξ one has ξ2 ≡ ±1 (mod 5)
and ξ4 ≡ 1 (mod 5), we find that the latter polynomial assumes the values
0, ±m2 − 1 modulo 5, whence our earlier assertion is immediate.

We now collect together the conclusions of the previous two paragraphs,
deducing from Lemma 7.2 that there exists a real number ν with 23 < ν < 64,
such that

R(N ; M) >
∑

m1∈Mη(P 2)

∑

m2∈M0(3P 2/7)

(Σ1 + Σ2), (7.14)

where

Σ1 =
∑

1≤w<P/6
2w+ζ 6∈W(m2)
w≡b (mod 5)

0.00316P 3 and Σ2 =
∑

1≤w<P/6
2w+ζ 6∈W(m2)
w 6≡b (mod 5)

0.000789P 3.

On noting that by (2.5) one has card
(W(m2)

) ≤ 3, we find that

Σ1 + Σ2 ≥ P 3
(
0.00316

( P

30
− 4

)
+ 0.000789

(P

6
− P

30
− 5

))
.
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Then on recalling the notation introduced in (2.13), it follows from (7.14)
that for P ≥ 1050, one has

R(N ; M) > 0.00021MηM̃0P
4,

and thus the proof of Lemma 2.1 is complete.

8 An explicit version of Weyl’s inequality.

In this section we describe the modifications to the argument of Deshouillers
[7] required to establish the explicit version of Weyl’s inequality recorded in
Lemma 2.3 above. The idea of trading a small loss in the exponent of P
in Weyl’s bound for the benefit of a small constant, and smaller logarithmic
factor, is due to Balasubramanian [2]. For the application at hand, the
details of such an argument have been worked out in detail for P ≥ 1080

by Deshouillers [7]. We now modify the latter treatment so as to extend
the validity of this estimate to the range P ≥ 1030, and also so as to avoid
oppressive computations. We begin with an auxiliary lemma. Throughout
this section, for the sake of concision we write β = 0.036 and γ = 0.072.

Lemma 8.1. Define the multiplicative function f by

f(n) = nβ
∏

p|n
(1− p−2β)1/2.

Then for P ≥ 1030, one has

∞∑
n=1

1

f(n)2

( ∑

l|n
l≤P

n/l≤P

f(l)

)2

≤ 295900P 1−2β log P,

and ∑
1≤n≤P

1

f(n)
≤ 42.2P 1−β.

Proof. We follow the argument of the proof of Proposition 1 of Deshouillers
[7], but now replace some infinite product evaluations by ones accessible to
a hand-held calculator. We first observe that when σ > 1, one has

ζ(σ) ≤
20∑

n=1

n−σ +

∫ ∞

20

x−σdx =
20∑

n=1

n−σ +
201−σ

σ − 1
.

60



Thus modest calculations reveal that

ζ(1 + γ) < 14.50, ζ(1 + 2γ) < 7.55, ζ(1 + 3γ) < 5.24,

ζ(1 + 4γ) < 4.09, ζ(1 + 5γ) < 3.39.

Next we observe that for 0 < x < 3/4, one has

1

1− x
= 1 + x + x2 + x3 +

x4

1− x
< 1 + x + x2 + x3 + 4x4, (8.1)

and furthermore, for 0 < x < 1 one may derive the upper bound

√
1− x < 1− 1

2
x− 1

8
x2 − 1

16
x3 − 5

128
x4 − 7

256
x5, (8.2)

whence for 0 < x < 3/4 one obtains

1√
1− x

< 1 +
1

2
x +

3

8
x2 +

5

16
x3 +

35

128
x4 +

63

256

x5

1− x

< 1 +
1

2
x +

3

8
x2 +

5

16
x3 +

35

128
x4 + x5. (8.3)

It is useful at this point to recall some of the notation of the proof of
Proposition 1 of Deshouillers [7]. We therefore define

G(p) = 1 +
1

p1+γ(1− p−γ)
, λ(p) =

1

G(p)(1− p−γ)1/2
− 1,

L(p) = 1 + λ(p)/p, V (p) = 1 +
1

p

(
1

(1− p−γ)1/2
− 1

)
.

We define also

K =
∏

p

(
1 +

1

p
max{λ(p)pγ − 1, 0}

)
.

On observing that for p ≥ 59, it follows from (8.1) that

G(p) < 1 + p−1−γ(1 + p−γ + p−2γ + p−3γ + 4p−4γ)

< (1− p−1−5γ)−4

4∏
j=1

(1− p−1−jγ)−1,
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we deduce from the previously calculated values of ζ(σ) that

∏
p

G(p) <
( ∏

p≤53

G(p)
)( ∏

p≥59

(1− p−1−5γ)−4

4∏
j=1

(1− p−1−jγ)−1
)

=
( ∏

p≤53

G(p)(1− p−1−5γ)4

4∏
j=1

(1− p−1−jγ)
)

×
(
ζ(1 + 5γ)4

4∏
j=1

ζ(1 + jγ)
)

< 17456. (8.4)

Similarly, one finds that for p ≥ 59, as a consequence of (8.3) one has

V (p) < 1 +
1

2
p−1−γ +

3

8
p−1−2γ +

5

16
p−1−3γ +

35

128
p−1−4γ + p−1−5γ

<

5∏
j=1

(1− p−1−jγ)−ej ,

where we write e1 = 1/2, e2 = 3/8, e3 = 5/16, e4 = 35/128 and e5 = 1. We
therefore deduce that

∏
p

V (p) <
( ∏

p≤53

V (p)
5∏

j=1

(1− p−1−jγ)ej

)( 5∏
j=1

ζ(1 + jγ)ej

)
< 40.6. (8.5)

Since for each prime p one has L(p) < V (p), it follows that

∏
p>3

L(p) <
( ∏

5≤p≤53

L(p)
)( ∏

p≥59

V (p)
)
,

and thus one deduces similarly that

∏
p>3

L(p) < 3.95. (8.6)

In order to evaluate K, we put g(x) = ((1−x)−1/2−1)/x, and observe that
g(x) is monotone increasing for 0 < x < 1. Also one has λ(p)pγ < g(p−γ),
and a modest calculation reveals that g(800−γ) < 1 < g(799−γ). Finally, we
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observe that the number of primes in the interval [100, 200) is 21, and the
number in [200, 800) is 93. Drawing these observations together, we find that

K ≤
∏

p<100

(
1 +

1

p
max{λ(p)pγ − 1, 0}

) ∏
100<p<800

(
1 +

1

p
(g(p−γ)− 1)

)

≤
(
1 +

g(101−γ)− 1

101

)21(
1 +

g(211−γ)− 1

211

)93

×
∏
p≤97

(
1 +

1

p
max{λ(p)pγ − 1, 0}

)

≤ 1.111
∏

17≤p≤97

(
1 +

1

p
(λ(p)pγ − 1)

)
< 1.19. (8.7)

Having eliminated the burdensome computations of [7] with the above
discussion, we now complete the proof of the lemma along the same lines as
the argument of the proof of Proposition 1 of Deshouillers [7]. We begin by
observing that the upper bound for S provided in the second display of p.296
of [7] yields

∞∑
n=1

1

f(n)2

( ∑

l|n
l≤P

n/l≤P

f(l)

)2

≤ 2P 1−γ

1− γ

(∏
p

G(p)
)
T, (8.8)

where T is an expression bounded in the third display of p.297 of [7] in the
form

T ≤ 1

G(2)
U(2, 1, 1) + Λ(2)U(2, 2, 1) + Λ(2)U(2, 1, 2)

+ U(1, 1, 1) + Λ(2)U(1, 2, 1) + Λ(2)U(1, 1, 2). (8.9)

In this latter expression, the number Λ(2) is given by

Λ(2) = (1− 2−γ)−1/2/G(2), (8.10)

and when ε, η1, η2 ∈ {1, 2}, the argument on p.297 of [7] establishes the
bound

U(ε, η1, η2) ≤
∑

1≤r≤P
r≡ε (mod 2)

(
W1(r) + W2(r) + W3(r) + W4(r)

)
, (8.11)
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in which

W1(r) =
P

4(1− β)r

∏
p>3

L(p)2, (8.12)

W2(r) =
K

2(1− β)(1− 2β)

(∏
p>3

L(p)
)(P

r

)1−2β

, (8.13)

W3(r) =
K

2(1− 3β)(1− 2β)

(∏
p>3

L(p)
)(P

r

)1−2β

, (8.14)

W4(r) =
K2

(1− 3β)(1− 4β)

(P

r

)1−4β

. (8.15)

To these estimates we add the bounds

∑
1≤r≤P

r≡ε (mod 2)

1

r
≤

(
1 +

1

2
− log 2

2

)
+

1

2
log P, (8.16)

and ∑
1≤r≤P

r≡ε (mod 2)

r−δ ≤ 1 +
P 1−δ

2(1− δ)
≤ 7P 1−δ, (8.17)

valid for 0 < δ ≤ 1 − 2β and P ≥ 1030, which follow from the discussion at
the top of p.298 of [7].

On substituting (8.16) and (8.17) into (8.12)-(8.15), we deduce from (8.6)
and (8.7) that whenever P ≥ 1030, one has

∑
1≤r≤P

r≡ε (mod 2)

Wi(r) < CiP log P (1 ≤ i ≤ 4),

where C1 = 2.0908, C2 = 0.2663, C3 = 0.2878, C4 = 0.1880. Thus one
deduces from (8.11) the estimate

U(ε, η1, η2) ≤ 2.833P log P.

On substituting this estimate into (8.9) together with (8.10), we therefore
deduce that

T ≤ 7.865P log P,
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whence by (8.4) and (8.8),

∞∑
n=1

1

f(n)2

( ∑

l|n
l≤P

n/l≤P

f(l)

)2

≤ 295900P log P.

This completes the proof of the first assertion of the lemma.
In order to establish the final assertion of the lemma, we apply Lemma 1

of [7] with a = β, b = 0, h = k = 1 and ρ(p) = (1 − p−γ)−1/2 − 1. Thus we
deduce that ∑

1≤n≤P

1

f(n)
≤ P 1−β

1− β

∏
p

V (p),

whence the desired conclusion follows immediately from (8.5).

We now establish Lemma 2.3. Suppose that α ∈ m. By Dirichlet’s
theorem on diophantine approximation, we can find a ∈ Z and q ∈ N with
(a, q) = 1, 1 ≤ q ≤ P 3/975 and |qα− a| ≤ 975P−3. Then it follows from the
definition of m that necessarily q > P 1/2. We divide our argument into two
cases according to the relative sizes of q and P . In order to facilitate this
discussion we define the parameter τ(P ) by

τ(P ) =

{
1/2, when 1030 ≤ P < 1053,

2× 106, when P ≥ 1053.

Suppose first that P 1/2 < q ≤ τ(P )P . We apply the argument of the
proof of Proposition 5.1 of Deshouillers and Dress [9], but now extend the
range of validity down to P ≥ 1030. Recalling the notation introduced at the
start of §7, we find from equation (2.4.2) of [9] that for ε ∈ {0, 1}, one has

|Sε(α)− (2q)−1Gε(q, a)I(β)| ≤ 2.7× 106q1/4P 1/2 + 61q3/4(log q + 1), (8.18)

valid for any positive number P . By combining the bound (5.7) with the
conclusion of Lemma 5.2, we obtain the estimate

|Gε(q, a)| ≤ 9q3/4. (8.19)

Thus, on making use of the trivial bound |I(β)| ≤ 2P0 ≤ 2P +2, we conclude
from (8.16) and (8.17) that when P ≥ 1030 and P 1/2 < q ≤ τ(P )P , one has

|Sε(α)| ≤ 9(P + 1)q−1/4 + 2.7× 106q1/4P 1/2 + 61q3/4(log q + 1)

≤ κ1(P )P 0.884(log P )0.25, (8.20)
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where

κ1(P ) =

{
77, when 1030 ≤ P < 1053,

14, when P ≥ 1053.

Suppose next that τ(P )P < q ≤ P 3/975. Here we note first that the
argument of the proof of Proposition 2 of [7] yields the estimate

∑

1≤n≤P 3/27

min
{

P,
1

2‖384nα‖
}
≤

( P 3

27q′
+ 1

)(
28000P + q′ log(2q′)

)
,

where we write q′ = q/(384, q). On noting that the maximum of the latter
expression for q ∈ [τ(P )P, P 3/975] is achieved at one of the end points of
this interval, we deduce that

∑

1≤n≤P 3/27

min
{

P,
1

2‖384nα‖
}
≤ A(P )P 3 log P, (8.21)

where

A(P ) =

{
11530, when 1030 ≤ P < 1053,

0.1123, when P ≥ 1053.

Finally, we work through the argument of §3 of [7], though now replacing
use of Propositions 1 and 2 in the latter by the conclusion of Lemma 8.1
above, and (8.21), respectively. In this way one bounds an exponential sum
essentially equal to Sε(α) in terms of auxiliary sums Ti(α) (1 ≤ i ≤ 5), the
definitions of which we suppress in the interest of saving space.

First one finds that

T5(α) ≤
(P 3

27

)0.072 ∑

1≤n≤P 3/27

min
{

P,
1

2‖384nα‖
}

≤ 0.7888A(P )P 3.216 log P.

Next,

T4(α) ≤ P
∑

1≤n≤P 2/4

f(n)2 + 2T5(α)

≤ P (P 2/4)1.072 + 1.5776A(P )P 3.216 log P,
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whence for P ≥ 1030 one has

T4(α) ≤ 1.5781A(P )P 3.216 log P.

At the next stage we obtain

|T3(α)|2 ≤
( ∞∑

n=1

1

f(n)2

( ∑

l|n
l≤P

n/l≤P

f(l)

)2)
T4(α),

whence

|T3(α)| ≤ (
295900P 1.928 log P

)1/2(
1.5781A(P )P 3.216 log P

)1/2

≤ 683.4A(P )1/2P 2.572 log P.

Then we arrive at the estimate

T2(α) ≤ P

P∑

h1=1

f(h1) + 2T3(α)

≤ P (P 1.036) + 1366.8A(P )1/2P 2.572 log P,

so that for P ≥ 1030 one obtains

T2(α) ≤ 1367A(P )1/2P 2.572 log P.

Next we have

|T1(α)|2 ≤
( P∑

h1=1

1

f(n)

)
T2(α)

≤ (42.2P 0.964)(1367A(P )1/2P 2.572 log P ),

whence
|T1(α)| ≤ 240.2A(P )1/4P 1.768(log P )1/2.

Finally, we have

∣∣∣∣∣
2P∑

x=P+1

e(α(2x + ε)4)

∣∣∣∣∣

2

≤ P + 2T1(α),
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whence for P ≥ 1030 we obtain

∣∣∣∣∣
2P∑

x=P+1

e(α(2x + ε)4)

∣∣∣∣∣ ≤ 21.92A(P )1/8P 0.884(log P )1/4.

On recalling the definition of A(P ), and accounting for the endpoints in
the summation of (2.1) by a trivial estimate, we deduce that in this second
case in which τ(P )P < q ≤ P 3/975, one has

|Sε(α)| ≤ κ2(P )P 0.884(log P )0.25,

where

κ2(P ) =

{
70.6, when 1030 ≤ P < 1053,

16.68, when P ≥ 1053.

The conclusion of Lemma 2.3 therefore follows on combining the latter esti-
mate with (8.20) above.

9 An auxiliary bound for the divisor func-

tion.

The final ingredients in our proof of Theorem 2 are the mean value esti-
mates recorded in Lemmata 2.4 and 2.5, and indeed it is these estimates
that provide the crucial additional power required to establish a conclusion
with only sixteen biquadrates. In order to transform the ideas of Kawada and
Wooley [15] into technology appropriate to the present application, one must
provide strong explicit estimates for certain averages of the divisor function
evaluated on biquadratic polynomials. Here we follow the trail laid down
by Deshouillers and Dress [8], and developed by Landreau in his thesis [16].
Write τ(n) for the number of divisors of n. Then we seek an upper bound
for τ(n) of the shape

τ(n) ≤ C
∑

d|n
d≤n1/4

g(d), (9.1)

for some appropriate multiplicative function g and constant C. In discussing
this topic, we must draw a balance between the objectives of keeping our
exposition reasonably short, and at the same time achieving a relatively
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strong bound for the function g. Motivated by such considerations, we define
the multiplicative function g for prime powers pl by taking

g(pl) =





3, when l = 1, 2,

27, when l = 7, 9, 11,

9, otherwise.

(9.2)

With the function g defined in this way, we establish the validity of the upper
bound (9.1) with C = 8. We remark that the latter value of C is best possible,
for when n is the product of three distinct primes of almost the same size,
the inequality (9.1) evidently cannot hold with C < 8. However, with a little
further effort, one can show that, with the exception of such special integers
n, the upper bound (9.1) is indeed valid with a suitable constant C < 8.

In order to facilitate our analysis, we introduce some slightly unconven-
tional vector notation. We note, in particular, that in any vector that ap-
pears in our discussion below, we implicitly assume that every component is
a non-negative integer. When k is a natural number, we define the integer
xa corresponding to the vectors x = (x1, . . . , xk) and a = (a1, . . . , ak) by

xa =
k∏

j=1

x
aj

j . (9.3)

When b = (b1, . . . , bk), we define also

τ̃(b) =
k∏

j=1

(bj + 1),

and, when p is a prime number, we define also

g̃(b) =
k∏

j=1

g(pbj).

We use the notation b ≤ a as shorthand for the condition that a = (a1, . . . , ak),
b = (b1, . . . , bk) and 0 ≤ bj ≤ aj for 1 ≤ j ≤ k, and then define

S(a;x) = {b ≤ a ; x4b ≤ xa }, G(a;x) =
∑

b∈S(a;x)

g̃(b),

C(a;x) = τ̃(a)/G(a;x), C(a) = sup
x∈Nk

C(a;x).
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Finally, it is convenient to write V =
⋃

k∈NNk and V1 =
⋃

k∈N{1, 2, 4, 6, 10}k.
Some preliminary observations are in order concerning the notation recorded

in the previous paragraph. First, since the zero vector is plainly contained
in S(a;x), one finds that for every choice of a and x one has G(a;x) ≥ 1,
whence

C(a) ≤ τ̃(a). (9.4)

We observe also that the assertion (9.1) may be translated into a related
statement concerning the function C(a). Indeed, it is this observation that
motivates our choice of notation. When n = 1, of course, the inequality
(9.1) is trivial whenever C ≥ 1, and thus the desired relation is not at issue.
Suppose then that n > 1, and let n =

∏k
j=1 p

aj

j be the cannonical prime
factorisation of n. We put a = (a1, . . . , ak) and p = (p1, . . . , pk), and note
that τ(n) = τ̃(a) and ∑

d|n
d≤n1/4

g(d) = G(a;p).

Consequently, the inequality (9.1) is valid with

C = sup
a∈V

C(a), (9.5)

provided that this supremum exists. As we have already pointed out implic-
itly in our opening remarks, one has C(a) = 8 when a = (1, 1, 1). In order to
establish (9.1) with C = 8, therefore, it suffices to show that for all a ∈ V ,
one has C(a) ≤ 8.

As our first step towards the goal announced in the previous paragraph,
we show that

sup
a∈V

C(a) = sup
b∈V1

C(b). (9.6)

This simplification is achieved as a consequence of Lemmata 9.1, 9.2 and 9.3
below. It is useful at this point to introduce a convention that simplifies
our discussion of the vectors which play a central role in our argument.
Hereafter, when a = (a1, . . . , ak) and a′ = (a′1, . . . , a

′
k′), we abbreviate the

vector (a1, . . . , ak, a′1, . . . , a
′
k′) to (a, a′). Furthermore, where confusion is

easily avoided, when f is a function of a vector variable x, we abbreviate
f((a, a′)) simply to f(a, a′). We extend such conventions to write (a, a) in
place of (a1, . . . , ak, a), and f(a, a) in place of f((a, a)). Also, on occasion,
we write a for (a), and f(a) for f((a)).

70



Lemma 9.1. For any a1, a2 ∈ V , one has

C(a1, a2) ≤ C(a1)C(a2).

Proof. Suppose that ai ∈ Nki for i = 1, 2. Then in view of (9.3), whenever
xi ∈ Nki (i = 1, 2), one has

(x1,x2)
(a1,a2) = xa1

1 xa2
2 .

But it is apparent from our definitions that whenever bi ∈ S(ai;xi) (i =
1, 2), then one has

(b1,b2) ∈ S((a1, a2); (x1,x2)),

and hence

G((a1, a2); (x1,x2)) ≥
∑

b1∈S(a1;x1)

∑

b2∈S(a2;x2)

g̃(b1,b2).

But
g̃(b1,b2) = g̃(b1)g̃(b2) and τ̃(a1, a2) = τ̃(a1)τ̃(a2), (9.7)

and thus we deduce that

G((a1, a2); (x1,x2)) ≥ G(a1;x1)G(a2;x2),

and
C((a1, a2); (x1,x2)) ≤ C(a1;x1)C(a2;x2).

The conclusion of the lemma is immediate from the latter inequality.

Lemma 9.2. Whenever a is an integer with a ≥ 12, one has C(a) ≤ 1.

Proof. Suppose that a is an integer with a ≥ 12, and write a = 4m + r with
0 ≤ r ≤ 3. In particular, one has m ≥ 3. But plainly, for every natural
number x one has that (0), (1), . . . , (m) ∈ S(a; x), and further, when j ≥ 3
one has g̃(j) ≥ 9. Thus we deduce that

G(a; x) ≥
m∑

j=0

g̃(j) ≥ 1 + 3 + 3 + 9(m− 2)

≥ 4m + 4 ≥ a + 1 = τ̃(a).
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We therefore conclude that for every natural number x, one has C(a; x) ≤ 1,
and the conclusion of the lemma follows immediately.

Before announcing the next lemma, we extend our conventions concerning
vector notation by introducing the empty vector z, by which we mean the
vector having no components. Plainly, for every vector a one has (a, z) =
(z, a) = a.

Lemma 9.3. Suppose that a is a vector in V ∪ {z}. Then the following
inequalities hold:

C(a, 3) ≤ C(a, 1, 1), C(a, 5) ≤ C(a, 1, 2),

C(a, 7) ≤ C(a, 1, 1, 1), C(a, 8) ≤ C(a, 2, 2),

C(a, 9) ≤ C(a, 1, 4), C(a, 11) ≤ C(a, 1, 1, 2).

Proof. For ease of exposition in the discussion that follows, we restrict our
proof to vectors a in V . However, an inspection of our argument will reveal
that it applies equally well when a is empty. Suppose then that k ∈ N and
a ∈ Nk, and consider arbitrary vectors x ∈ Nk and x ∈ N.

We begin by examining the simplest case, which concerns the inequality
C(a, 3) ≤ C(a, 1, 1), since this sets the scene for the remaining cases. Define
the map φ3 : {0, 1, 2, 3} → {0, 1}2 by taking

φ3(0) = (0, 0), φ3(1) = (1, 0), φ3(2) = (0, 1), φ3(3) = (1, 1).

On recalling our notation (9.3), we see that whenever b ∈ {0, 1, 2, 3}, one
has

xb = (x, x2)φ3(b). (9.8)

Next, we define the map φ̃3 for (b, b) ∈ S((a, 3); (x, x)) by taking

φ̃3(b, b) = (b, φ3(b)).

In view of the relation (9.8), and the observation that φ3 plainly provides a
bijection from {0, 1, 2, 3} to {0, 1}2, one readily confirms that φ̃3 is a bijec-
tion from S((a, 3); (x, x)) to S((a, 1, 1); (x, x, x2)). Furthermore, on recalling
(9.2), one finds that for each b ∈ {0, 1, 2, 3}, one has g̃(b) = g̃(φ3(b)), whence
also g̃(b, b) = g̃(φ̃3(b, b)) for (b, b) ∈ S((a, 3); (x, x)). We therefore deduce
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that

G((a, 3); (x, x)) =
∑

(b,b)∈S((a,3);(x,x))

g̃(φ̃3(b, b))

=
∑

c∈S((a,1,1);(x,x,x2))

g̃(c)

= G((a, 1, 1); (x, x, x2)).

But the definition of τ̃ reveals that τ̃(a, 3) = 4τ̃(a) = τ̃(a, 1, 1), and thus it
follows that

C((a, 3); (x, x)) = C((a, 1, 1); (x, x, x2)).

We therefore conclude that

C(a, 3) = sup
(x,x)∈Nk+1

C((a, 1, 1); (x, x, x2))

≤ sup
y∈Nk+2

C((a, 1, 1);y) = C(a, 1, 1),

and this establishes the desired inequality in the first case.
We establish the remaining inequalities recorded in the statement of the

lemma by a similar argument. We begin by defining analogues of the map
φ3 appropriate to each case. For a = 5, 7, 8, 9, define the map φa by means
of the entries in the following tables.

b 0 1 2 3 4 5
φ5(b) (0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

b 0 1 2 3 4 5 6 7
φ7(b) (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

b 0 1 2 3 4 5 6 7 8
φ8(b) (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)

b 0 1 2 3 4 5 6 7 8 9
φ9(b) (0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2) (0, 3) (1, 3) (0, 4) (1, 4)

Also, define the map φ11 by taking

φ11(b) =

{
φ7(b), for 0 ≤ b ≤ 7,

φ7(b− 4) + (0, 0, 1), for 8 ≤ b ≤ 11.
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Next put

x5 = x9 = (x, x2), x7 = x11 = (x, x2, x4), x8 = (x, x3).

Then one may verify that whenever a ∈ {5, 7, 8, 9, 11} and 0 ≤ b ≤ a, then
one has

xb = xφa(b)
a and g̃(b) ≥ g̃(φa(b)).

For the sake of brevity, we now write aa = φa(a) and

Sa = S((a, a); (x, x)), S ′a = S((a, aa); (x,xa)),

and we define the map φ̃a for (b, b) ∈ Sa by taking

φ̃a(b, b) = (b, φa(b)).

Then one may confirm that for each a ∈ {5, 7, 8, 9, 11}, the map φ̃a provides
a bijection from Sa to S ′a. Thus we deduce that

G((a, a); (x, x)) ≥
∑

(b,b)∈Sa

g̃(φ̃a(b, b)) =
∑

b′∈S′a

g̃(b′)

= G((a, aa); (x,xa)).

But τ̃(a, a) = τ̃(a, aa) for a ∈ {5, 7, 8, 9, 11}, and so it follows that

C((a, a); (x, x)) ≤ C((a, aa); (x,xa)).

Consequently, just as in the first case considered in this proof, one deduces
that C(a, a) ≤ C(a, aa) for a ∈ {5, 7, 8, 9, 11}. This completes the proof of
the lemma.

We are now equipped to confirm the relation (9.6). Observe first that the
value of C(a) is independent of the order of the components of a. If all of
the components of a exceed 11, then it follows from Lemmata 9.1 and 9.2
that C(a) ≤ 1 ≤ C(1), whence such vectors play no role in determining the
supremum on the left hand side of (9.6). Next, again by Lemmata 9.1 and
9.2, one may delete any exponent exceeding 11 from a without increasing
the value of C(a). By Lemmata 9.1 and 9.3, moreover, any component of
a lying in the set {3, 5, 7, 8, 9, 11} may be replaced by a vector from the
set {(1, 1), (1, 2), (1, 1, 1), (2, 2), (1, 4), (1, 1, 2)}, again without increasing
the value of C(a). We therefore conclude that whenever a ∈ V , there exists
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a vector b ∈ V1 with the property that C(a) ≤ C(b), whence the desired
conclusion (9.6) follows immediately.

Our second step towards the evaluation of the supremum defined in (9.5)
involves removing from consideration all vectors a with the property that
none of their components are equal to 1. To this end, we introduce the sets

V2 =
⋃

k∈N
{2, 4, 6, 10}k and V ′

2 = V2 ∪ {z}.

Also, when a ∈ V2, we define the function f(a) by

f(a) =
1

2

∑

b≤a/2

min{g̃(b), g̃(a/2− b)},

and we define the function F (a) for a ∈ V ′
2 by

F (a) =

{
τ̃(a)/f(a), when a ∈ V2,

2, when a = z.

The next lemma presents the relation between F (a) and C(a) crucial to the
success of this next phase of our argument.

Lemma 9.4. Whenever a ∈ V2, one has C(a) ≤ F (a).

Proof. Suppose that a is a k-dimensional vector in V2. Then for any x ∈ Nk,
and for any vector b with b ≤ a/2, one has

xa =
(
xb · xa/2−b

)2 ≥ (
min{xb, xa/2−b})4

.

We therefore deduce that either b ∈ S(a;x), or a/2 − b ∈ S(a;x). For
each vector b with b ≤ a/2, define the function φ(b) by taking φ(b) = b or
φ(b) = a/2−b, in such a manner that φ(b) ∈ S(a;x). We note that whenever
φ(b) = φ(b′), then necessarily b = b′ or b = a/2 − b′. In particular, as we
consider the vectors φ(b) as b varies over all vectors with b ≤ a/2, one finds
that each value φ(b) appears at most twice. We therefore deduce that

G(a;x) ≥ 1

2

∑

b≤a/2

g̃(φ(b))

≥ 1

2

∑

b≤a/2

min{g̃(b), g̃(a/2− b)} = f(a),
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whence C(a;x) ≤ F (a) for every vector x ∈ Nk. The conclusion of the
lemma follows at once.

The next lemma permits substantial simplifications to be made in this
phase of our argument.

Lemma 9.5. Whenever a, a′ ∈ V ′
2 , one has

F (a, a′) ≤ 1

2
F (a)F (a′).

Proof. If either a or a′ is empty, then the conclusion of the lemma is imme-
diate from our convention that F (z) = 2. Suppose then that neither a nor a′

is empty. Given vectors b and b′, it is evident that (b,b′) ≤ (a, a′)/2 if and
only if b ≤ a/2 and b′ ≤ a′/2. We therefore obtain

f(a, a′) =
1

2

∑

b≤a/2

∑

b′≤a′/2

min{g̃(b)g̃(b′), g̃(a/2− b)g̃(a′/2− b′) }

≥ 1

2

∑

b≤a/2

∑

b′≤a′/2

min{g̃(b), g̃(a/2− b)}min{g̃(b′), g̃(a′/2− b′)}

= 2f(a)f(a′),

and the desired conclusion follows from (9.7) and the definition of the function
F .

Lemma 9.6. Suppose that a ∈ V ′
2 , and denote by s the number of components

of a that are equal to 2. The following upper bounds hold.

(i) When s = 0, one has F (a) ≤ 2.

(ii) When s is even, one has F (a) ≤ 9/4.

(iii) In any case, one has F (a) ≤ 3.

Proof. By the definitions of the functions f and F , one finds that

f(4) = 5/2, f(6) = 4, f(10) = 7,

and hence

F (4) = 2, F (6) = 7/4 < 2, F (10) = 11/7 < 2. (9.9)
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When s = 0, therefore, repeated application of Lemma 9.5 in combination
with the bounds (9.9) demonstrates that F (a) ≤ 2, the latter conclusion
being trivial when a = z.

Suppose next that a ∈ V ′
2 and that s is positive. By repeated application

of Lemma 9.5 in concert with (9.9), we may delete any components of a that
are not equal to 2 without increasing the value of F (a). We may consequently
suppose without loss of generality that a = 2s, where we write 2s for the
s-dimensional vector (2, 2, . . . , 2). But f(2s) may be computed explicitly
via an elementary combinatorial argument. Indeed, it is an easy exercise to
confirm that when s = 2m− 1 with m ∈ N, one has

f(2s) =
m−1∑
j=0

(
2m− 1

j

)
3j,

and that when s = 2m with m ∈ N, then

f(2s) =
1

2

(
2m

m

)
3m +

m−1∑
j=0

(
2m

j

)
3j.

In order to simplify our discussion of the numbers F (2s), we note next that
since F (2s) = 3s/f(2s), we have for each natural number m the identities

F (22m+1)
−1−F (22m−1)

−1 = 3−2m−1+
m−1∑
j=0

((
2m + 1

j + 1

)
− 3

(
2m− 1

j

))
3j−2m,

and

F (22m+2)
−1 − F (22m)−1 = 3−2m−2 +

m−1∑
j=0

((
2m + 2

j + 1

)
− 3

(
2m

j

))
3j−2m−1

+
1

2

((
2m + 2

m + 1

)
− 3

(
2m

m

))
3−m−1.

But whenever 0 ≤ j ≤ s/2, one has

(
s + 2

j + 1

)(
s

j

)−1

=
4(s + 2)(s + 1)

(s + 2)2 − (2j − s)2
≥ 3,

and thus we recognise that both of the sequences {F (22m−1)} and {F (22m)}
are monotone decreasing with m. In particular, one has F (2s) ≤ F (21) = 3
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when s is odd, and F (2s) ≤ F (22) = 9/4 when s is even. This establishes
parts (ii) and (iii) of the lemma, and thereby completes its proof.

The second phase of our argument is now complete. Lemma 9.6 shows
that F (a) ≤ 3 for every a ∈ V ′

2 , whence it follows from Lemma 9.4 that
C(a) ≤ 3 for every a ∈ V2. Since C(1, 1, 1) = 8, it follows that the elements
of V2 play no role in determining the supremum appearing in (9.5). It remains
only to investigate the vectors a ∈ V1 having one or more components equal
to 1. This phase of our argument is the most difficult yet, and requires a
third triumvirate of lemmata. We begin with some additional notation of
somewhat peculiar flavour. When a is a k-dimensional vector in V , we refer

to a set A = {a1, a2, a3, a4} of four vectors in
(
N ∪ {0})k

as a decomposition
of a, when the four vectors in A are pairwise distinct and

a1 + a2 + a3 + a4 = a. (9.10)

When g̃(aj) ≥ l for 1 ≤ j ≤ 4, we describe such a decomposition A as
an l-decomposition of a. Finally, we describe a set A as a (ν, µ)-set of l-
decompositions of a, when A consists of ν l-decompositions of a and for

every b ∈ (
N ∪ {0})k

, one has

card{A ∈ A : b ∈ A } ≤ µ. (9.11)

Lemma 9.7. Suppose that a ∈ V , and that there exists a (ν, µ)-set of l-
decompositions of a. Then whenever a′ ∈ V ′

2 , one has

C(a, a′) ≤ τ̃(a)

d2ν/µelF (a′).

Proof. Suppose that a ∈ V is a k-dimensional vector, and let A be a (ν, µ)-
set of l-decompositions of a. When A = {a1, . . . , a4} ∈ A and x ∈ Nk, it
follows from the definition (9.10) of a decomposition that

xa1 · xa2 · xa3 · xa4 = xa,

whence x4aj ≤ xa for some aj ∈ A. We therefore deduce that aj ∈ S(a;x)
for some aj ∈ A. We note here that since A ∈ A is an l-decomposition, then
g̃(aj) ≥ l. Since A is a (ν, µ)-set of l-decompositions, we obtain ν vectors
aj ∈ S(a;x) on considering each of the ν l-decompositions A of a. In view
of (9.11), it follows from the pigeon-hole principle that at least dν/µe of the
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latter vectors are pairwise distinct. Henceforth, we denote this set of dν/µe
distinct vectors in S(a;x) by 〈A;x〉.

Equipped with the preliminary observations of the previous paragraph,
the proof of the lemma is rapidly completed in the case that a′ = z. On
considering the contribution to G(a;x) arising form the vectors in 〈A;x〉, we
find that

G(a;x) ≥
∑

c∈〈A;x〉
g̃(c) ≥ dν/µel.

But for any real number z, one plainly has

2dze ≥ d2ze. (9.12)

Thus we conclude that for any x ∈ Nk, one has

C(a;x) ≤ 2τ̃(a)

d2ν/µel =
τ̃(a)

d2ν/µelF (z).

The conclusion of the lemma is therefore immediate when a′ = z.
Suppose next that a′ is a k′-dimensional vector in V2. Let A ={a1, . . . , a4}

be an l-decomposition of a belonging to A, and let b be a vector with b ≤
a′/2. We observe that for any permutation σ of the set {1, 2, 3, 4}, the set of
vectors

{
(aσ(1),b), (aσ(2),b), (aσ(3), a

′/2− b), (aσ(4), a
′/2− b)

}

forms an L(b)-decomposition of (a, a′), where

L(b) = l ·min{g̃(b), g̃(a′/2− b)}. (9.13)

We denote by A(b) the set of such L(b)-decompositions of (a, a′) as σ runs
over the permutations of {1, 2, 3, 4}. Our argument divides naturally accord-
ing to whether or not b = a′/2−b, and we simplify our account by defining
parameters ν̃ = ν̃(b) and µ̃ = µ̃(b) by

(ν̃, µ̃) =

{
(6, 3), when 4b 6= a′,

(1, 1), when 4b = a′.

It then follows that A(b) is a (ν̃, µ̃)-set of L(b)-decompositions of (a, a′).
Moreover, if we denote by A(b) the union of the sets A(b) for A ∈ A, we see
that A(b) is a (νν̃, µµ̃)-set of L(b)-decompositions of (a, a′).
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We now imitate the argument applied earlier in the case where a′ =
z, constructing for each vector b with b ≤ a′/2, and each x ∈ Nk+k′ , a
set 〈A(b),x〉. As in our previous discussion, this set 〈A(b),x〉 consists of
dν̃ν/(µ̃µ)e distinct vectors in S((a, a′);x), each of which is picked up from
an L(b)-decomposition in A(b). We therefore obtain the lower bound

∑

c∈〈A(b),x〉
g̃(c) ≥ dν̃ν/(µ̃µ)eL(b). (9.14)

In order to assess the total contribution to G((a, a′);x) arising from vectors
of this type, we put

I =
⋃

b≤a′/2

〈A(b),x〉,

and note that I ⊆ S((a, a′);x). Then on observing that 〈A(b),x〉 and
〈A(b′),x〉 are disjoint unless b′ = b or b′ = a′/2− b, we find that

G((a, a′);x) ≥
∑
c∈I

g̃(c) ≥
∑

b≤a′/2

1

δ(b)

∑

c∈〈A(b),x〉
g̃(c), (9.15)

where

δ(b) =

{
2, when 4b 6= a′,

1, when 4b = a′.
(9.16)

The latter relation ensures that δ(b) = ν̃/µ̃ for every vector b, so that on
collecting together (9.13)-(9.15), and making use again of (9.12), we deduce
that

G((a, a′);x) ≥ 1

2

∑

b≤a′/2

d2ν/µel min
{
g̃(b), g̃(a′/2− b)

}

= ld2ν/µef(a′).

On recalling (9.7), we therefore conclude that for every x ∈ Nk+k′ , one has

C((a, a′);x) ≤ τ̃(a, a′)
ld2ν/µef(a′)

=
τ̃(a)

ld2ν/µeF (a′).

The conclusion of the lemma now follows immediately whenever a′ ∈ V2.

We also require a variant of the previous lemma that can, however, be
established with a similar argument.
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Lemma 9.8. Suppose that a ∈ V , and that for each j with 1 ≤ j ≤ J ,
there exists an lj-decomposition of a, say Aj. Suppose also that the Aj, for
1 ≤ j ≤ J , are pairwise disjoint. Then whenever a′ ∈ V ′

2 , one has

C(a, a′) ≤ 1

2
τ̃(a)

( J∑
j=1

lj

)−1

F (a′).

Proof. Suppose that a ∈ V is a k-dimensional vector. As in the opening
discussion of the proof of the previous lemma, for each x ∈ Nk, and for each
index j with 1 ≤ j ≤ J , one may choose a vector cj from Aj with cj ∈ S(a;x).
Since the Aj are pairwise disjoint, the vectors cj are automatically pairwise
distinct for 1 ≤ j ≤ J . Also, since each Aj is an lj-decomposition, one has
g̃(cj) ≥ lj (1 ≤ j ≤ J). We therefore deduce that for each x ∈ Nk,

G(a;x) ≥
J∑

j=1

g̃(cj) ≥
J∑

j=1

lj,

and the conclusion of the lemma swiftly follows when a′ = z, on recalling
that F (z) = 2.

Suppose next that a′ is a k′-dimensional vector in V2. Adopting the
notation of the proof of Lemma 9.7, and imitating the argument leading to
the bound (9.14), for every vector b with b ≤ a′/2, and for each Aj with
1 ≤ j ≤ J , we construct a set Aj(b). In the present situation, the latter
object is a (ν̃, µ̃)-set of Lj(b)-decompositions of (a, a′), where

Lj(b) = lj ·min{g̃(b), g̃(a′/2− b)}.
Given a vector x ∈ Nk+k′ , we next construct a set 〈Aj(b);x〉, every member
of which is chosen from an Lj(b)-decomposition in Aj(b), and belongs to
S((a, a′);x). As before, the cardinality of 〈Aj(b);x〉 is at least ν̃/µ̃ = δ(b).
Note also that 〈Aj(b);x〉 and 〈Aj(b

′);x〉 are disjoint unless b′ = b or b′ =
a′/2− b. On writing

Ij =
⋃

b≤a′/2

〈Aj(b);x〉,

we therefore deduce that
∑
c∈Ij

g̃(c) ≥
∑

b≤a′/2

1

δ(b)

∑

c∈〈Aj(b);x〉
g̃(c) ≥

∑

b≤a′/2

1

δ(b)

⌈ ν̃

µ̃

⌉
Lj(b)

=
∑

b≤a′/2

lj min{g̃(b), g̃(a′/2− b)} = 2ljf(a′).
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But Ij ⊆ S((a, a′);x) for 1 ≤ j ≤ J , and moreover Ij and Ij′ are disjoint
whenever j 6= j′. Thus we arrive at the lower bound

G((a, a′);x) ≥
J∑

j=1

∑
c∈Ij

g̃(c) ≥ 2f(a′)
J∑

j=1

lj,

whence for every x ∈ Nk+k′ , we derive the upper bound

C((a, a′);x) ≤ τ̃(a, a′)

2f(a′)
∑J

j=1 lj
=

1

2
τ̃(a)

( J∑
j=1

lj

)−1

F (a′).

The desired conclusion now follows immediately for each a′ ∈ V2.

Our careful preparations now complete, we at last launch our assault on
the evaluation of C(a). We must nonetheless exhibit some fortitude if we are
to successfully storm the citadel.

Lemma 9.9. Whenever a ∈ V1, one has C(a) ≤ 8.

Proof. Our argument splits into cases according to the number of components
of the vector in question that are equal to 1 or 2. Given a vector b (possibly
empty), we denote by t(b) the number of components of b equal to 1, and
by s(b) the number of components equal to 2. Consider a fixed vector a ∈
V1, and recall throughout that we may permute the components of a with
impunity, whenever we are so-inclined.

(i) Suppose that t(a) = 0. In this situation one has a ∈ V2, and as we
have already discussed, the conclusion of the lemma is then immediate from
Lemmata 9.4 and 9.6.

(ii) Suppose that t(a) = 1. When a = (1), the trivial bound (9.4) yields
C(1) ≤ 2, which suffices for our purpose. When a = (1, a′) with a′ ∈ V2,
on the other hand, one may apply Lemmata 9.1, 9.4 and 9.6 (iii) in concert
with our previous estimate to deduce that

C(a) ≤ C(1)C(a′) ≤ 2× 3 = 6.

(iii) Suppose that t(a) = 2. We now subdivide our argument according
to the value of s(a).

When s(a) = 0, we may suppose that a takes the shape a = (1, 1, a′)
with a′ ∈ V ′

2 and s(a′) = 0. The trivial bound (9.4) now yields C(1, 1) ≤ 4.
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Meanwhile, when a′ ∈ V2 satisfies s(a′) = 0, one finds that Lemmata 9.1, 9.4
and 9.6(i) lead from the last bound to the estimate

C(1, 1, a′) ≤ C(1, 1)C(a′) ≤ 4× 2 = 8.

Suppose next that s(a) = 1. When a = (1, 1, 2), we observe that for each
x ∈ N3, one has

xa = x(1,0,0)x(0,1,0)x(0,0,1)x(0,0,1).

It follows that the set S(a;x) contains (0, 0, 0) together with one at least
of (1, 0, 0), (0, 1, 0) and (0, 0, 1). We therefore obtain G(a;x) ≥ 1 + 3 = 4,
whence for each x ∈ N3 we have C(a;x) ≤ 12/4 = 3. The bound C(1, 1, 2) ≤
3 follows immediately. When a = (1, 1, 2, a′) with a′ ∈ V2, meanwhile, our
hypothesis that s(a) = 1 implies that s(a′) = 0. In this case we may combine
the conclusion just obtained with Lemmata 9.1, 9.4 and 9.6 (i) to deduce that

C(a) ≤ C(1, 1, 2)C(a′) ≤ 3× 2 = 6.

Finally, suppose that s(a) ≥ 2. In this case we may suppose that a =
(1, 1, 2, 2, a′) with a′ ∈ V ′

2 . Putting

A1 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2)},
A2 = {(1, 0, 1, 0), (0, 1, 0, 1), (0, 0, 1, 0), (0, 0, 0, 1)},
A3 = {(1, 0, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1), (0, 0, 0, 0)},

one may verify that A1 and A2 are 3-decompositions of (1, 1, 2, 2), whilst
A3 is a 1-decomposition of (1, 1, 2, 2). Noting also that A1, A2 and A3 are
pairwise disjoint, we conclude from Lemmata 9.6 (iii) and 9.8 that

C(a) = C(1, 1, 2, 2, a′) ≤ τ̃(1, 1, 2, 2)

3 + 3 + 1
· F (a′)

2
≤ 36

7
· 3

2
=

54

7
.

Collecting together the above estimates, we find that C(a) ≤ 8 whenever
t(a) = 2.

(iv) Suppose that t(a) = 3. Again we subdivide our argument according
to the value of s(a).

When s(a) = 0, we may suppose that a = (1, 1, 1, a′) with a′ ∈ V ′
2 and

s(a′) = 0. Since the set

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}
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provides a 1-decomposition of (1, 1, 1), Lemmata 9.6 (i) and 9.8 yield

C(a) = C(1, 1, 1, a′) ≤ τ̃(1, 1, 1)

1
· F (a′)

2
≤ 8.

Suppose next that s(a) is odd. In this case we may suppose that a =
(1, 1, 1, 2, a′) with a′ ∈ V ′

2 and s(a′) even. On observing that the two disjoint
sets

{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 2)},
{(1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1), (0, 0, 0, 0)}

are, respectively, 3- and 1-decompositions of (1, 1, 1, 2), we deduce from Lem-
mata 9.6 (ii) and 9.8 that

C(a) ≤ τ̃(1, 1, 1, 2)

3 + 1
· F (a′)

2
≤ 24

4
· 9/4

2
=

27

4
.

Finally, suppose that s(a) is a positive even number. We may now suppose
that a = (1, 1, 1, 2, 2, a′) with a′ ∈ V ′

2 and s(a′) even. In this situation, we
note that the four disjoint sets

{(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 1, 1), (0, 0, 0, 1, 1)},
{(1, 0, 0, 1, 0), (0, 1, 0, 1, 0), (0, 0, 1, 0, 1), (0, 0, 0, 0, 1)},
{(1, 0, 0, 0, 1), (0, 1, 0, 0, 1), (0, 0, 1, 1, 0), (0, 0, 0, 1, 0)},
{(1, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 2, 0), (0, 0, 0, 0, 2)}

are 3-decompositions of (1, 1, 1, 2, 2). Thus we find that Lemmata 9.6 (ii)
and 9.8 in this case yield the estimate

C(a) ≤ τ̃(1, 1, 1, 2, 2)

3 + 3 + 3 + 3
· F (a′)

2
≤ 72

12
· 9/4

2
=

27

4
.

Collecting together the above estimates, we find that C(a) ≤ 8 whenever
t(a) = 3.

(v) Suppose that t(a) = 4m with m ≥ 1. In order to simplify our ar-
gument, we now introduce the notation of writing 1t for the t-dimensional
vector (1, 1, . . . , 1). Thus, in the situation presently under consideration, we
may write a = (14m, a′) with a′ ∈ V ′

2 .
We consider the set A4m of all the 3m-decompositions of 14m. Notice that

whenever A = {a1, . . . , a4} is a 3m-decomposition of 14m, then aj ∈ {0, 1}4m
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and t(aj) ≥ m for 1 ≤ j ≤ 4, and furthermore a1 + · · · + a4 = 14m. Plainly,
therefore, one must have t(aj) = m for 1 ≤ j ≤ 4, and an elementary
combinatorial argument leads to the conclusion that A4m is a (ν4m, µ4m)-set
of 3m-decompositions of 14m, where

ν4m =
(4m)!

4!(m!)4
and µ4m =

(3m)!

3!(m!)3
.

Consequently, Lemmata 9.6 (iii) and 9.7 yield the bound

C(a) = C(14m, a′) ≤ τ̃(14m)

2ν4m/µ4m

· F (a′)
3m

≤ 24m+131−m

(
4m

m

)−1

.

But when m ≥ 1, one has
(
4m+4
m+1

)
= 4ω(m)

(
4m
m

)
, where

ω(m) =
(4m + 1)(4m + 2)(4m + 3)

(3m + 1)(3m + 2)(3m + 3)
.

On noting that ω(1) = 7/4 and ω(m + 1) ≥ ω(m) for m ≥ 1, we deduce that
for m ≥ 1, one has (

4m

m

)
≥ 4 · 7m−1, (9.17)

whence

C(a) ≤ 24m+131−m(4 · 7m−1)−1 = 8 ·
(16

21

)m−1

≤ 8.

(vi) Suppose that t(a) = 4m + 1 with m ≥ 1. We may now write a =
(14m+1, a

′) with a′ ∈ V ′
2 . Following the argument of the previous case, we

consider the set A4m+1 of all the 3m-decompositions of 14m+1. When A ∈
A4m+1, we may now suppose that

A = {a1, . . . , a4}, aj ∈ {0, 1}4m+1 (1 ≤ j ≤ 4),

t(aj) = m (1 ≤ j ≤ 3), t(a4) = m + 1, a1 + · · ·+ a4 = 14m+1.

An elementary combinatorial argument in this instance therefore shows that
A4m+1 is a (ν4m+1, µ4m+1)-set of 3m-decompositions of 14m+1, where

ν4m+1 =
(4m + 1)!

3!(m!)3(m + 1)!
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and

µ4m+1 = max

{
(3m)!

3!(m!)3
,

(3m + 1)!

2!(m!)2(m + 1)!

}
=

(3m + 1)!

2(m!)2(m + 1)!
.

In the present situation, Lemmata 9.6 (iii) and 9.7 provide the bound

C(a) ≤ τ̃(14m+1)

d2ν4m+1/µ4m+1e ·
F (a′)
3m

≤ 24m+131−m
⌈2

3

(
4m + 1

m

)⌉−1

. (9.18)

When m = 1, the latter estimate yields C(a) ≤ 25/d10/3e = 8. For m ≥ 2,
meanwhile, the lower bound (9.17) shows that

(
4m + 1

m

)
=

(
4m

m

)
4m + 1

3m + 1
≥ 4 · 7m−1 · 9

7
= 36 · 7m−2.

Consequently, we conclude from (9.18) that for m ≥ 2, one has

C(a) ≤ 24m32−m

(
4m + 1

m

)−1

≤ 64

9

(16

21

)m−2

≤ 64

9
.

Thus we find that whenever t(a) = 4m + 1 with m ≥ 1, then one has
C(a) ≤ 8.

(vii) Suppose that t(a) = 4m + 2 with m ≥ 1. We now write a =
(14m+2, a

′) with a′ ∈ V ′
2 . Denote byA4m+2 the set of all the 3m-decompositions

A = {a1, . . . , a4} of 14m+2 such that t(aj) = m for j = 1 and 2, and
t(aj) = m + 1 for j = 3 and 4. An elementary combinatorial argument
confirms that A4m+2 is a (ν4m+2, µ4m+2)-set of 3m-decompositions of 14m+2,
where

ν4m+2 =
(4m + 2)!

(2!m!(m + 1)!)2

and

µ4m+2 = max

{
(3m + 1)!

2!(m!)2(m + 1)!
,

(3m + 2)!

2!m!((m + 1)!)2

}
=

(3m + 2)!

2!m!((m + 1)!)2
.

We therefore deduce from Lemmata 9.6 (iii) and 9.7 that

C(a) ≤ τ̃(14m+2)

2ν4m+2/µ4m+2

· F (a′)
3m

≤ 24m+231−m

(
4m + 2

m

)−1

.
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For m ≥ 2, the lower bound (9.17) implies that
(

4m + 2

m

)
=

(
4m

m

)
(4m + 2)(4m + 1)

(3m + 2)(3m + 1)
≥ 4 · 7m−1 10 · 9

8 · 7 = 45 · 7m−2,

whence

C(a) ≤ 24m+231−m(45 · 7m−2)−1 =
210

3 · 45

(16

21

)m−2

≤ 1024

135
.

Thus we conclude that whenever t(a) = 4m + 2 with m ≥ 2, then one has
C(a) < 8.

When m = 1, or equivalently, when t(a) = 6, we must be more explicit
in our analysis. Observe now that A6 is a (45, 15)-set of 3-decompositions of
16. When s(a′) is even, we deduce from Lemmata 9.6 (ii) and 9.7 that

C(a) = C(16, a
′) ≤ 26

2 · 45/15
· 9/4

3
= 8.

When s(a′) is odd, on the other hand, we may write a = (16, 2, a
′′), where

a′′ ∈ V ′
2 and s(a′′) is even. For each decomposition A = (a1, . . . , a4) ∈ A6,

one has t(a1) = t(a2) = 1 and t(a3) = t(a4) = 2, and so we find that the set

{(a1, 1), (a2, 1), (a3, 0), (a4, 0)}
provides a 9-decomposition of (16, 2). By taking the collection of all such
sets for A ∈ A6, we obtain a (45, 15)-set of 9-decompositions of (16, 2).
Consequently, by Lemmata 9.6 (ii) and 9.7, we obtain

C(a) = C(16, 2, a
′′) ≤ 26 · 3

2 · 45/15
· 9/4

9
= 8.

We have therefore shown that C(a) ≤ 8 when t(a) = 6, and this completes
our treatment of case (vii).

(viii) Suppose that t(a) = 4m + 3 with m ≥ 1. In this case we apply
an argument closely resembling that of case (vii). Put a = (14m+3, a

′) with
a′ ∈ V ′

2 , and denote by A4m+3 the set of all the 3m-decompositions A =
{a1, . . . , a4} of 14m+3 such that t(a1) = m and t(aj) = m + 1 for 2 ≤ j ≤
4. An elementary combinatorial argument again confirms that A4m+3 is a
(ν4m+3, µ4m+3)-set of 3m-decompositions of 14m+3, where

ν4m+3 =
(4m + 3)!

3!m!((m + 1)!)3
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and

µ4m+3 = max

{
(3m + 2)!

2!m!((m + 1)!)2
,

(3m + 3)!

3!((m + 1)!)3

}
=

(3m + 3)!

3!((m + 1)!)3
.

We therefore deduce from Lemmata 9.6 (iii) and 9.7 that

C(a) ≤ τ̃(14m+3)

2ν4m+3/µ4m+3

· F (a′)
3m

≤ 24m+231−m

(
4m + 3

m

)−1

. (9.19)

The inequality (9.17) now implies that

(
4m + 3

m

)
=

1

4

(
4(m + 1)

m + 1

)
≥ 7m,

and so we find from (9.19) that for m ≥ 2, one has

C(a) ≤ 12
(16

21

)m

≤ 1024

147
.

When m = 1 we have t(a) = 7, and must again proceed more carefully.
In this case A7 is a (105, 15)-set of 3-decompositions of 17. When s(a′) is
even, it follows from Lemmata 9.6 (ii) and 9.7 that

C(a) = C(17, a
′) ≤ 27

2 · 105/15
· 9/4

3
=

48

7
.

When s(a′) is odd, meanwhile, we write a = (17, 2, a
′′), where a′′ ∈ V ′

2

and s(a′′) is even. For each decomposition A = (a1, . . . , a4) ∈ A7, one has
t(a1) = 1 and t(aj) = 2 (2 ≤ j ≤ 4), and so we find that the set

{(a1, 2), (a2, 0), (a3, 0), (a4, 0)}

provides a 9-decomposition of (17, 2). Collecting such decompositions for
A ∈ A7, we obtain a (105, 15)-set of 9-decompositions of (17, 2). Thus, by
Lemmata 9.6 (ii) and 9.7, we may conclude that

C(a) = C(17, 2, a
′′) ≤ 27 · 3

2 · 105/15
· 9/4

9
=

48

7
.

We have therefore shown that C(a) < 8 when t(a) = 7, and this completes
our analysis of case (viii).
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We conclude by noting that the discussions of cases (i) through (viii)
above demonstrate that C(a) ≤ 8 whenever a ∈ V1, and so this completes
the proof of the lemma.

This completes the third phase of our argument, so that in view of the
discussion in the preamble to Lemma 9.7, and that in the paragraph con-
taining (9.5), the desired conclusion (9.1) is now available with C = 8. We
summarise the deliberations of this section in the form of a lemma.

Lemma 9.10. Denote the number of divisors of n by τ(n), and let g be the
multipilicative function defined by means of (9.2). Then for every natural
number n one has

τ(n) ≤ 8
∑

d|n
d≤n1/4

g(d).

10 An investigation of certain congruences.

Our next goal is to establish the mean value estimates recorded in Lemmata
2.4 and 2.5. Before embarking on this mission in §11, we require some esti-
mates associated with the number of solutions of certain congruences, and
these we prepare in the current section. Our first lemma concerns the number
ρ(d) of solutions of the congruence

x4
1 + x4

2 ≡ x4
3 + x4

4 (mod d), (10.1)

with 1 ≤ xj ≤ d (1 ≤ j ≤ 4).

Lemma 10.1. The function ρ(d) satisfies the following properties.

(i) One has

ρ(2v) =

{
8, when v = 1,

3 · 24v−3, when 2 ≤ v ≤ 4.

Further, when u ≥ 0 and 1 ≤ v ≤ 4, one has

ρ(24u+v) = 5u · 212u+3v + 212uρ(2v).

(ii) One has ρ(3) = 33 and ρ(5) = 321. Also, defining κ(p) and bp as in
(5.5) and (5.15) respectively, for each odd prime p one has the relation

p3 ≤ ρ(p) ≤ p3 + bpκ(p)2p2(p− 1).
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Finally, when p is an odd prime, u ≥ 0 and 1 ≤ v ≤ 4, one has

ρ(p4u+v) = (u + 1)p3(4u+v−1)(ρ(p)− 1) + p12u+4v−4.

Proof. We begin by disposing of the simplest cases of the lemma with minimal
effort. Of course, one instantaneously verifies that ρ(2) = 8. Next, we define
σq(m) to be the number of solutions of the congruence x4 + y4 ≡ m (mod q)
with 1 ≤ x, y ≤ q, and we observe that

ρ(q) =

q∑
m=1

σq(m)2.

Suppose for the moment that q is one of 3, 4, 5, 8 or 16. Then one has
x4 ≡ 1 mod q whenever (x, q) = 1, and otherwise x4 ≡ 0 (mod q). We
therefore find that σq(m) is zero unless m is one of 0, 1 or 2, and thus an
elementary computation reveals that

ρ(p) = 12 +

(
2

1

)2

(p− 1)2 + (p− 1)4 (p = 3, 5),

ρ(2v) = 24v−4 +

(
2

1

)2

24v−4 + 24v−4 (v = 2, 3, 4).

The initial conclusions of parts (i) and (ii) of the lemma now follow immedi-
ately.

Suppose next that p is an odd prime, and recall the definition (5.1) of the
exponential sum S(q, a). By orthogonality, one has

ρ(p) = p−1

p∑
a=1

|S(p, a)|4 = p3 + p−1

p−1∑
a=1

|S(p, a)|4.

On recalling Lemmata 5.1 and 5.3, we find that

0 ≤ p−1

p−1∑
a=1

|S(p, a)|4 ≤ pκ(p)2

p−1∑
a=1

|S(p, a)|2 = bpκ(p)2p2(p− 1),

whence the second conclusion of part (ii) of the lemma follows.
We next turn our attention to the final conclusions of parts (i) and (ii)

of the lemma. When d is a natural number, denote by ρ∗(d) the number
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of solutions x of the congruence (10.1) counted by ρ(d) with (xj, d) = 1 for
some j. Then defining γ = γ(p) as in the statement of Lemma 6.1, we find
from the latter lemma that when l ≥ γ,

ρ∗(pl) = p3(l−γ)ρ∗(pγ). (10.2)

We therefore deduce from the definitions of ρ(d) and ρ∗(d) that for l ≥ 4,

ρ(pl) = ρ∗(pl) + (p3)4ρ(pl−4) = p3(l−γ)ρ∗(pγ) + p12ρ(pl−4). (10.3)

A u-fold application of this formula demonstrates that for u ≥ 0 and 1 ≤
v ≤ 4, one has

ρ(p4u+v) = up3(4u+v−γ)ρ∗(pγ) + p12uρ(pv). (10.4)

In the case p = 2, we see that ρ(24) − ρ∗(24) is equal to the number of
quadruples (x1, . . . , x4) with each xj even and satisfying 1 ≤ xj ≤ 16. Thus
it follows from (10.4) that when u ≥ 0 and 1 ≤ v ≤ 4,

ρ(24u+v) = u · 23(4u+v−4)(ρ(24)− (23)4) + 212uρ(2v),

whence the final conclusion of part (i) of the lemma follows from the first
conclusion of that part. When p is odd, meanwhile, we deduce from (10.2)
that when 1 ≤ v ≤ 4,

ρ(pv) = ρ∗(pv) + p4(v−1) = p3(v−1)ρ∗(p) + p4(v−1). (10.5)

An application of the relation (10.4) yields the conclusion that for u ≥ 0 and
1 ≤ v ≤ 4, one has

ρ(p4u+v) = (u + 1)p3(4u+v−1)ρ∗(p) + p12u+4v−4,

and the final conclusion of part (ii) of the lemma follows from the observation
that ρ∗(p) = ρ(p)− 1.

We next establish a variant of the previous lemma relevant to the number,
r(d) = r(d; ε), of solutions of the congruence

1

2

(
(2x1 + ε)4 + (2x2 + ε)4 − (2x3 + ε)4 − (2x4 + ε)4

) ≡ 0 (mod d), (10.6)

with 1 ≤ xj ≤ d (1 ≤ j ≤ 4).
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Lemma 10.2. Suppose that ε ∈ {0, 1}. Then the following conclusions hold.

(i) When d is odd, one has r(d) = ρ(d).

(ii) When 1 ≤ l ≤ 3, one has r(2l) = 24l, and for u ≥ 0 and 1 ≤ v ≤ 4,

r(24u+v+3) ≤ 5u · 23(4u+v+4) + 212(u+1)ρ(2v).

Proof. We begin by noting that when d is odd, a change of variables confirms
that r(d) = ρ(d), thereby establishing part (i) of the lemma. Observe next
that when d = 2l with l ≤ 3, it follows from (5.11) that the congruence
(10.6) is automatically satisfied for every choice of x. In particular, one has
r(2l) = 24l for 1 ≤ l ≤ 3. Suppose then that l ≥ 4. When ε = 0, we see at
once that r(2l; 0) = 212ρ(2l−3). On writing l − 3 = 4u + v with u ≥ 0 and
1 ≤ v ≤ 4, we therefore deduce from Lemma 10.1 (i) that

r(24u+v+3; 0) = 212
(
5u · 212u+3v + 212uρ(2v)

)
,

and so the desired conclusion follows for ε = 0. When ε = 1, in the meantime,
we may observe that r(2l; 1) is equal to r′(2l+1), where we take r′(2m) to be
the number of solutions of the congruence

y4
1 + y4

2 ≡ y4
3 + y4

4 (mod 2m),

with 1 ≤ yj ≤ 2m and yj odd for 1 ≤ j ≤ 4. It is a consequence of Lemma
6.1 that r′(2m) = 23(m−4)r′(24) for m ≥ 4, so that the trivial conclusion
r′(24) = (23)4 leads to the relation

r(2l; 1) = r′(2l+1) = 23(l−3)+12 (l ≥ 4).

On writing l−3 = 4u+ v as above, and noting that Lemma 10.1 (i) provides
the lower bound ρ(2v) ≥ 23v for 1 ≤ v ≤ 4, we arrive at the upper bound

r(24u+v+3; 1) = 23(4u+v)+12 ≤ 212(u+1)ρ(2v).

The desired conclusion therefore follows also for ε = 1, and this completes
the proof of the lemma.

Finally, we require an analogue of Lemma 10.1 in which the congruence
(10.1) is replaced by a new congruence stemming from the use of the identity
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(1.5). In this context, let s(d) = s(d; ζ) denote the number of solutions of
the congruence

1

4

(
30(2x1 + ζ)4 − 30(2x2 + ζ)4 + (2y1 + 1)4 − (2y2 + 1)4

) ≡ 0 (mod d),

with 1 ≤ xj, yj ≤ d (j = 1, 2).

Lemma 10.3. Suppose that ζ ∈ {0, 1}. Then the following conclusions hold.

(i) When d is a natural number with (d, 30) = 1, one has d3 ≤ s(d) ≤ ρ(d).

(ii) When p = 3 or 5, one has s(p) = p2(p2 − 2p + 2), and when l ≥ 1 one
has s(pl) < 3

2
ρ(pl).

(iii) One has

s(2l) =

{
24l, when l = 1, 2,

23l+2, when l ≥ 3.

Proof. We observe first that when d is odd, a change of variables demonstrates
that s(d) is equal to the number of solutions of the congruence

30(x4
1 − x4

2) ≡ y4
1 − y4

2 (mod d), (10.7)

with 1 ≤ xj, yj ≤ d (j = 1, 2). On recalling (5.1), we thus deduce by
orthogonality that

s(d) = d−1

d∑
a=1

|S(d, 30a)S(d, a)|2.

On the one hand, the contribution of the term a = d in this last sum suffices
to confirm the lower bound s(d) ≥ d3. On the other hand, since orthogonality
provides the relation

ρ(d) = d−1

d∑
a=1

|S(d, a)|4,

it follows from Cauchy’s inequality together with a change of variable that
when (d, 30) = 1, one has

s(d) ≤
(

d−1

d∑
a=1

|S(d, 30a)|4
)1/2 (

d−1

d∑
a=1

|S(d, a)|4
)1/2

= d−1

d∑
a=1

|S(d, a)|4 = ρ(d).
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This completes the proof of part (i) of the lemma.
We next turn to part (ii) of the lemma, and suppose for the moment that

p = 3 or 5. For j = 1, 2, 3 and l ≥ 0, let sj(p
l) denote the number of solutions

of the congruence (10.7) with d = pl, 1 ≤ xi, yi ≤ pl (i = 1, 2), subject to
the list of conditions Cj, where Cj is given as follows:

C1 : p - y1 or p - y2,

C2 : p|y1, p|y2 and p - x1 or p - x2,

C3 : p|x1, p|x2, p|y1, p|y2.

Then we have
s(pl) = s1(p

l) + s2(p
l) + s3(p

l). (10.8)

Further, one has the instant relation

s3(p
l) =

{
p4(l−1), when 1 ≤ l ≤ 4,

p12s(pl−4), when l ≥ 5.
(10.9)

We estimate s1(p
l) and s2(p

l) as follows. Observing that when d = p,
the congruence (10.7) simplifies to y4

1 ≡ y4
2 (mod p), we find that s1(p) =

p2(p − 1)2. Thus, appealing to Lemma 6.1, we deduce that when l ≥ 1 one
has

s1(p
l) = p3(l−1)s1(p) = p3l−1(p− 1)2. (10.10)

Next, when l ≥ 0, we denote by s′2(p
l) the number of solutions of the con-

gruence
30p−1(x4

1 − x4
2) ≡ p3(y4

1 − y4
2) (mod pl),

with 1 ≤ xi, yi ≤ pl and p - xi (i = 1, 2). Plainly, one has s′2(p) = p2(p− 1)2,
and so it follows from Lemma 6.1 that when l ≥ 1, one has

s′2(p
l) = p3l−1(p− 1)2.

We therefore deduce that when l ≥ 2,

s2(p
l) = p2s′2(p

l−1) = p3l−2(p− 1)2, (10.11)

while the relation
s2(p) = p2 − 1 (10.12)

is immediate from the definition of s2(p).
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On collecting together (10.8)-(10.12), we obtain

s(p) = p2(p− 1)2 + (p2 − 1) + 1 = p2(p2 − 2p + 2), (10.13)

which confirms the first claim of part (ii) of the lemma, and one also obtains
the relations

s(pl) = p3l−2(p + 1)(p− 1)2 +

{
p4(l−1), when 2 ≤ l ≤ 4,

p12s(pl−4), when l ≥ 5.
(10.14)

In order to establish the remaining conclusion of part (ii) of the lemma, we
note initially that by Lemma 10.1 (ii) and (10.13), one has s(p) < 3

2
ρ(p) for

p = 3, 5. Also, recalling the definition of ρ∗(d) from the proof of Lemma
10.1, and noting that ρ∗(p) = ρ(p)− 1, one finds from Lemma 10.1 (ii) that
for p = 3 and 5 one has

p(p + 1)(p− 1)2 =
3

2
ρ∗(p). (10.15)

On recalling (10.5), we now conclude from (10.14) and (10.15) that for 2 ≤
l ≤ 4, one has

s(pl) =
3

2
p3(l−1)ρ∗(p) + p4(l−1) <

3

2
ρ(pl).

When l ≥ 5, meanwhile, we may make use of (10.3) with γ = 1 in combi-
nation with (10.14) and (10.15) to deduce that whenever s(pl−4) < 3

2
ρ(pl−4),

then one has

s(pl) =
3

2
p3(l−1)ρ∗(p) + p12s(pl−4)

<
3

2

(
p3(l−1)ρ∗(p) + p12ρ(pl)

)
=

3

2
ρ(pl).

The final conclusion of part (ii) of the lemma consequently follows by induc-
tion on l, with our previous conclusions providing the basis of the induction.

It now remains only to establish part (iii) of the lemma. The desired
conclusion for l = 1 and 2 is immediate from (5.11). In order to handle the
cases with l ≥ 3, we introduce the function s′(2m), which we define to be the
number of solutions of the congruence

30x4
1 − 30x4

2 + y4
1 − y4

2 ≡ 0 (mod 2m),
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with 1 ≤ xj, yj ≤ 2m, xj ≡ ζ (mod 2) and yj ≡ 1 (mod 2) (j = 1, 2). A
moment’s reflection yields the relation s(2l) = 2−4s′(2l+2). Moreover, the
solutions x, y counted by s′(2m) satisfy the property that y1 is odd, whence
by Lemma 6.1 one has

s′(2m) = 23(m−4)s′(24) (m ≥ 4).

In view of (5.11), we have s′(24) = (23)4, and thus we deduce that whenever
l ≥ 3, one has

s(2l) = 2−4s′(2l+2) = 2−4+3(l−2)+12 = 23l+2.

This completes the proof of part (iii) of the lemma, and completes our dis-
cussion of Lemma 10.3.

The final three lemmata of this section provide weighted sums of the
functions r(d) and s(d) occurring in Lemmata 10.2 and 10.3, together with
our surrogate for the divisor function, g(d), that was central to the discussion
of the previous section. We begin with a technical lemma that simplifies our
subsequent detailed investigations specific to the functions r(d) and s(d).

Lemma 10.4. Let λ(d) be a multiplicative function satisfying the condition
that λ(d) ≥ 0 for all natural numbers d, and also satisfying the property that
for every prime p, one has λ(p) ≥ p3. Suppose that X is a real number with
X ≥ 1, and that k is a real number with 0 ≤ k ≤ 3. Then one has

∑

1≤d≤X

g(d)λ(d)

dk
≤ X4−k

∏
p≤X

(
1− 1

p
+

LogpX∑

l=1

g(pl)λ(pl)

p4l

)
,

where we write LogpX for [(log X)/(log p)].

Proof. Let D denote the set of squarefull numbers, by which we mean the set
of natural numbers n with the property that whenever p is a prime number
with p|n, then necessarily p2|n. Every natural number d may be written
uniquely in the shape d = d1d2, where d1 is squarefree, d2 is squarefull, and
(d1, d2) = 1. On writing also S for the set of squarefree numbers, we see that

∑

d≤X

g(d)λ(d)

dk
=

∑

d2≤X
d2∈D

g(d2)λ(d2)

dk
2

∑

d1≤X/d2

(d1,d2)=1
d1∈S

g(d1)λ(d1)

dk
1

. (10.16)
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We analyse the inner sum of the right hand side of (10.16) first. When q
is squarefree, define the function θ(q) by

θ(q) =
∏

p|q
(λ(p)p−3 − 1).

Note that in view of the hypothesis on λ(p) imposed in the statement of
the lemma, one has θ(q) ≥ 0 for every q. Plainly, for each prime p one has
λ(p) = p3(1 + θ(p)), and hence we deduce from the multiplicative property
of λ(d) that for squarefree d1, one has

λ(d1) = d3
1

∏

p|d1

(1 + θ(p)) = d3
1

∑

qh=d1

θ(q).

Consequently, the innermost sum on the right hand side of (10.16) may be
written in the form

∑

d1≤X/d2

(d1,d2)=1
d1∈S

g(d1)λ(d1)

dk
1

=
∑

q≤X/d2

(q,d2)=1
q∈S

g(q)θ(q)q3−k
∑

h≤X/(qd2)
(h,qd2)=1

h∈S

g(h)h3−k. (10.17)

We next tackle the innermost sum on the right hand side of (10.17). Since
g(p) = 3 = 1 + τ(p), where τ(n) again denotes the divisor function, we have
for each squarefree number h the relation

g(h) =
∏

p|h
(1 + τ(p)) =

∑

mn=h

τ(m).

Thus we deduce that∑

h≤X/(qd2)
(h,qd2)=1

h∈S

g(h)h3−k =
∑

m≤X/(qd2)
(m,qd2)=1

m∈S

τ(m)m3−k
∑

n≤X/(qmd2)
(n,qmd2)=1

n∈S

n3−k.

But for 0 ≤ k ≤ 3, the innermost sum in the last expression is plainly at
most (X/(qmd2))

4−k, and hence one obtains the estimate

∑

h≤X/(qd2)
(h,qd2)=1

h∈S

g(h)h3−k ≤
(

X

d2q

)4−k ∑

m≤X/(qd2)
(m,qd2)=1

m∈S

τ(m)

m

≤
(

X

d2q

)4−k ∏

p≤X/d2

p-qd2

(1 + 2/p). (10.18)
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We now substitute from (10.18) into (10.17) to deduce that

∑

d1≤X/d2

(d1,d2)=1
d1∈S

g(d1)λ(d1)

dk
1

≤
(

X

d2

)4−k ∏

p≤X/d2

p-d2

(
1 +

2

p

) ∑

q≤X/d2

(q,d2)=1
q∈S

g(q)θ(q)

q

∏

p|q

(
1 +

2

p

)−1

≤
(

X

d2

)4−k ∏

p≤X/d2

p-d2

(
1 +

2

p

) ∏

$≤X/d2

$-d2

(
1 +

g($)θ($)

$

(
1 +

2

$

)−1
)

,

where $ implicitly denotes a prime number. On writing

θ1(p) = 1 +
2

p
+

g(p)θ(p)

p
= 1− 1

p
+

g(p)λ(p)

p4
, (10.19)

we may conclude that

∑

d1≤X/d2

(d1,d2)=1
d1∈S

g(d1)λ(d1)

dk
1

≤
(X

d2

)4−k ∏

p≤X/d2

p-d2

θ1(p). (10.20)

Finally, we substitute from (10.20) into (10.16) to obtain

∑

d≤X

g(d)λ(d)

dk
≤ X4−k

(∏
p≤X

θ1(p)

) ∑

d2≤X
d2∈D

g(d2)λ(d2)

d4
2

∏

$|d2

θ1($)−1

≤ X4−k

(∏
p≤X

θ1(p)

) ∏
$≤X

(
1 +

Log$X∑

l=2

g($l)λ($l)

$4l
θ1($)−1

)

= X4−k
∏
p≤X

(
θ1(p) +

LogpX∑

l=2

g(pl)λ(pl)

p4l

)
.

The desired conclusion now follows immediately from (10.19).

The moment has arrived to extract the estimates critical to our proofs,
in the next section, of Lemmata 2.4 and 2.5. We begin with a lemma that
provides the key ingredient in our proof of the former lemma.
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Lemma 10.5. Suppose that X ≥ 1025 and ε ∈ {0, 1}. Then
∑

d≤X

g(d)r(d; ε)d−4 < 125(log X)3,

and, whenever 0 ≤ k ≤ 3, one has also
∑

d≤X

g(d)r(d; ε)d−k < 256X4−k(log X)2.

Proof. Let ε ∈ {0, 1}, and write r(d) = r(d; ε). Putting

H(p) =
∞∑

l=1

g(pl)r(pl)p−4l, (10.21)

it follows from the multiplicative properties of g(d) and r(d) that
∑

d≤X

g(d)r(d)d−4 ≤
∏
p≤X

(1 + H(p)). (10.22)

We explicitly compute upper bounds for the factors 1+H(p), for each prime
p, and from these bounds the first conclusion of the lemma will follow directly.

We begin with the even prime. By the definition (9.2) of g(d), we have

1 + H(2) = 1 + 3 + 3 + 9 + 9
∞∑

u=0

4∑
v=1

r(24u+v+3)

24(4u+v+3)
+ 18

∑

l∈{7,9,11}

r(2l)

24l
.

Thus, on making use of Lemmata 10.1 (i) and 10.2 (ii), we find that

1 + H(2) ≤ 16 + 18 · 133

256
+ 9

∞∑
u=0

4∑
v=1

(
5u · 2−4u−v + 2−4u−4vρ(2v)

)
. (10.23)

Using the formulae

∞∑
m=0

zm =
1

1− z
and

∞∑
m=1

mzm−1 =
1

(1− z)2
, (10.24)

which are valid for |z| < 1, one finds that

∞∑
u=0

u2−4u =
16

225
,

∞∑
u=0

2−4u =
16

15
.
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Also, we have
4∑

v=1

2−v =
15

16
,

and on making use of Lemma 10.1 once again, we obtain

4∑
v=1

2−4vρ(2v) = 2−4 · 23 +
4∑

v=2

3 · 2−3 =
13

8
.

Consequently, the upper bound (10.23) becomes

1 + H(2) ≤ 16 +
1197

128
+ 9

(
5 · 16

225
· 15

16
+

16

15
· 13

8

)

=
28129

640
. (10.25)

We next turn our attention to the odd primes p. On making use of
Lemmata 10.1 (ii) and 10.2 (i) together with the upper bound g(pl) ≤ 27,
valid for l ≥ 9, we obtain

∞∑

l=9

g(pl)r(pl)

p4l

≤ 27
∞∑

u=2

4∑
v=1

p−4(4u+v)
(
(u + 1)p12u+3v−3(ρ(p)− 1) + p12u+4v−4

)
,

whence by (10.24) we deduce that

∞∑

l=9

g(pl)r(pl)

p4l
≤ 27

(
ρ(p)− 1

p3

)(
3− 2p−4

p4(p4 − 1)(p− 1)

)
+

108

p8(p4 − 1)
. (10.26)

Furthermore, on making use of the definition of g(pl) together with Lemmata
10.1 (ii) and 10.2 (i), we obtain

8∑

l=1

g(pl)r(pl)

p4l
=

(
ρ(p)− 1

p3

) (
3

p
+

3

p2
+

9

p3
+

9

p4
+

18

p5
+

18

p6
+

54

p7
+

18

p8

)

+
24

p4
+

54

p8
. (10.27)
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On substituting (10.26) and (10.27) into (10.21), and making use of the
explicit values for ρ(3) and ρ(5) provided in Lemma 10.1 (ii), we therefore
deduce that

H(3) < 2.57 and H(5) < 2.123. (10.28)

For primes p of intermediate size, we note that Lemma 10.1 (ii) supplies
the bound

ρ(p)− 1

p3
< 1 + bpκ(p)2.

On combining (10.21), (10.26) and (10.27), we thus obtain for p ≥ 7 the
upper bound

H(p) < (1 + bpκ(p)2)(3p−1 + 3p−2 + 10.73p−3) + 24.03p−4. (10.29)

Applying this bound in combination with (5.5) and (5.15), a direct compu-
tation reveals that ∏

7≤p≤79
p≡3 (mod 4)

(1 + H(p)) < 4.35, (10.30)

and ∏
13≤p≤73

p≡1 (mod 4)

(1 + H(p)) < 3.88. (10.31)

When p is a prime with p ≥ 83, it follows from (5.5) and (5.15) that
bpκ(p)2 = b3

p/p, and thus we derive from (10.29) the upper bound

1 + H(p) < 1 + 3p−1 + (3.038b3
p + 3.133)p−2

< exp
(
3p−1 + (3.038b3

p + 3.133)p−2
)
. (10.32)

Thus we have

∏
83≤p≤X

(1 + H(p)) < exp

(
3

∑
83≤p≤X

1

p
+ 6.171

∑
p≥83

p≡3 (mod 4)

1

p2
+ 85.16

∑
p≥89

p≡1 (mod 4)

1

p2

)
.

(10.33)
But as a trivial consequence of Lemma 5.4, one has

∑
p≥83

p≡3 (mod 4)

1

p2
<

1

4 · 79
=

1

316
and

∑
p≥89

p≡1 (mod 4)

1

p2
<

1

4 · 85
=

1

340
. (10.34)
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Also, on applying Lemma 3.2 together with a direct computation, one finds
that for X ≥ 1025, one has

∑
83≤p≤X

1

p
< log log X + 0.281−

∑
p≤79

1

p
< log log X − 1.488. (10.35)

On collecting together (10.30), (10.31) and (10.33)–(10.35), we arrive at the
upper bound

∏
7≤p≤X

(1 + H(p)) < 4.35 · 3.88 · exp
(
−1.488 · 3 +

6.171

316
+

85.16

340

)
(log X)3

< 0.2547(log X)3. (10.36)

On recalling (10.25) and (10.28), we deduce from (10.36) that

∏
p≤X

(1 + H(p)) <
28129

640
(1 + 2.57)(1 + 2.123) · 0.2547(log X)3

< (5 log X)3,

and hence the first conclusion of the lemma follows from (10.22).
We now consider the final assertion of the lemma. Observe first that by

Lemma 10.2 (ii) one has r(2) > 23, and similarly, by Lemmata 10.2 (i) and
10.1 (ii), one has r(p) ≥ p3 for every odd prime p. Since r(d) ≥ 0 for all
natural numbers d, we find that the hypotheses necessary for the application
of Lemma 10.4 are satisfied with λ(d) = r(d). On recalling (10.21), we deduce
that the final conclusion of the lemma follows from the proposition that for
X ≥ 1025, one has

∏
p≤X

(
1− 1

p
+ H(p)

)
< (16 log X)2. (10.37)

Fortunately, much of the work required to establish (10.37) has already
been completed earlier in this proof. Observe first that, as in the argument
leading from (10.29) to (10.30) and (10.31), a direct computation demon-
strates that ∏

7≤p≤79
p≡3 (mod 4)

(
1− 1

p
+ H(p)

)
< 2.985, (10.38)
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and ∏
13≤p≤73

p≡1 (mod 4)

(
1− 1

p
+ H(p)

)
< 3.120. (10.39)

Also, as in the argument leading to (10.32), we obtain for p ≥ 83 the inequal-
ity

1− 1

p
+ H(p) < 1 +

2

p
+ (3.038b3

p + 3.133)p−2

< exp

(
2

p
+ (3.038b3

p + 3.133)p−2

)
.

Then by (10.34), (10.35), (10.38) and (10.39), we deduce that for X ≥ 1025,

∏
7≤p≤X

(
1− 1

p
+ H(p)

)

< 2.985 · 3.120 exp

(
2(log log X−1.488) +

6.171

316
+

85.16

340

)

< 0.6222(log X)2. (10.40)

Hence, by (10.25) and (10.28), we may finally conclude that

∏
p≤X

(
1− 1

p
+ H(p)

)

<

(
28129

640
− 1

2

)(
1− 1

3
+2.57

)(
1− 1

5
+2.123

)
·0.6222(log X)2

< 256(log X)2,

and this confirms the estimate (10.37), thereby completing the proof of the
final conclusion of the lemma.

Our final lemma in this section provides an analogue of Lemma 10.5
in which s(d; ζ) is substituted for r(d; ε). This lemma provides the crucial
ingredient in our proof of Lemma 2.5.

Lemma 10.6. Suppose that X ≥ 1025 and ζ ∈ {0, 1}. Then

∑

d≤X

g(d)s(d; ζ)d−4 < 86.7(log X)3,
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and, whenever 0 ≤ k ≤ 3, one has also
∑

d≤X

g(d)s(d; ζ)d−k < 183X4−k(log X)2.

Proof. Let ζ ∈ {0, 1}, and write s(d) = s(d; ζ). Putting

H ′(p) =
∞∑

l=1

g(pl)s(pl)p−4l, (10.41)

it follows from the multiplicative properties of g(d) and s(d) that
∑

d≤X

g(d)s(d)d−4 ≤
∏
p≤X

(1 + H ′(p)). (10.42)

The similarity between the formulae (10.21) and (10.41), and likewise be-
tween the inequalities (10.22) and (10.42), is suggestive of a strategy for
proving Lemma 10.6 similar to that applied in the proof of Lemma 10.5.
Fortunately, we may be economical in our account by recycling the estimates
contained in the latter proof.

First, by Lemma 10.3 (iii) and the definition (9.2) of g(d), we have

1 + H ′(2) = 1 + 3 + 3 + 9
∞∑

l=3

23l+2 · 2−4l + 18
∑

l∈{7,9,11}
23l+2 · 2−4l

= 7 + 9 +
18 · 21

512
=

4285

256
. (10.43)

For odd primes p, we begin by noting that when p ≥ 7, it follows from
Lemmata 10.2 (i) and 10.3 (i), together with a comparison of (10.21) and
(10.41), that one has H ′(p) ≤ H(p). When p = 3 or 5, meanwhile, one finds
in a similar manner from Lemmata 10.2 (i) and 10.3 (ii) that H ′(p) < 3

2
H(p).

We therefore infer from (10.28), (10.36), (10.40) and (10.43) that whenever
X ≥ 1025, one has

∏
p≤X

(1 + H ′(p))

≤ 4285

256

(
1 +

3

2
· 2.57

)(
1 +

3

2
· 2.123

) ∏
7≤p≤X

(1 + H(p))

< 86.7(log X)3, (10.44)
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and also

∏
p≤X

(
1− 1

p
+ H ′(p)

)
≤

(
4285

256
− 1

2

)(
1− 1

3
+

3

2
· 2.57

)

×
(

1− 1

5
+

3

2
· 2.123

) ∏
7≤p≤X

(
1− 1

p
+ H(p)

)

< 183(log X)2. (10.45)

The first conclusion of the lemma is now immediate from (10.42) and (10.44).
As for the second conclusion of the lemma, one finds that Lemma 10.3 con-
firms that s(p) ≥ p3 for every prime p, and also s(d) ≥ 0 for all natural
numbers d. Hence we may apply Lemma 10.4 to obtain the desire conclusion
without more ado from (10.45). This completes the proof of the lemma.

11 Mean value estimates.

The smell of victory now lies heavy in the air, so we pause no longer before
wielding Lemma 10.5 to establish Lemma 2.4.

The proof of Lemma 2.4. We convert the mean value central to Lemma
2.4 into a divisor sum to which the methods of §10 apply. When ε ∈ {0, 1},
define the polynomial ψ(x; ε) by

ψ(x; ε) =
1

2

(
(2x1 + ε)4 + (2x2 + ε)4 − (2x3 + ε)4 − (2x4 + ε)4

)
,

and note that ψ(x; ε) is a polynomial in x1, . . . , x4 with integral coefficients.
By orthogonality, the mean value

∫ 1

0

|Fη(α)2Sε(α)4|dα

is then equal to the number of solutions of the equation

m2
1 −m2

2 = ψ(x; ε), (11.1)

with

m1,m2 ∈Mη(P
2) and 2P < 2xj + ε ≤ 4P (1 ≤ j ≤ 4). (11.2)
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We denote by V0 the number of solutions m, x of (11.1) subject to (11.2)
that satisfy the additional condition ψ(x; ε) = 0, and we denote by V1 the
corresponding number of solutions with ψ(x; ε) 6= 0. Thus we have

∫ 1

0

|Fη(α)2Sε(α)4|dα = V0 + V1. (11.3)

In order to estimate V0, we observe that whenever ε ∈ {0, 1} and P ≥
1025, the upper bound (3.3.14) of Deshouillers and Dress [9] supplies the
estimate ∫ 1

0

|Sε(α)|4dα ≤ 60P 2(log P )4. (11.4)

Some comments are in order at this point concerning the validity of the
estimate (11.4), since Deshouillers and Dress claim such an upper bound
only for P ≥ 1080. However, an inspection of the proof of Theorem 3 of
[9] reveals that the latter hypothesis is employed in the proof of (3.3.14) of
[9] only in the application of Proposition 3.1 of that paper. Moreover, the
latter proposition requires the hypothesis P ≥ 1080 only in the application of
the relation (3.18) of Rosser and Schoenfeld [19] to estimate the right hand
side of (3.1.24) of [9]. But on substituting our Lemma 3.2 for this result of
Rosser and Schoenfeld, one obtains the same conclusion as that required in
[9]. Thus, in the notation employed in [9], one finds that when X ≥ 1025,

A(X) ≤ 40X2 exp

(
4

∑
5≤p≤X

1

p
+ 1

)

≤ 40X2 exp(4 log log X − 1.209) < 12X2(log X)4,

and this last bound matches that found on the bottom of p.135 of [9]. Re-
turning to the estimation of V0, we find that on considering the underlying
diophantine equation, one has

V0 = Mη

∫ 1

0

|Sε(α)|4dα ≤ 60MηP
2(log P )4. (11.5)

We turn now to the solutions m, x of (11.1) counted by V1. Here we
note that the definition of Mη(P

2), together with the constraint on ψ(x; ε)
imposed by (11.1), implies that |ψ(x; ε)| ≤ P 4. Furthermore, it is evident
that m1−m2 has the same sign as ψ, and further that |m1−m2| ≤ m1 +m2.
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We therefore deduce that for a fixed choice of x with ψ(x; ε) 6= 0, the number
of pairs (m1,m2) satisfying (11.1) with mi ∈ Mη(P

2) (i = 1, 2) does not
exceed 1

2
τ(|ψ(x; ε)|). Consequently, one has

V1 ≤ 1

2

∑
x

1≤|ψ(x;ε)|≤P 4

τ(|ψ(x; ε)|),

where the sum is over integral 4-tuples x with 2P < 2xj+ε ≤ 4P (1 ≤ j ≤ 4).
On applying Lemma 9.10, we find that

V1 ≤ 4
∑
x

1≤|ψ(x;ε)|≤P 4

∑

d|ψ(x;ε)

d≤|ψ(x;ε)|1/4

g(d)

≤ 4
∑

d≤P

g(d)
∑
x

ψ(x;ε)≡0 (mod d)

1.

But plainly,

∑
x

ψ(x;ε)≡0 (mod d)

1 =
∑

1≤a1,...,a4≤d
ψ(a;ε)≡0 (mod d)

∑
x

x≡a (mod d)

1

≤ r(d; ε)(P/d + 1)4,

where r(d; ε) is defined as in the preamble to Lemma 10.2. We therefore
deduce that

V1 ≤ 4
4∑

k=0

(
4

k

)
P k

∑

d≤P

g(d)r(d; ε)

dk
,

whence by Lemma 10.5, we conclude that whenever P ≥ 1025,

V1 < 4P 4

(
(5 log P )3 +

3∑

k=0

(
4

k

)
(16 log P )2

)

= 500P 4(log P )3 + 15360P 4(log P )2. (11.6)

The conclusion of Lemma 2.4 follows on substituting (11.5) and (11.6) into
(11.3).

The argument required to establish Lemma 2.5 is modelled after that
above, though one encounters some mild complications.
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The proof of Lemma 2.5. On recalling (2.1) and (2.7), one finds by or-
thogonality that the integral

∫ 1

0

|Dζ(α)2S1(α)2|dα

is bounded above by the number of solutions of the equation

4m2
1 + 24m1(2x1 + ζ)2 + 6(2x1 + ζ)4 + (2y1 + 1)4

= 4m2
2 + 24m2(2x2 + ζ)2 + 6(2x2 + ζ)4 + (2y2 + 1)4, (11.7)

with

m1,m2 ∈M0(3P
2/7), 1 ≤ x1, x2 < P/6, P ≤ y1, y2 < 2P. (11.8)

On putting

φ(x,y; ζ) =
1

4

(
30((2x1 + ζ)4 − (2x2 + ζ)4)− ((2y1 + 1)4 − (2y2 + 1)4)

)
,

we may rewrite the equation (11.7) as

(m1 + 3(2x1 + ζ)2)2 − (m2 + 3(2x2 + ζ)2)2 = φ(x,y; ζ). (11.9)

Notice here that φ(x,y; ζ) is a polynomial in x and y with integral coeffi-
cients. We denote by W0 the number of solutions m, x, y of (11.9) subject
to (11.8) that satisfy the additional condition that φ(x,y; ζ) = 0, and we
denote by W1 the corresponding number of solutions with φ(x,y; ζ) 6= 0.
Thus we find that

∫ 1

0

|Dζ(α)2S1(α)2|dα = W0 + W1. (11.10)

We begin by examining W0, noting that for each fixed choice of x and y
satisfying φ(x,y; ζ) = 0 and (11.8), it follows from (11.8) and (11.9) that the
variables m1 and m2 satisfy

m1 = m2 + 3(2x2 + ζ)2 − 3(2x1 + ζ)2.

On recalling (2.13), we find that there are M̃0 such choices available for m1

and m2, whence

W0 ≤ M̃0

∫ 1

0

|S̃ζ(30α)2S1(α)2|dα, (11.11)
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where we write
S̃ζ(α) =

∑

1≤x<P/6

e((2x + ζ)4α).

We claim that whenever ζ ∈ {0, 1} and P ≥ 1026, then one has

∫ 1

0

|S̃ζ(30α)|4dα ≤ 60(P/6)2
(
log(P/6)

)4
. (11.12)

In order to confirm this upper bound, we first observe that a change of
variables yields ∫ 1

0

|S̃ζ(30α)|4dα =

∫ 1

0

|S̃ζ(α)|4dα,

and that by orthogonality, the latter integral can be seen to count the number
of solutions of the same diophantine equation as that underlying the left
hand side of (11.4), save that the variables now lie in the interval [1, P/6) as
opposed to (P−ε/2, 2P−ε/2]. On examining equation (3.1.2) of Deshouillers
and Dress [9], however, we find that the upper bound for A(X) concluding
p.135 of [9] holds when the implicit interval (X, 2X] of [9] is replaced by
[1, X), and thus our earlier discussion pertaining to (11.4) remains valid in the
current situation. The desired conclusion (11.12) therefore holds whenever
P/6 ≥ 1025. Finally, on combining (11.4), (11.11) and (11.12) via Schwarz’s
inequality, we conclude that

W0 ≤ M̃0

(∫ 1

0

|S̃ζ(30α)|4dα

)1/2 (∫ 1

0

|S1(α)|4dα

)1/2

≤ 10M̃0P
2(log P )4. (11.13)

Next we turn to W1. Let W2 be the number of solutions of the equation

n2
1 − n2

2 = φ(x,y; ζ), (11.14)

with x and y satisfying the conditions recorded in (11.8), and with 1 ≤
n1, n2 ≤ P 2 and φ(x,y; ζ) 6= 0. When m and x satisfy (11.8), one has

1 ≤ mj + 3(2xj + ζ)2 < P 2 (j = 1, 2),

and so it is apparent that
W1 ≤ W2. (11.15)
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Let n, x, y be a solution of (11.14) counted by W2. Then it follows that
|φ(x,y; ζ)| ≤ P 4. Furthermore, on following the argument of the proof of
Lemma 2.4 above, we find that the number of pairs (n1, n2) satisfying (11.14)
with 1 ≤ ni ≤ P 2 (i = 1, 2) does not exceed 1

2
τ(|φ(x,y; ζ)|). We thus deduce

that

W2 ≤ 1

2

∑
x, y

1≤|φ(x,y;ζ)|≤P 4

τ(|φ(x,y; ζ)|),

where the sum is over integral 4-tuples (x,y) with 1 ≤ xj < P/6 and P ≤
yj < 2P (j = 1, 2). On applying Lemma 9.10, we obtain

W2 ≤ 4
∑
x, y

1≤|φ(x,y;ζ)|≤P 4

∑

d|φ(x,y;ζ)

d≤|φ(x,y;ζ)|1/4

g(d)

≤ 4
∑

d≤P

g(d)
∑
x, y

φ(x,y;ζ)≡0 (mod d)

1.

But
∑
x, y

φ(x,y;ζ)≡0 (mod d)

1 =
∑

1≤a1,a2≤d
1≤b1,b2≤d

φ(a,b;ζ)≡0 (mod d)

∑
x, y

x≡a (mod d)
y≡b (mod d)

1

≤ s(d; ζ)

(
P

6d
+ 1

)2 (
P

d
+ 1

)2

,

where s(d; ζ) is defined as in the preamble to Lemma 10.3. We therefore find
that

W2 ≤ 4

(
1

36
Σ4 +

7

18
Σ3 +

61

36
Σ2 +

7

3
Σ1 + Σ0

)
,

where
Σk =

∑

d≤P

g(d)s(d; ζ)d−k (0 ≤ k ≤ 4).

Consequently, on making use of Lemma 10.6, we conclude that whenever
P ≥ 1050, one has

W2 ≤ 4

(
86.7

36
+

(
7

18
+

61

36
+

7

3
+ 1

)
183

log P

)
P 4(log P )3

< 44.1P 4(log P )3. (11.16)
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The conclusion of the lemma follows on substituting (11.13) and (11.16) into
(11.15) and (11.10).

12 Appendix: Sums of nineteen biquadrates.

In this section we describe our proof that g(4) = 19, which is to say that every
natural number is a sum of at most nineteen biquadrates. The programme of
Balasubramanian, Deshouillers and Dress for proving that g(4) = 19, based
on Hua’s inequality, sought to establish that every integer exceeding 10367

is a sum of nineteen biquadrates. By virtue of the tools prepared in previ-
ous sections, we are now able to reduce the above limit 10367 substantially,
thereby easing the computational burden of showing that g(4) = 19.

Theorem 3. Every integer exceeding 10146 can be written as the sum of
nineteen biquadrates.

Proof. According to Lemma 4.2, we may take a real number ν with

53 < ν < 107.5, (12.1)

such that whenever ν − 1/4 ≤ ξ ≤ ν, one has

K13(ξ) > 0.0065865. (12.2)

Fixing such a real number ν, we consider a large natural number N , and de-
fine the positive numbers P0 and P by means of the relations (2.10). Further,
when N ≡ r (mod 16) with 1 ≤ r ≤ 16, we define the integers η and t by

{
η = 0 and t = r, for 1 ≤ r ≤ 4,

η = 1 and t = r − 4, for 5 ≤ r ≤ 16.

We note that in all circumstances, our choices for η and t ensure that

1 ≤ t ≤ 12 and N − 4η ≡ t (mod 16). (12.3)

With the above conventions in hand, we denote by R′(N) the number of
representations of N in the form

N = 2m2
1 + 2m2

2 +
13−t∑
j=1

(2xj)
4 +

t∑

l=1

(2yl + 1)4,
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subject to

m1,m2 ∈Mη(P
2), P < xj ≤ 2P (1 ≤ j ≤ 13−t), P ≤ yl < 2P (1 ≤ l ≤ t).

Thus, in view of the identity (1.1), together with the definition of the sets
Mη(X) from §2, it follows that whenever R′(N) > 0, then N can be written
as a sum of nineteen biquadrates.

We next recall the definitions of Sε(α), Fη(α), U, M and m (see, especially,
equations (2.1), (2.2) and (2.6)). Also, when L ⊆ U, we define R′(N ; L) by

R′(N ; L) =

∫

L

Fη(α)2S0(α)13−tS1(α)te(−Nα)dα,

so that
R′(N) = R′(N ; U) = R′(N ; M) + R′(N ; m). (12.4)

One may estimate R′(N ; M) in a straightforward manner by following
the treatment that we applied in the proof of Lemma 2.1. We first estimate
the integral

Φ′(n; t) =

∫

M

S0(α)13−tS1(α)te(−nα)dα

for natural numbers n with N−4P 4 ≤ n ≤ N and n ≡ t (mod 16). Recalling
the notation adopted in the proof of Lemma 7.2, we write

Φ′
1(n; t) =

∑

q≤P 1/2

q∑
a=1

(a,q)=1

∫

|β|≤975(qP 3)−1

T 13−t
0 T t

1e(−(a/q + β)n)dβ,

Φ′
1,1 =

∑

q≤P 1/2

q∑
a=1

(a,q)=1

∫ ∞

0

|T0|12Udβ, Φ′
1,2 =

975

P 3

∑

q≤P 1/2

U13.

Then, on imitating the derivation of the estimate (7.3), we find that

|Φ′(n; t)− Φ′
1(n; t)| ≤ 214(Φ′

1,1 + Φ′
1,2). (12.5)

In order to estimate Φ′
1,1, we define

V ′(q) =

q∑
a=1

(a,q)=1

|q−1G0(q, a)|12 and W ′(p) =
∞∑

l=0

pl/4V ′(pl),
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and observe that V ′(q) is multiplicative. From (7.6) it follows that

∫ ∞

0

|I(β)|12dβ ≤ 3

11π
(2P0)

8,

and thus one obtains the upper bound

Φ′
1,1 ≤

3

11π
(2P0)

8 × 3× 106 × 2−12P 1/2
∑

q≤P 1/2

q1/4V ′(q)

< 16278P 8.5
0

∏
p

W ′(p). (12.6)

An application of Lemma 5.2 demonstrates, via a direct computation,
that

W ′(2) ≤ 1 +
4∑

l=1

25l/4−1 +
∞∑

u=1

4∑
v=1

25(4u+v)/4−1κ(24u+v)12

= 1 +
4∑

l=1

25l/4−1 +
∞∑

u=1

2−7u−1

4∑
v=1

25v/4c(2v)12

< 522. (12.7)

For odd primes p, one deduces from (5.3), (5.8) and Lemmata 5.2 and 5.3
that for u ≥ 0, one has

V ′(p4u+1) = p−8u−12

p−1∑
a=1

|S(p, a)|12

≤ p−8u−12(pκ(p))10

p−1∑
a=1

|S(p, a)|2

= bpp
−8u−1(p− 1)κ(p)10.

Also, for u ≥ 0 and 2 ≤ v ≤ 4, it follows from Lemma 5.2 together with (5.6)
that

V ′(p4u+v) ≤ p−8u+v−13(p− 1).
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Consequently, we obtain

W ′(p) ≤ 1 + (p− 1)
∞∑

u=0

(
bpp

−7u−3/4κ(p)10 +
4∑

v=2

p−7u+5v/4−13
)

= 1 +
p− 1

1− p−7

(
bpκ(p)10p−3/4 + p−13(p5/2 + p15/4 + p5)

)

< 1 + bpκ(p)10p1/4 + 3p−7.

A direct computation now reveals that

W ′(3) < 1.00679 and
∏
p≤73

p≡1 (mod 4)

W ′(p) < 2.513.

Similarly, on recalling Lemma 5.4, one finds that

∏
p≥7

p≡3 (mod 4)

W ′(p) < exp

( ∑
p≥7

p≡3 (mod 4)

(p−19/4 + 3p−7)

)
< 1.00126

and

∏
p≥89

p≡1 (mod 4)

W ′(p) < exp

( ∑
p≥89

p≡1 (mod 4)

(311p−19/4 + 3p−7)

)
< 1.00069.

Combining these estimates with the upper bounds (12.6) and (12.7), we
conclude that

Φ′
1,1 < 2.155× 107P 8.5

0 . (12.8)

Turning next to the estimation of Φ′
1,2, we find by a simple calculation

that

Φ′
1,2 = 975× 313 × 1078P 7/2

∑

q≤P 1/2

q13/4

≤ 975× 313 × 1078P 45/8. (12.9)

Thus it follows from (12.5), (12.8) and (12.9) that whenever P ≥ 1035, one
has

|Φ′(n; t)− Φ′
1(n; t)| < 1.2× 10−6P 9. (12.10)
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We next define

Φ′
2(n; t) =

∑

q≤P 1/2

q∑
a=1

(a,q)=1

∫ ∞

−∞
T 13−t

0 T t
1e(−(a/q + β)n)dβ.

By (7.6) and the trivial bound |Gε(q, a)| ≤ q, one easily obtains the estimate

|Φ′
1(n; t)− Φ′

2(n; t)| ≤
∑

q≤P 1/2

q∑
a=1

2

∫ ∞

975(qP 3)−1

2−13|I(β)|13dβ

< P 4. (12.11)

Meanwhile, on writing

A′(q, n; t) = q−13

q∑
a=1

(a,q)=1

G0(q, a)13−tG1(q, a)te(−an/q)

and
S′(n,Q; t) =

∑
q≤Q

A′(q, n; t),

a suitable change of variables leads from (7.5) and (4.2) to the conclusion

Φ′
2(n; t) = S′(n, P 1/2; t)K13(n/(16P 4

0 ))P 9
0 /16. (12.12)

By Lemma 5.2 together with (5.7), one has the bound

|A′(q, n; t)| ≤ q−12(qκ(q))13 < 913q−9/4,

and this assures the absolute convergence of the infinite series S′(n; t) defined
by

S′(n; t) =
∞∑

q=1

A′(q, n; t).

Furthermore, when P ≥ 1035, we obtain the estimate

|S′(n; t)−S′(n, P 1/2; t)| ≤ 913

∫ ∞

P 1/2−1

z−9/4dz < 10−8. (12.13)
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A lower bound for S′(n; t) can be established by the methods described
in §6. We define

B′(p, n; t) =
∞∑

l=0

A′(pl, n; t),

and note that S′(n; t) may be written as the infinite product

S′(n; t) =
∏

p

B′(p, n; t).

One may estimate B′(p, n; t) by considering the number of solutions of an
associated congruence. Thus, arguing as in the derivation of (6.6) above, it
is swiftly confirmed that when n ≡ t (mod 16), one has

B′(2, n; t) =
4∑

l=0

A′(2l, n; t) = 16. (12.14)

Also, the argument leading to (6.9) shows that for p = 3 and 5,

B′(p, n; t) ≥ p−12 min
0≤r≤p−1

{ ∑
1≤s≤13

s≡r (mod p)

(
13

s

)
(p− 1)s

}
,

from which one derives the lower bounds

B′(3, n; t) ≥ 728

729
and B′(5, n; t) ≥ 1211776

1953125
. (12.15)

Moreover, by following the argument of the proof of (6.17), one deduces from
Lemmata 5.2 and 5.3 that for odd primes p, one has

B′(p, n; t) ≥ 1− bp(1− p−1)κ(p)11 − p−12.

Using the last inequality, a modicum of computation confirms that
∏

13≤p≤73
p≡1 (mod 4)

B′(p, n; t) > 0.9732, (12.16)

and, with the aid of Lemma 5.4, one obtains the additional lower bounds
∏
p≥7

p≡3 (mod 4)

B′(p, n; t) >
∏
p≥7

p≡3 (mod 4)

exp(−p−11/2) > 0.9996, (12.17)
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and

∏
p≥89

p≡1 (mod 4)

B′(p, n; t) >
∏
p≥89

p≡1 (mod 4)

exp(−312p−11/2) > 0.9999. (12.18)

Therefore, on combining (12.14)–(12.18), we deduce that when n ≡ t (mod 16),
one has

S′(n; t) =
∏

p

B′(p, n; t) > 9.6427. (12.19)

Our forces are now poised for victory in this first substantial phase of our
argument. Collecting together (12.2), (12.10)–(12.13), (12.19), and recalling
(2.10), we conclude at this point that when

N − 4P 4 ≤ n ≤ N, n ≡ t (mod 16) and P ≥ 1035,

one has

Φ′(n; t) ≥ (9.6427− 10−8)× 0.0065865P 9
0 /16− P 4 − 1.2× 10−6P 9

> 0.003968P 9. (12.20)

The lower bound (12.20) provides a major arc estimate for an auxiliary
problem involving only 13 biquadrates. We now apply this bound to obtain a
lower bound for the major arc contribution R′(N ; M) relevant to the problem
central to this section. Observe that

R′(N ; M) =
∑

m1,m2∈Mη(P 2)

Φ′(N − 2m2
1 − 2m2

2; t).

When m1, m2 ∈Mη(P
2), it follows from (2.3) and (12.3) that

N − 2m2
1 − 2m2

2 ≡ t (mod 16),

and it is also apparent that

N − 4P 2 ≤ N − 2m2
1 − 2m2

2 ≤ N.

Hence, on recalling the notation introduced in (2.13), we deduce from (12.20)
that whenever P ≥ 1035, one has

R′(N ; M) > 0.003968M2
η P 9. (12.21)
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It remains for us to estimate the minor arc contribution R′(N ; m). On
writing

S(α) = max{|S0(α)|, |S1(α)|},
we find that

R′(N ; m) ≤ (
sup
α∈m

S(α)
)9

∫ 1

0

|Fη(α)2Sε(α)4|dα,

where ε is 0 or 1 according to whether 1 ≤ t ≤ 3 or 4 ≤ t ≤ 12. Following
the argument leading to (2.14), but assuming now that P ≥ 1035, we deduce
from Lemmata 2.2 and 2.4 that

∫ 1

0

|Fη(α)2Sε(α)4|dα < 61290M2
η (log P )9/2.

Thus, on applying also Lemma 2.3, we conclude that for P ≥ 1035 one has

|R′(N ; m)| < 779 × 61290M2
η P 7.956(log P )6.75. (12.22)

We return at last to (12.4), now combining (12.21) and (12.22) to deduce
that for P ≥ 1035 one has

R′(N) ≥ R′(N ; M)− |R′(N ; m)| > 0.003968M2
η P 9(1− E ′),

where
E ′ = 1.47× 1024P−1.044(log P )6.75.

A modest calculation reveals that E ′ < 1 whenever P ≥ 3.28 × 1035, and
also, by (2.10) and (12.1), this condition on P is satisfied whenever N ≥ N1,
where

N1 = 16ν(3.28× 1035 + 1)4 < 2× 10145.

We therefore conclude that R′(N) > 0 whenever N ≥ 2 × 10145, and this
suffices to establish the theorem.

Equipped with the conclusion of Theorem 3, all that remains to confirm
that g(4) = 19 is to check that every natural number not exceeding 10146 is
a B19 (the reader may wish to recall our convention concerning the notation
Bs described following the statement of Theorem 1). Although such a check
is executed in the work of Deshouillers and Dress [10], we nonetheless present
an account here in order to more clearly describe the extent to which heavy
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computations are required to establish that g(4) = 19. It transpires that the
conclusions recorded in the next lemma are sufficient for our purposes, and
one may check all of the conclusions of this lemma within a couple of hours
on even a modest personal computer.

To facilitate our subsequent discussion, we define the set R(q; a) for in-
tegers q and a by

R(q; a) = {m ∈ Z : m ≥ 0, m ≡ a (mod q)},

and, for ε = 0 or 1, we define the set Qε by

Qε = {m ∈ Z : m ≥ 0, m ≡ ε (mod 2), 5 - m}.

Thus we have
Qε = R(2; ε) \ R(5; 0),

and it follows, in particular, that whenever m ∈ Qε for ε = 0, 1, one has

m4 ∈ R(16; ε) and m4 ∈ R(5; 1). (12.23)

Lemma 12.1. One has the following conclusions:

(i) Every natural number not exceeding 13792 is a B19, and every integer
in the interval [13793, 50000] is a B16;

(ii) Let A denote the set of B2 numbers in R(80; 17) ∩ [0, 6004] defined by

A = {a4 + b4 : a ∈ Q0, b ∈ Q1} ∩ [0, 6004],

and suppose that A = {a1, a2, · · · }, where a1 < a2 < · · · . Then one has
a1 = 17, a53401 = 129598530097, and moreover aj+1 − aj ≤ 40587360
for 1 ≤ j ≤ 53400;

(iii) Every integer in [1143331, 704 + 714] ∩R(80; 51) is a B6.

Proof. The authors confirmed this lemma by using the software package
Mathematica on a standard computer with 32MB of RAM and CPU speed
150MHz. Making use of unsophisticated programs, parts (i) and (ii) of the
lemma were verified within twenty minutes, and two minutes, respectively.
Part (iii) of the lemma is the most difficult to verify, and for this we proceed
as follows.
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Let B denote the set of B5 numbers in [0, 704] that are of the form
b4
1 + · · ·+ b4

5, with b1, b2, b3 ∈ Q0 and b4, b5 ∈ Q1. Note that B ⊂ R(80; 50),
and put

C = [0, 704] ∩ (R(80; 50) \ B)
.

A simple computer program may be used to determine all of the elements of
C, and indeed the machine applied by the authors required fifty minutes to
complete this task (we remark that card(C) = 19687).

Next, when D is a finite subset of Q1, we define

C(D) =
⋂

d∈D
{c + d4 : c ∈ C}

and

I(D) =
(⋂

d∈D
[d4, 704 + d4]

)
∩R(80; 51).

Whenever m ∈ I(D) and d ∈ D ⊂ Q1, it follows from (12.23) that the integer
m−d4 belongs to the set [0, 704]∩R(80; 50). Consequently, one finds that if
m ∈ I(D) and m 6∈ C(D), then for some b ∈ B and d ∈ D one has m−d4 = b,
whence m = b + d4 is a B6. We next define the sets

D1 = [1, 31] ∩Q1, D2 = [37, 49] ∩Q1, D3 = [59, 71] ∩Q1,

D4 = [63, 77] ∩Q1, D5 = [67, 79] ∩Q1, D6 = [71, 81] ∩Q1.

A straightforward computational check confirms that C(D1) = {1143251},
and also that C(Dj) is empty for each j with 2 ≤ j ≤ 6. This task ex-
pended only a few minutes work on the computer employed by the authors.
Accordingly, we recognise that if

m ∈
6⋃

j=1

I(Dj) = [314, 704 + 714] ∩R(80; 51)

and m > 1143251, then m is a B6. This completes our account of part (iii)
of the lemma.

Our commitment of computational time at this point amounts to less
than 90 minutes. We next employ Lemma 12.1 within the ascent arguments
of Deshouillers and Dress [10], though we incorporate several minor modifi-
cations. We begin by extracting the following conclusion from Lemma 12.1
(ii) and (iii).
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Lemma 12.2. Every integer in [1143348, 1.2964× 1011]∩R(80; 68) is a B8.

Proof. Recalling the integers aj introduced in the statement of Lemma 12.1
(ii), it follows from Lemma 12.1 (iii) that for each index j, every integer in

[1143331 + aj, 704 + 714 + aj] ∩R(80; 68)

is a B8. But from Lemma 12.1 (ii), one finds that whenever 1 ≤ j ≤ 53400,
one has

704 + 714 + aj ≥ 704 + 714 − 40587360 + aj+1 > 1143331 + aj+1,

whence

53401⋃
j=1

[1143331 + aj, 704 + 714 + aj] = [1143348, 704 + 714 + a53401].

The lemma follows immediately on noting that 704 +714 + a53401 > 1.2964×
1011.

Other ascent procedures are based on a simple fact that we record as the
following lemma.

Lemma 12.3. Let h be a natural number, and let x and y be real numbers
with y ≥ 2h4. Suppose that H is a set of non-negative integers satisfying the
property that amongst any h consecutive non-negative integers, at least one
belongs to H. Then whenever

n ∈ [x + (h− 1)4, x + h4 + (y/(4h))4/3],

there exists an integer m ∈ H such that n−m4 ∈ [x, x + y].

Proof. Put yh = (y/(4h))1/3, and write H ∩ [0, yh] = {h0, h1, · · · , hk} with
h0 < h1 < · · · < hk. By assumption, we have

0 ≤ h0 ≤ h− 1 and yh − h ≤ hk ≤ yh, (12.24)

and, moreover, whenever 1 ≤ j ≤ k, one has

(n− h4
j−1)− (n− h4

j) = h4
j − h4

j−1 ≤ h4
j − (hj − h)4 ≤ 4hh3

j ≤ 4hy3
h = y.
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Thus, if n−h4
0 ≥ x and n−h4

k ≤ x+y, then there is an index j with 0 ≤ j ≤ k
such that n − h4

j ∈ [x, x + y]. But by (12.24) we have h4
0 ≤ (h − 1)4, and

provided that yh ≥ 2h/3, or equivalently y ≥ (32/27)h4, one has

y + h4
k ≥ y + (yh − h)4 = y4

h + 6h2y2
h − 4h3yh + h4 ≥ y4

h + h4.

We therefore see that

[x + h4
0, x + y + h4

k] ⊃ [x + (h− 1)4, x + h4 + y4
h],

and the conclusion of the lemma now follows.

Lemma 12.4. Let x and y be real numbers satisfying x ≥ 0 and y ≥ 20000,
let k and l be integers, and let s be an integer exceeding 1. Then the following
conclusions hold.

(i) Suppose that every integer in [x, x + y] is a Bs. Then every integer in
[x, x + (y/4)4/3] is a Bs+1.

(ii) Suppose that every integer in [x, x + y]∩R(16; k) is a Bs. Then every
integer in

[x + 1, x + 1 + (y/8)4/3] ∩ (R(16; k) ∪R(16; k + 1)
)

is a Bs+1.

(iii) Suppose that every integer in [x, x + y] ∩ R(16; k) ∩ R(5; l) is a Bs.
Then every integer in

[x + 81, x + 81 + (y/16)4/3] ∩ (R(16; k) ∪R(16; k + 1)
) ∩R(5; l + 1)

is a Bs+1.

(iv) Under the same hypotheses as in case (iii), every integer in

[x + 6561, x + 6561 + (y/40)4/3] ∩ (R(16; k) ∪R(16; k + 1)
)

∩ (R(5; l) ∪R(5; l + 1)
)

is a Bs+1.
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Proof. By applying Lemma 12.3 with H = R(1; 0) and h = 1, we find that
whenever n ∈ [x, x + (y/4)4/3], there exists a non-negative integer m for
which n−m4 ∈ [x, x + y]. The conclusion of part (i) follows immediately.

Next, by applying Lemma 12.3 with H = R(2; ε) and h = 2, and recalling
(5.11), we see that whenever

n ∈ [x + 1, x + 1 + (y/8)4/3] ∩R(16; k + ε)

with ε = 0 or 1, there exists m ∈ R(2; ε) such that

n−m4 ∈ [x, x + y] ∩R(16; k).

This establishes part (ii) of the lemma.
By applying Lemma 12.3 with H = Qε and h = 4, meanwhile, and

recalling (12.23), we deduce that whenever

n ∈ [x + 81, x + 81 + (y/16)4/3] ∩R(16; k + ε) ∩R(5; l + 1),

with ε = 0 or 1, there exists m ∈ Qε such that

n−m4 ∈ [x, x + y] ∩R(16; k) ∩R(5; l).

Part (iii) of the lemma follows immediately.
Finally, we consider part (iv) of the lemma, and assume the hypotheses

of case (iii). On noting that the conclusion of part (iv) is contained, in part,
in case (iii) of the lemma, we see that it suffices to show that whenever

n ∈ [x + 6561, x + 6561 + (y/40)4/3] ∩R(16; k + ε) ∩R(5, l),

with ε = 0 or 1, then n is a Bs+1. But for such an integer n, on applying
Lemma 12.3 with H = R(2; ε) ∩ R(5; 0) and h = 10, and observing that
m4 ∈ R(16; ε) ∩ R(5; 0) whenever m ∈ R(2; ε) ∩ R(5; 0), we deduce that
there exists an integer m ∈ R(2; ε) ∩R(5; 0) such that

n−m4 ∈ [x, x + y] ∩R(16; ε) ∩R(5; l).

The conclusion of part (iv) now follows.

We require one further ascent method that is a variant of the “U -type
ascent” of Deshouillers and Dress [10]. This ascent gear makes fundamental
use of the conclusion of the following lemma.
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Lemma 12.5. Let n ∈ R(16; 1), and write

T = {r ∈ Z : r ≡ k (mod 16) for some k with 4 ≤ k ≤ 12}. (12.25)

Then any set of five consecutive odd integers contains an element m satisfying
the property that (n−m4)/16 ∈ T .

Proof. Observe first that whenever a and b are integers satisfying a− b ≡ ±7
(mod 16), then either a or b belongs to T . Next define the polynomial fn(l)
by

fn(l) = (n− (2l + 1)4)/16

= −l4 − 2l3 − 1
2
l(3l + 1) + 1

16
(n− 1).

Then the conclusion of the lemma follows on proving that for any set L of
five consecutive integers, there exists an l ∈ L such that fn(l) ∈ T . But on
observing that

fn(a + 2)− fn(a) ≡ 8a3 + 12a2 + 2a− 7 (mod 16),

one readily verifies that

when u ≡ 0 (mod 4), one has fn(2u + 2)− fn(2u) ≡ −7 (mod 16),
(12.26)

when u ≡ 1 (mod 4), one has fn(2u)− fn(2u− 2) ≡ −7 (mod 16),
(12.27)

when u ≡ 2 (mod 4), one has fn(2u + 3)− fn(2u + 1) ≡ 7 (mod 16),
(12.28)

when u ≡ 3 (mod 4), one has fn(2u + 1)− fn(2u− 1) ≡ 7 (mod 16).
(12.29)

Similarly, on noting that

fn(a + 1)− fn(a) ≡ 12a3 + 4a2 + 3a + 11 (mod 16),
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one sees that

when u ≡ 2 (mod 8), one has fn(2u + 1)− fn(2u) ≡ 7 (mod 16), (12.30)

when u ≡ 6 (mod 8), one has fn(2u− 1)− fn(2u− 2) ≡ −7 (mod 16),
(12.31)

when u ≡ 1 (mod 8), one has fn(2u + 3)− fn(2u + 2) ≡ 7 (mod 16),
(12.32)

when u ≡ 5 (mod 8), one has fn(2u + 1)− fn(2u) ≡ −7 (mod 16).
(12.33)

When L is a set of five consecutive integers, it takes the shape {2u −
2, 2u − 1, . . . , 2u + 2}, or else {2u − 1, 2u, . . . , 2u + 3}. Thus, in view of
the opening observation of this proof, the required conclusion follows in the
former case from (12.26), (12.27) and (12.29)–(12.31), and in the latter case
from (12.26), (12.28), (12.29), (12.32) and (12.33). In any case, therefore,
the proof of the lemma is complete.

Lemma 12.6. Let x and y be real numbers with x ≥ 0 and y ≥ 20000, and
let T be the set defined in (12.25). Suppose that every integer in the set
[x, x + y] ∩ T is a Bs. Then every integer in

[16x + 6561, 16x + 6561 + (2y/5)4/3] ∩R(16; 1)

is a Bs+1.

Proof. When

n ∈ [16x + 6561, 16x + 6561 + (2y/5)4/3] ∩R(16; 1),

we denote by Hn the set of all positive odd integers m satisfying the property
that (n − m4)/16 ∈ T . Then by virtue of Lemma 12.5, we may apply
Lemma 12.3 with H = Hn and h = 10 to infer that there exists an m ∈ Hn

satisfying n−m4 ∈ [16x, 16(x+y)]. Fixing any such choice of m, and writing
n′ = (n−m4)/16, we therefore find that n′ ∈ [x, x + y] ∩ T . But then n′ is
a Bs, by assumption, and so we may conclude that n = m4 + 24n′ is a Bs+1.

Having equipped ourselves with the necessary ascent tools, we are able
to derive a result concerning the representation of small integers that, in
combination with Theorem 3, suffices to complete the proof of the desired
conclusion that g(4) = 19.
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Theorem 4. Every natural number not exceeding 10147 is a B19.

Proof. When h is a natural number, we define φh(y) = (y/(4h))4/3. Also, for
a function φ(y), we adopt the convention of writing φ1(y) = φ(y), and define
φj(y) for j ≥ 2 by putting φj(y) = φ(φj−1(y)). Finally, it is convenient to
write

x0 = 1143348 and y0 = 6004.

We observe first that Lemma 12.2 asserts that every integer in

[x0, x0 + y0] ∩R(16; 4) ∩R(5; 3)

is a B8. Starting from this observation, we apply Lemma 12.4 (iii) four times
in succession, and then we apply Lemma 12.4 (iv) four times in succession.
In this way we find that every integer in

[x0 + 4(81 + 6561), x0 + 4(81 + 6561) + φ4
10(φ

4
4(y0))] ∩ T

is a B16, where T is the set defined in (12.25). It therefore follows via three
successive applications of Lemma 12.4 (ii) that every integer in

[
x0 + 26571, x0 + 26571 + φ3

2

(
φ4

10(φ
4
4(y0))

)] ∩
(

15⋃

k=4

R(16; k)

)

is a B19. Meanwhile, one may deduce from Lemma 12.6 that every integer in

[
16x0 + 431649, 16x0 + 431649 + φ10

(
16φ4

10(φ
4
4(y0))

)] ∩R(16; 1)

is a B17, whence by applying Lemma 12.4 (ii) twice, we find that every integer
in

[
16x0 + 431651, 16x0 + 431651 + φ2

2

(
φ10

(
16φ4

10(φ
4
4(y0))

))] ∩
(

3⋃

k=1

R(16; k)

)

is a B19. Since a modicum of computation provides the estimates

φ3
2

(
φ4

10(φ
4
4(y0))

)
> 2× 10147, φ2

2

(
φ10

(
16φ4

10(φ
4
4(y0))

))
> 3× 10148,

and 16x0 + 431651 < 2× 107, we may conclude thus far that every integer in
the set [2× 107, 10147] \ R(16; 0) is a B19.

126



On the other hand, since φ3
1(50000− 13793) > 3× 107, we find from the

second conclusion of Lemma 12.1 (i), via three applications of Lemma 12.4
(i), that every integer in [13793, 3× 107] is a B19. Combining this conclusion
with that of the previous paragraph and the first assertion of Lemma 12.1
(i), we at last conclude that every integer in [1, 10147]\R(16; 0) is a B19. But
if n is a B19, then so is 16νn for each natural number ν. Then every integer
in [1, 10147] is a B19, and this completes the proof of the theorem.
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Statistique Mathématique et Applications,
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