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Abstract. We provide estimates for sth moments of biquadratic smooth
Weyl sums, when 10 6 s 6 12, by enhancing the second author’s iterative
method that delivers estimates beyond the classical convexity barrier. As a
consequence, all sufficiently large integers n satisfying n ≡ r (mod 16), with
1 6 r 6 12, can be written as a sum of 12 biquadrates of smooth numbers.

1. Introduction

Our focus in this memoir lies on the moments of quartic smooth Weyl sums

g(α;P,R) =
∑

x∈A(P,R)

e(αx4),

where e(z) = e2πiz and A(P,R) denotes the set of numbers n ∈ [1, P ], all of
whose prime divisors are at most R. In this paper, we refer to the number
∆t as an admissible exponent for the positive real number t if there exists a
positive number η such that, whenever 1 6 R 6 P η, one has∫ 1

0

|g(α;P,R)|t dα� P t−4+∆t .

Recent work [5, Theorem 1.3] of the authors shows that ∆10 = 0.1991466 is
an admissible exponent. It is implicit in work of Vaughan [10, Lemma 5.2],
moreover, that the exponent ∆12 = 0 is admissible. Hitherto, the sharpest
upper bounds available for admissible exponents ∆t in the range 10 6 t 6 12
stem from linear interpolation, via Hölder’s inequality, between the 10th and
12th moments. Our principal goal in this paper is to derive estimates going
beyond this classical convexity barrier. In particular, we seek to establish the
existence of a number t0, with t0 < 12, having the property that the exponent
∆t0 = 0 is admissible. It transpires that the existence of such a number t0 has
attractive consequences for additive problems involving biquadrates.

A complete description of our new admissible exponents would be cumber-
some to report at this stage, so we defer a full account to §§4 and 5. An
indication of the kind of results available is provided in the following theorem.

Theorem 1.1. The exponents ∆t presented in Table 1 are all admissible.
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t 10.00 11.00 11.50 11.75 11.96 12.00
∆t 0.1991466 0.0806719 0.0323341 0.0128731 0.0000000 0.0000000

Table 1. Admissible exponents for 10 6 t 6 12.

The exponents in Table 1 are all rounded up in the final decimal place
presented. A more precise determination of the number t0 to which we alluded
above is given in our second theorem.

Theorem 1.2. Whenever t > 11.95597, the exponent ∆t = 0 is admissible.
Thus, there exists a positive number η such that, when 1 6 R 6 P η, one has∫ 1

0

|g(α;P,R)|t dα� P t−4. (1.1)

The upper bound (1.1) presented in Theorem 1.2 is the first established
in which a moment of a biquadratic smooth Weyl sum beyond the 4th but
smaller than the 12th has the conjectured order of magnitude. As experts
will recognise, such a mean value offers the prospect of establishing results
of Waring-type concerning sums of 12 or more smooth biquadrates. In this
context, we shall refer to a positive integer n as being R-smooth when all of
its prime divisors are no larger than R. We record the following consequence
of Theorem 1.2.

Corollary 1.3. There exists a positive number κ having the property that every
sufficiently large integer n satisfying n ≡ r (mod 16), with 1 6 r 6 12, can be
written as the sum of 12 biquadrates of (log n)κ-smooth integers.

Recall that, since for all integers m one has m4 ∈ {0, 1} (mod 16), then
whenever n is the sum of 12 biquadrates, it follows that n ≡ r (mod 16) for
some integer r with 0 6 r 6 12. Moreover, the integer 31 · 16s (s > 0) is never
the sum of 12 biquadrates. The condition on r in Corollary 1.3 is therefore
implied by local solubility considerations.

An earlier conclusion of Harcos [8] delivers a conclusion similar to that of
Corollary 1.3 for sums of 17 biquadrates, though with smoothness parameter
(log n)κ replaced by exp

(
c(log n log log n)1/2

)
, for a suitable positive constant

c. By adapting the treatment of [3, §5], concerning Waring’s problem for
cubes of smooth numbers, to the present setting, it would be routine using
Theorem 1.2 to establish a version of Corollary 1.3 for sums of 12 biquadrates
of exp

(
c(log n log log n)1/2

)
-smooth integers. The reduction of the smoothness

parameter to (log n)κ is made possible by recent work of Drappeau and Shao
[7]. Once equipped with the estimate (1.1), the details of the proof of Corollary
1.3 are a routine, though not especially brief, modification of the argument of
[7]. Since this is hardly the main point of the present memoir, we eschew any
account of the proof of Corollary 1.3, leaving the reader to follow the pedestrian
walkway already provided in [7].
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A second application of Theorem 1.2 concerns the solubility of pairs of di-
agonal quartic equations of the shape

a1x
4
1 + . . .+ asx

4
s = 0

b1x
4
1 + . . .+ bsx

4
s = 0,

wherein ai, bi ∈ Z are fixed with (ai, bi) 6= (0, 0) for 1 6 i 6 s. Suppose that
s > 22 and that in any diagonal quartic form lying in the pencil of the two
forms defining these equations, there are at least 12 variables having non-zero
coefficients. The authors show in [6] that, provided this system has non-
singular real and p-adic solutions for each prime number p, then it possesses
N (P )� P s−8 integral solutions x with |xi| 6 P (1 6 i 6 s). This conclusion
improves on an earlier one [4] of the authors in which the condition on the pencil
insists that at least s − 7 variables have non-zero coefficients. An important
ingredient in the proof of this new result is an optimal upper bound of the
shape (1.1) for some t < 12, as provided by Theorem 1.2.

We establish Theorems 1.1 and 1.2 by applying estimates for the mean values

Us(P,R) =

∫ 1

0

|g(α;P,R)|s dα, (1.2)

with various values of s ∈ [4, 12]. Seminal work of Vaughan [10, Theorem
4.3] derives useful admissible exponents when s ∈ {6, 8, 10} and shows also,
implicitly, that the exponent ∆12 = 0 is admissible. Following some refinement
in these exponents in subsequent work of Vaughan [11, Theorem 1.3], the
second author introduced a new approach [13] in which moments of fractional
order can be estimated in a manner more efficient than mere application of
Hölder’s inequality to interpolate between admissible exponents available for
even values of s. This tool was fully exploited in work [2, Theorem 2 and
page 393] of the authors. Despite recent progress on the 10th moment (see
[5, Theorem 1.3]), the sharpest upper bounds hitherto available for admissible
exponents ∆s in the range 10 6 s 6 12 stem from linear interpolation, via
Hölder’s inequality, between 10th and 12th moments.

A pedestrian application of the iterative method of [13] would seek to break
the classical convexity barrier, between 10th and 12th moments, by applying
an 8th moment of an auxiliary exponential sum of the shape

F̃1(α) =
∑

u∈A(PφR,R)

u>Pφ

∑
z1,z2∈A(P,R)
z1≡z2 (mod u4)

z1 6=z2

e
(
αu−4(z4

1 − z4
2)
)
. (1.3)

Here, the parameter φ is chosen appropriately in the range 0 6 φ 6 1/4. It
transpires that this approach bounds the mean value Us(P,R) defined in (1.2)
in terms of corresponding bounds for Us−2(P,R) and Ut(P,R), wherein t is a
parameter to be chosen with 8

7
(s− 2) 6 t 6 4

3
(s− 2). This, it turns out, is too

inefficient to be useful. What makes the exponential sum awkward to handle
is the constraint that z1 and z2 both be smooth. Drawing inspiration from an
argument presented in [14, §§1 and 3], in this paper we estimate the auxiliary
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integral ∫ 1

0

F̃1(α)|g(α;P 1−φ, R)|s−2 dα

in terms of the mediating mean value∫ 1

0

|F̃1(α)2g(α;P 1−φ, R)8| dα. (1.4)

By orthogonality, this mean value counts the number of solutions of an under-
lying Diophantine equation. This observation permits us the expedient step
of discarding the constraint that z1 and z2 be smooth in the exponential sum

F̃1(α) defined in (1.3), and in this way a useful bound may be derived. One
may then introduce the array of tools developed by previous scholars to handle

classical analogues of F̃1(α).

The approach outlined above succeeds in bounding Us(P,R) in terms of

Ut(P,R) and the mean value (1.4), with t = 2s − 12. Since F̃1(α) may be
thought of roughly as having the weight of two smooth Weyl sums, the mean
value (1.4) behaves approximately as a 12-th moment. Yet, with the smooth-
ness constraint discarded, we are able to obtain an optimal upper bound for
this mean value. It is the latter that permits our efficient application of ideas
from the machinery associated with breaking classical convexity. A careful
analysis of these ideas would show, in fact, that admissible exponents ∆12−u
exist satisfying ∆12−u � uβ, for small values of u, wherein

β >
log(38/15)

log 2
= 1.341 . . . .

Since the approach of ∆12−u towards 0 as u → 0 is more rapid than linear
decay, we may apply a Weyl-type estimate to establish the existence of a
positive number u0 for which ∆12−u0 = 0 is admissible. Appeal to the Keil-
Zhao device, just as in [14, §6], delivers the sharpest conclusions presently
available concerning upper bounds for permissible values of u0.

This memoir is organised as follows. We begin in §2 by deriving the auxiliary
mean value estimate associated with (1.4). Then, in §3, we employ this mean
value within the infrastructure permeating the theory of breaking convexity
so as to derive the mean value estimates required in deriving new admissible
exponents. The iterative relations delivering these new exponents are derived
in §4, and numerical values follow. These results establish all of the admissible
exponents asserted in Theorem 1.1 save for the claim that ∆11.96 = 0. In
§5 we discuss the Keil-Zhao device and its implications for mean values of
biquadratic smooth Weyl sums. The final assertion of Theorem 1.1 follows, as
does its more precise analogue recorded in Theorem 1.2.

In this paper, we adopt the convention that whenever ε, P or R appear in
a statement, either implicitly or explicitly, then for each ε > 0, there exists a
positive number η = η(ε) such that the statement holds whenever R 6 P η and
P is sufficiently large in terms of ε and η. Implicit constants in Vinogradov’s
notation� and� will depend at most on ε and η. Since our iterative methods
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involve only a finite number of statements (depending at most on ε), there is
no danger of losing control of implicit constants. Finally, we write ‖θ‖ =
miny∈Z |θ − y|.
Acknowledgements: The authors acknowledge support by Akademie der
Wissenschaften zu Göttingen and Deutsche Forschungsgemeinschaft Project
Number 255083470. The second author’s work is supported by the NSF grants
DMS-1854398 and DMS-2001549.

2. The auxiliary mean value estimate

We begin by recalling some upper bounds on admissible exponents.

Lemma 2.1. The exponents

∆8 = 0.594193, ∆10 = 0.1991466 and ∆12 = 0

are admissible.

Proof. The conclusion concerning ∆8 follows from [2, Theorem 2] and the
discussion surrounding the table of exponents on [2, page 393]. The assertion
concerning ∆10 is established in [5, Theorem 1.3]. Finally, the validity of the
admissible exponent ∆12 = 0 is a consequence of [10, Lemma 5.2]. �

In advance of the introduction of the mean value estimate central to our
subsequent deliberations, we must introduce some notation. Let φ be a real
number with 0 6 φ 6 1/4, and write

M = P φ, H = PM−4 and Q = PM−1. (2.1)

We define the difference polynomial

Ψ(z, h,m) = m−4
(
(z + hm4)4 − (z − hm4)4

)
= 8hz(z2 + h2m8),

and then introduce the exponential sum having argument Ψ(z, h,m), namely

F1(α) =
∑

16h6H

∑
M<m6MR

∑
16z62P

e
(
8αhz(z2 + h2m8)

)
. (2.2)

It is convenient to work with the exponential sum g[(α) = g(α; 2Q,R).

The remainder of this section is devoted to the estimation of the auxiliary
mean value

T =

∫ 1

0

|F1(α)2g[(α)8| dα. (2.3)

Lemma 2.2. One has

T � P ε(PHM)2Q4
(
1 + (PM−6)1/10

)
.

Proof. We follow closely certain aspects of the argument of the proof of [5,
Lemma 2.4] associated with the corresponding analysis therein of the mean
value defined by [5, equation (2.2)]. In this way, writing B(l) for the set of
all integers z with 1 6 z ± l 6 4P and z ≡ l (mod 2), we find by applying
Cauchy’s inequality that

|F1(α)|2 � P 1+εH2M2 + P εHM (D(α)E(α))1/2 , (2.4)
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in which

D(α) =
∑

16h6H

∑
16l62P

∣∣∣∣∣ ∑
z∈B(l)

e(6αhlz2)

∣∣∣∣∣
2

and

E(α) =
∑

16h6H

∑
16l62P

∣∣∣∣∣ ∑
M<m6MR

e(8αlh3m8)

∣∣∣∣∣
2

.

The trivial estimate E(α)� PH(MR)2 combines with (2.3) and (2.4) to give

T � P 1+εH2M2T1 + P ε(PH3M4)1/2T2, (2.5)

where

T1 =

∫ 1

0

|g[(α)|8 dα and T2 =

∫ 1

0

D(α)1/2|g[(α)|8 dα. (2.6)

We estimate T2 via the Hardy-Littlewood method. Given integers a and q
with 0 6 a 6 q 6 P and (a, q) = 1, let P(q, a) denote the set of all α ∈ [0, 1)
with |qα − a| 6 PQ−4, and let P denote the union of these intervals. Note
that this union is disjoint. Define the function Φ : [0, 1)→ [0, 1] by putting

Φ(α) = (q +Q4|qα− a|)−1,

when α ∈ P(q, a) ⊆ P, and put Φ(α) = 0 when α 6∈ P. Having introduced
essentially the same notation here as that employed in the proof of [5, Lemma
2.4], we find that when α ∈ [0, 1), the proof of [10, Lemma 3.1] shows that

D(α)� P 2+εH + P 3+εHΦ(α).

Write

T3 =

∫
P

Φ(α)1/2|g[(α)|8 dα.

Then we deduce from (2.5) and (2.6) that

T � P 1+εH2M2T1 + P ε(P 3H4M4)1/2T1 + P ε(P 4H4M4)1/2T3,

� P 3/2+εH2M2T1 + P 2+εH2M2T3. (2.7)

We see from Lemma 2.1 that there is an admissible exponent ∆8 smaller
than 3/5, and thus T1 � Q23/5. Consequently, it follows from (2.1) that

P−1/2T1 � P−1/2Q23/5 = Q4(PM−6)1/10. (2.8)

Meanwhile, an application of Schwarz’s inequality reveals that

T3 6

(∫
P

Φ(α)|g[(α)|4 dα

)1/2(∫ 1

0

|g[(α)|12 dα

)1/2

.

It follows from [1, Lemma 2] that∫
P

Φ(α)|g[(α)|4 dα� Qε−4(PQ2 +Q4)� Qε.
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On the other hand, by Lemma 2.1 we have∫ 1

0

|g[(α)|12 dα� Q8.

We thus conclude that

T3 � (Qε)1/2(Q8)1/2 � Q4+ε.

On substituting this estimate together with (2.8) into (2.7), we infer that

T � P ε(PHM)2Q4(PM−6)1/10 + P ε(PHM)2Q4.

This completes the proof of the lemma. �

3. Mean values associated with breaking convexity

The auxiliary mean value T defined in (2.3) captures the essentials of what
is needed in our application of the second author’s work [13] on breaking
convexity, but not the details. We must therefore expend further effort in
order that the intricacies of our full argument be accommodated. We begin
with some additional notation. We define the modified set of smooth numbers
B(L, π,R) for prime numbers π by putting

B(L, π,R) = {n ∈ A(Lπ,R) : n > L, π|n, and π′|n implies that π′ > π}.
In this definition we use π′ to denote a prime number. We note that this
definition corrects the analogous definition in the preamble to [14, equation
(3.1)]. Recalling the notation (2.1), we put

F̃d,e(α; π) =
∑

u∈B(M/d,π,R)

∑
x,y∈A(P/(de),R)

(x,u)=(y,u)=1
x≡y (mod u4)

y<x

e
(
αu−4(x4 − y4)

)
, (3.1)

Fd,e(α) =
∑

16z62P/(de)

∑
16h6Hd3/e

∑
M/d<u6MR/d

e
(
8αhz(z2 + h2u8)

)
(3.2)

and

f̃(α;P,M,R) = max
m>M

∣∣∣∣ ∑
x∈A(P/m,R)

e(αx4)

∣∣∣∣. (3.3)

We note that Fd,e(α) = 0 when e > Hd3. Finally, we put

Υd,e,π(P,R;φ) =

∫ 1

0

|F̃d,e(α; π)2f̃(α;P/(de),M/d, π)8| dα. (3.4)

Our initial step is to bound Υd,e,π(P,R;φ) in terms of a similar mean value

in which Fd,e(α) is substituted for F̃d,e(α; π).

Lemma 3.1. When π 6 R, one has

Υd,e,π(P,R;φ)� P ε

∫ 1

0

|Fd,e(α)2g(α; 2Q/e,R)8| dα.
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Proof. As in a similar treatment offered during the proof of [14, Lemma 3.1],

the maximal property of the sum f̃(α;P/(de),M/d, π) is readily eliminated by
application of a standard argument employing the Dirichlet kernel. Define

DK(θ) =
∑
|m|6K4

e(mθ) and D∗K(θ) = min{2K4 + 1, ‖θ‖−1}.

Then for K > 1 one has the familiar estimate∫ 1

0

D∗K(θ) dθ � log(2K). (3.5)

Recalling (2.1) once more, we see that whenever m > M , one has∑
x∈A(P/m,R)

e(αx4) =

∫ 1

0

g(α + θ;Q,R)DP/m(θ) dθ.

When m > M , we have DP/m(θ) � D∗P/m(θ) 6 D∗Q(θ), and so it follows from

(3.3) that

f̃(α;P/(de),M/d, π)�
∫ 1

0

|g(α + θ;Q/e, π)|D∗Q(θ) dθ. (3.6)

We substitute eight copies of (3.6) into (3.4), deducing that

Υd,e,π(P,R;φ)�
∫ 1

0

∫
[0,1)8
|F̃d,e(α; π)|2

(
8∏
i=1

|g(α + θi;Q/e, π)|D∗Q(θi)

)
dθ dα.

We next put

Ξd,e,π(θ) =

∫ 1

0

|F̃d,e(α; π)2g(α + θ;Q/e, π)8| dα. (3.7)

Then by applying the elementary bound |z1 · · · z8| 6 |z1|8 + . . . + |z8|8, and
invoking symmetry, we discern via (3.5) that

Υd,e,π(P,R;φ)�
(∫ 1

0

Ξd,e,π(θ1)D∗Q(θ1) dθ1

) 8∏
i=2

∫ 1

0

D∗Q(θi) dθi

� Qε

∫ 1

0

Ξd,e,π(θ)D∗Q(θ) dθ. (3.8)

We relate Ξd,e,π(θ) to the number of integral solutions of the equation

u−4
1 (x4

1 − y4
1)− u−4

2 (x4
2 − y4

2) =
4∑
j=1

(w4
2j−1 − w4

2j), (3.9)

wherein, for i = 1 and 2, one has the constraints

ui ∈ B(M/d, π,R), xi, yi ∈ A(P/(de), R),

(xi, ui) = (yi, ui) = 1, xi ≡ yi (mod u4
i ) and yi < xi,
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and in addition wj ∈ A(Q/e, π) (1 6 j 6 8). Indeed, by orthogonality, it
follows from (3.1) and (3.7) that Ξd,e,π(θ) counts the number of these solutions,
with each solution counted with weight

e

(
−θ

4∑
j=1

(w4
2j−1 − w4

2j)

)
.

Since this weight is unimodular, we find that |Ξd,e,π(θ)| is bounded above by
the corresponding unweighted count of solutions, and hence by the number of
integral solutions of the equation (3.9) with the constraints, for i = 1 and 2,

M/d < ui 6MR/d, 1 6 yi < xi 6 P/(de), xi ≡ yi (mod u4
i ),

and in addition wj ∈ A(Q/e,R) (1 6 j 6 8).

Next we substitute zi = xi+yi and hi = (xi−yi)u−4
i (i = 1, 2). Then we see

from the conditions on xi and yi that 1 6 hi 6 (P/(de))(M/d)−4 (i = 1, 2).
Moreover, one has

2xi = zi + hiu
4
i and 2yi = zi − hiu4

i (i = 1, 2).

Then since

u−4
(
(z + hu4)4 − (z − hu4)4

)
= 8hz(z2 + h2u8),

we deduce via (2.1) that |Ξd,e,π(θ)| is bounded above by the number of integral
solutions of the equation

8h1z1(z2
1 + h2

1u
8
1)− 8h2z2(z2

2 + h2
2u

8
2) =

4∑
j=1

(w4
2j−1 − w4

2j),

in which, for i = 1 and 2, one has

M/d < ui 6MR/d, 1 6 zi 6 2P/(de) and 1 6 hi 6 Hd3/e,

and in addition wj ∈ A(2Q/e,R) (1 6 j 6 8).

We may now recall (3.2) and invoke orthogonality to obtain the upper bound

|Ξd,e,π(θ)| 6
∫ 1

0

|Fd,e(α)2g(α; 2Q/e,R)8| dα.

By substituting this upper bound into (3.8) and recalling (3.5), we thus con-
clude that

Υd,e,π(P,R;φ)� Qε

(∫ 1

0

D∗Q(θ) dθ

)∫ 1

0

|Fd,e(α)2g(α; 2Q/e,R)8| dα

� Q2ε

∫ 1

0

|Fd,e(α)2g(α; 2Q/e,R)8| dα.

This completes the proof of the lemma. �

By applying Lemma 3.1, we relate Υd,e,π(P,R;φ) to the mean value T defined
in (2.3), and bounded in Lemma 2.2.
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Lemma 3.2. Suppose that

π 6 R, 1 6 d 6M, 1 6 e 6 min{Q,Hd3} and 1/6 6 φ 6 1/4.

Then

Υd,e,π(P,R;φ)� P ε(PHM)2Q4d5/2e−8.

Proof. On recalling (2.2) and (3.2), we find from Lemma 2.2 that∫ 1

0

|F1,1(α)2g(α; 2Q,R)8| dα� P ε(PHM)2Q4
(
1 + (PM−6)1/10

)
.

We apply this estimate with P/(de) in place of P , and with M/d in place of
M . In alignment with (2.1), we then have also Hd3/e in place of H, and Q/e
in place of Q. The hypotheses of the lemma concerning e and φ ensure that

(M/d)4 (P/(de))−1 = e/(Hd3) 6 1,

whence (M/d)4 6 P/(de), as well as

(P/(de)) (M/d)−6 = (PM−6)d5e−1 6 d5.

Hence we obtain the bound∫ 1

0

|Fd,e(α)2g(α; 2Q/e,R)8| dα� P ε

(
P

de
· Hd

3

e
· M
d

)2(
Q

e

)4 (
1 + (d5)1/10

)
.

This bound applied in concert with Lemma 3.1 delivers the conclusion of the
lemma. �

Finally, we recall an estimate for the mean value

Ũs(P,M,R) =

∫ 1

0

f̃(α;P,M,R)s dα. (3.10)

Lemma 3.3. Suppose that s > 1 and that ∆s is an admissible exponent. Then

whenever P > M and R > 2, one has Ũs(P,M,R)�s (P/M)s−4+∆s+ε.

Proof. This is immediate from [13, Lemma 3.2], on noting the definition of an
admissible exponent ∆s used within this paper. �

4. New admissible exponents for s > 10

The mean value estimates of §§2 and 3 may be converted into admissible
exponents by utilising the machinery of [13, §§2-4]. In this context, we write

Ωd,e,π(P,R;φ) =

∫ 1

0

|F̃d,e(α; π)f̃(α;P/(de),M/d, π)s−2| dα, (4.1)

and then define

Us(P,R) =
∑

16d6D

∑
π6R

∑
16e6Q

d2−s/2es/2−1Ωd,e,π(P,R;φ). (4.2)

The key lemma for our present deliberations is the following.
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Lemma 4.1. Suppose that s > 4 and 0 < φ 6 1/4. Suppose also that ∆s and
∆s−2 are admissible exponents, and put µt = t − 4 + ∆t (t = s − 2, s). Then
whenever 1 6 D 6 P 1/4, one has

Us(P,R)� P µs+εDs/2−µs +MP 1+µs−2+ε + P ( s−3
s−2)µs+εVs(P,R),

where
Vs(P,R) =

(
PM s−2Qµs−2 +M s−3Us(P,R)

)1/(s−2)
.

Proof. On noting the definition of an admissible exponent, the stated conclu-
sion is immediate on substituting the conclusion of [13, Lemma 3.3] into that
of [13, Lemma 2.3]. �

We may now announce our new admissible exponents.

Lemma 4.2. Let u be a real number with 0 6 u 6 2. Suppose that the
exponents ∆10−u and ∆12−2u are both admissible and satisfy

2∆10−u − 4
5
6 ∆12−2u 6 2∆10−u. (4.3)

Put

∆∗12−u =
3∆12−2u

8− 2∆10−u + ∆12−2u

.

Then whenever ∆12−u > ∆∗12−u, the exponent ∆12−u is admissible.

Proof. We initiate our discussion by estimating the mean value Ωd,e,π(P,R;φ).
Here and throughout the proof, we set s = 12− u. Suppose that

d 6M, e 6 Q, π 6 R and 1/6 6 φ 6 1/4.

Then on recalling (3.4) and (3.10), an application of Schwarz’s inequality to
(4.1) reveals that

Ωd,e,π(P,R;φ) 6 (Υd,e,π(P,R;φ))1/2
(
Ũ2s−12(P/(de),M/d, π)

)1/2

. (4.4)

Observe that since 0 6 u 6 2 and ∆12−2u > 0, we have 2u − ∆12−2u 6 4.
Then since 2s−12 = 12−2u, we deduce from Lemmata 3.2 and 3.3 that when
e 6 Hd3, one has

Ωd,e,π(P,R;φ)� P ε
(
(PHM)2Q4d5/2e−8

)1/2 (
(Q/e)8−2u+∆12−2u

)1/2

� P 1+εHMQ6−u+ 1
2

∆12−2ud5/4e−6. (4.5)

When instead e > Hd3, it follows from (3.2) that Fd,e(α) = 0, and hence we
deduce from Lemma 3.1 that Υd,e,π(P,R;φ) = 0. In such circumstances we
infer from (4.4) that Ωd,e,π(P,R;φ) = 0.

Provided that we make a choice of D with D 6 M , it therefore follows by
substituting (4.5) into (4.2) that

Us(P,R)� P 1+εHMQ6−u+ 1
2

∆12−2uΣ0,

where
Σ0 =

∑
16d6D

∑
π6R

∑
16e6min{Q,Hd3}

d
13
4
− s

2 e−1.
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Thus, on recalling our convention concerning ε and R, we deduce that

Us(P,R)� P 1+εHMQ6−u+ 1
2

∆12−2u .

In the notation of Lemma 4.1, we thus obtain the bound

Vs(P,R)s−2 � P εM s−3(Ψ1 + Ψ2),

where

Ψ1 = PMQ6−u+∆10−u and Ψ2 = PHMQ6−u+ 1
2

∆12−2u .

By reference to (2.1), the equation Ψ1 = Ψ2 implicitly determines a linear
equation for φ, namely

1 + φ+ (6− u+ ∆10−u)(1− φ) = 2− 3φ+ (6− u+ 1
2
∆12−2u)(1− φ).

This equation has the solution φ = φ0, where

φ0 =
1 + 1

2
∆12−2u −∆10−u

4 + 1
2
∆12−2u −∆10−u

.

Observe that the hypothesis (4.3) ensures that φ0 6 1/4, and also that

6φ0 − 1 =
5
2
(∆12−2u + 4

5
− 2∆10−u)

18
5

+ 1
2
(∆12−2u + 4

5
− 2∆10−u)

> 0,

whence φ0 > 1/6. This justifies our earlier assumption that 1/6 6 φ 6 1/4.
We define the exponent µs via the relation

µs = µs−2(1− φ0) + 1 + (s− 2)φ0,

and then put ∆∗s = µs + 4− s. Thus we have

∆∗s = ∆s−2(1− φ0) + 4φ0 − 1

=
3∆10−u + 3

2
∆12−2u − 3∆10−u

4 + 1
2
∆12−2u −∆10−u

=
3∆12−2u

8 + ∆12−2u − 2∆10−u
.

Put D = P ω, where ω is any sufficiently small, but fixed, positive number.
Then we may follow the discussion of [13, §4] so as to confirm via Lemma 4.1
that whenever ∆12−2u and ∆10−u are admissible exponents, then one has the
upper bound

Us(P,R)� P µs+ε,

whence ∆s = ∆12−u is also an admissible exponent whenever ∆12−u > ∆∗12−u.
This completes the proof of the lemma. �

Note that in view of Lemma 2.1, it follows by applying linear interpolation
via Hölder’s inequality that when 0 6 u 6 2, one has

∆12−2u 6 ∆10−u 6 2∆10−u 6 ∆12−2u + ∆8 6 ∆12−2u + 3
5
. (4.6)

Hence the hypothesis (4.3) will always be satisfied in the applications to come.
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The conclusion of Lemma 4.2 permits the bulk of Theorem 1.1 to be estab-
lished. Since exponents ∆s admissible throughout the interval 10 6 s 6 12
may be of use in future applications, we provide explicit formulae.

Theorem 4.3. Suppose that 0 6 t 6 1. Then the exponent

∆10+t = 0.1991466− 0.1184747t

is admissible. In particular, the exponent ∆11 = 0.0806719 is admissible.

Proof. Working within the environment (4.6), put

∆∗11 =
3∆10

8− 2∆9 + ∆10

.

Then, by applying Lemma 4.2 with u = 1, we find that when ∆9 and ∆10 are
admissible exponents, then the exponent ∆11 is admissible whenever ∆11 >
∆∗11. By linear interpolation using Schwarz’s inequality, we may assume that
∆9 = 1

2
(∆8 + ∆10) is admissible, and thus

∆∗11 6
3∆10

8−∆8

. (4.7)

But in view of Lemma 2.1, we may suppose that ∆8 = 0.594193 and ∆10 =
0.1991466. Thus we find from (4.7) that ∆∗11 6 0.080671803, and the final
conclusion of the theorem follows.

By linear interpolation using Hölder’s inequality, it follows from this admis-
sible exponent ∆11 that when 0 6 t 6 1, the exponent

∆10+t = (1− t)∆10 + t∆11

is admissible. The first conclusion of the theorem therefore follows with a
modicum of computation. �

It might be thought that for values of t with 0 < t < 1, a more direct
application of Lemma 4.2 would yield admissible exponents superior to those
obtained in Theorem 4.3 via linear interpolation. However, working within the
environment (4.6), put

∆∗10+t =
3∆8+2t

8− 2∆8+t + ∆8+2t

(0 6 t 6 1).

Then an application of Lemma 4.2 with u = 2 − t shows that the exponent
∆10+t is admissible whenever ∆10+t > ∆∗10+t. Here, by linear interpolation
using Hölder’s inequality, we may suppose that

∆8+2t 6 (1− t)∆8 + t∆10 and 2∆8+t 6 ∆8 + ∆8+2t.

Thus we deduce that

∆∗10+t 6
3∆8 − 3t(∆8 −∆10)

8−∆8

< 0.2407002− 0.1600283t.

This estimate is inferior to that of Theorem 4.3 in all cases save t = 1, in which
situation it matches the conclusion of the theorem.
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Theorem 4.4. Suppose that 0 6 t 6 1/2. Then the exponent

∆11+t =
0.0806719− 0.0959852t

1 + 0.0213477t

is admissible. In particular, the exponent ∆11.5 = 0.0323341 is admissible.

Proof. Working within the environment (4.6), put

∆∗11.5 =
3∆11

8 + ∆11 − 2∆9.5

.

By applying Lemma 4.2 with u = 1/2, we find that when ∆9.5 and ∆11 are
admissible exponents, then so too is ∆11.5 whenever ∆11.5 > ∆∗11.5. By linear
interpolation using Schwarz’s inequality, we have ∆9.5 6 1

4
(∆8 + 3∆10), and

thus

∆∗11.5 6
6∆11

16 + 2∆11 −∆8 − 3∆10

.

On making use of the admissible exponents ∆8 = 0.594193, ∆10 = 0.1991466
and ∆11 = 0.0806719 available from Lemma 2.1 and Theorem 4.3, we thus see
that the exponent ∆11.5 = 0.0323341 is admissible.

Put

∆∗11+t =
3∆10+2t

8 + ∆10+2t − 2∆9+t

(0 6 t 6 1/2).

Then, more generally, by applying Lemma 4.2 with u = 1 − t, we find that
the exponent ∆11+t is admissible whenever ∆11+t > ∆∗11+t. Applying linear
interpolation as before, we find that

∆∗11+t 6
(3− 6t)∆10 + 6t∆11

8 + (1− 2t)∆10 + 2t∆11 −∆8(1− t)−∆10(1 + t)

=
3∆10 − 6t(∆10 −∆11)

8−∆8 + (∆8 − 3∆10 + 2∆11)t
. (4.8)

We may suppose that ∆8 = 0.594193, ∆10 = 0.1991466 and ∆11 = 0.0806719,
and thus

3∆10

8−∆8

< 0.0806719,
6(∆10 −∆11)

8−∆8

> 0.0959852

and
∆8 − 3∆10 + 2∆11

8−∆8

> 0.0213477.

Thus we deduce that the upper bound for ∆11+t claimed in the theorem does
indeed follow from (4.8). �

Theorem 4.5. Suppose that 0 6 t 6 1/4. Then the exponent

∆11.5+t =
0.0323341− 0.0769435t

1 + 0.0693668t+ 0.0022534t2

is admissible. In particular, the exponent ∆11.75 = 0.0128731 is admissible.
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Proof. Working within the environment (4.6), put

∆∗11.75 =
3∆11.5

8 + ∆11.5 − 2∆9.75

.

Then, by applying Lemma 4.2 with u = 1/4, we find that when ∆9.75 and ∆11.5

are admissible exponents, then so too is ∆11.75 whenever ∆11.75 > ∆∗11.75. By
linear interpolation, we have ∆9.75 6 1

8
(∆8 + 7∆10), and thus

∆∗11.75 6
12∆11.5

32 + 4∆11.5 −∆8 − 7∆10

.

On making use of the admissible exponents ∆8 = 0.594193, ∆10 = 0.1991466
and ∆11.5 = 0.0323341 made available by Lemma 2.1 and Theorem 4.4, we see
that ∆11.75 6 0.0128731.

Put

∆∗11.5+t =
3∆11+2t

8 + ∆11+2t − 2∆9.5+t

(0 6 t 6 1/4).

Then, more generally, by applying Lemma 4.2 with u = 1
2
− t, we find that

the exponent ∆11.5+t is admissible whenever ∆11.5+t > ∆∗11.5+t. By linear inter-
polation, we have ∆9.5+t 6 1

4
((1− 2t)∆8 + (3 + 2t)∆10). By substituting this

estimate together with that supplied by Theorem 4.4 for ∆11+2t, we obtain the
first conclusion of the theorem following a modicum of computation. �

5. The Keil-Zhao device

We take a simple approach to the application of the Keil-Zhao device (see [15,
equation (3.10)] and [9, page 608]). This permits estimates more or less half the
strength of a corresponding minor arc estimate for a classical Weyl sum, though
applied to smooth Weyl sums. A careful application of the method enables
us to apply major arc estimates in a manner that avoids any consideration of
smooth Weyl sums on minor arcs.

Theorem 5.1. Suppose that s > 8 and that the exponent ∆s is admissible,
and satisfies ∆s < 1/8. Suppose also that u > s+ 16∆s > 10. Then∫ 1

0

|g(α;P,R)|u dα� P u−4. (5.1)

In particular, the exponent ∆w = 0 is admissible for w > u.

Proof. We assume the hypotheses of the statement of the theorem, and define

δ = 1
2
(u− s− 16∆s). (5.2)

Then δ > 0, and since s + 16∆s > 10, it follows that u > 10 + 2δ. It is
convenient throughout to abbreviate g(α;P,R) simply to g(α). Also, put

I =

∫ 1

0

|g(α)|u dα.
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We establish the bound (5.1) by means of the Hardy-Littlewood method. De-
fine the set of major arcs M to be the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 1
8
P−3},

with 0 6 a 6 q 6 1
8
P and (a, q) = 1, and then put m = [0, 1) \M. Finally,

write

G(α) =
∑

16x6P

e(αx4),

and observe that the methods of [12, Chapter 4] (compare the argument of the
proof of [10, Lemma 5.1]) establish that∫

M

|G(α)|5+δ dα�δ P
1+δ. (5.3)

We introduce auxiliary sets of major and minor arcs in order to transform
our mean value into one correctly configured for the application of the Keil-
Zhao device. Let n denote the set of real numbers α ∈ [0, 1) satisfying

|g(α)| 6 2P 15/16. (5.4)

Then, when T is a real number with T > 1, denote by N(T ) the set of real
numbers α ∈ [0, 1) for which

T < |g(α)| 6 2T. (5.5)

Thus, on writing

N =
∞⋃
j=0

2j6P 1/16

N(2−jP ),

we see that N ∪ n = [0, 1). It follows that

I 6 I0 +
∞∑
j=0

2j6P 1/16

I1(2−jP ), (5.6)

where

I0 =

∫
n

|g(α)|u dα and I1(T ) =

∫
N(T )

|g(α)|u dα.

The analysis of I0 is direct. In view of (5.2) and the bound (5.4), together
with the definition of an admissible exponent, one sees that

I0 6

(
sup
α∈n
|g(α)|

)16∆s+2δ ∫ 1

0

|g(α)|s dα

�
(
P 15/16

)16∆s+2δ
P s−4+∆s .

On recalling (5.2) once again, we therefore discern that

I0 = o(P u−4). (5.7)
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Consider next any value of T with P 15/16 6 T 6 P . We deduce from (5.2)
and (5.5) that

I1(T )� T 16∆s−2

∫
N(T )

|g(α)|u−16∆s+2 dα = T 16∆s−2K(T ), (5.8)

where

K(T ) =

∫
N(T )

|g(α)|s+2δ+2 dα.

By Cauchy’s inequality, one has

K(T ) =
∑

x,y∈A(P,R)

∫
N(T )

|g(α)|s+2δe(α(x4 − y4)) dα 6 PK∗(T )1/2, (5.9)

where

K∗(T ) =
∑

16x,y6P

∣∣∣∣∣
∫
N(T )

|g(α)|s+2δe(α(x4 − y4)) dα

∣∣∣∣∣
2

=
∑

16x,y6P

∫
N(T )

∫
N(T )

|g(α)g(β)|s+2δe((α− β)(x4 − y4)) dα dβ

=

∫
N(T )

∫
N(T )

|g(α)g(β)|s+2δ|G(α− β)|2 dα dβ.

Since [0, 1) = M ∪m, it follows that

K∗(T )� K∗(T ;M) +K∗(T ;m),

where, for B ⊆ [0, 1), we write

K∗(T ;B) =

∫
N(T )

∫
N(T )

α−β∈B

|g(α)g(β)|s+2δ|G(α− β)|2 dα dβ. (5.10)

By applying Weyl’s inequality (see [12, Lemma 2.4]), one obtains the bound

sup
α−β∈m

|G(α− β)| � P 7/8+ε.

Thus, invoking symmetry and the trivial estimate (5.5) for |g(α)| and |g(β)|,
one arrives at the estimate

K∗(T ;m)� (P 7/8+ε)2(T 2δ)2

(∫ 1

0

|g(α)|s dα

)2

�
(
P 7/8+εT 2δ

)2 (
P s−4+∆s

)2
.

On recalling (5.2), we deduce that(
T 16∆s−2

)2
P 2K∗(T ;m)� P ε

(
P

15
8
−2δ−15∆sT 16∆s−2+2δ

)2

(P u−4)2

= P ε

(
P 15/16

T

)4−32∆s (
T

P

)4δ

(P u−4)2.
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Then since, by hypothesis, one has P 15/16 6 T 6 P and ∆s < 1/8, we obtain(
T 16∆s−2

)2
P 2K∗(T ;m)� (T/P )2δ(P u−4)2. (5.11)

Next, since T < |g(α)| 6 2T when α ∈ N(T ), we find from (5.2) and (5.10)
that when T > P 15/16, one has

K∗(T ;M)� (T 2−16∆s)2

∫
N(T )

∫
N(T )

α−β∈M

|g(α)g(β)|s+2δ+16∆s−2|G(α− β)|2 dα dβ

= (T 2−16∆s)2Ω0, (5.12)

where

Ω0 =

∫
N(T )

∫
N(T )

α−β∈M

|g(α)g(β)|u−2|G(α− β)|2 dα dβ.

An application of Hölder’s inequality shows that

Ω5+δ
0 6 Ω1Ω2Ω3+δ

3 sup
(α,β)∈N(T )2

|g(α)g(β)|u−10−2δ, (5.13)

where we have written

Ω1 =

∫
N(T )

∫
N(T )

α−β∈M

|G(α− β)|5+δ|g(α)|u dα dβ, (5.14)

Ω2 =

∫
N(T )

∫
N(T )

α−β∈M

|G(α− β)|5+δ|g(β)|u dα dβ, (5.15)

and

Ω3 =

∫
N(T )

∫
N(T )

|g(α)g(β)|u dα dβ. (5.16)

By a change of variable, we find from (5.14) and (5.3) that

Ω1 6

(∫
M

|G(θ)|5+δ dθ

)(∫ 1

0

|g(α)|u dα

)
� P 1+δI.

A symmetrical argument bounds the mean value Ω2 defined in (5.15), and thus

Ω1Ω2 �
(
P 1+δI

)2
. (5.17)

On the other hand, it is immediate from (5.16) that

Ω3 6

(∫ 1

0

|g(α)|u dα

)2

= I2. (5.18)

On substituting (5.17) and (5.18) within (5.13), and noting (5.5), we conclude
thus far that

Ω5+δ
0 �

(
P 1+δI

)2 (
I2
)3+δ

T 2(u−10−2δ)

� P 2+2δI8+2δT 2(u−10−2δ).

We now find from (5.12) that(
T 16∆s−2

)2
P 2K∗(T ;M)�

(
I8+2δP 12+4δT 2(u−10−2δ)

)1/(5+δ)
.
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Combining this estimate with (5.11), and substituting into (5.9) and thence
into (5.8), we discern that

I1(T )� (T/P )δP u−4 +
(
I4+δP 6+2δT u−10−2δ

)1/(5+δ)
,

so that, in view of our earlier observation that u > 10 + 2δ, we obtain the
relation

∞∑
j=0

2j6P 1/16

I1(2−jP )� P u−4 +
(
I4+δP u−4

)1/(5+δ)
.

Referring back to (5.6) and (5.7), we arrive at the upper bound

I � P u−4 +
(
I4+δP u−4

)1/(5+δ)
,

whence I � P u−4. This completes the proof of the theorem. �

Corollary 5.2. Provided that u > 11.95597, one has∫ 1

0

|g(α;P,R)|u dα� P u−4. (5.19)

In particular, the exponent ∆u = 0 is admissible.

Proof. We apply Theorem 5.1 with s = 11.75 and the admissible exponent
∆11.75 = 0.0128731 supplied by Theorem 4.5. We thus deduce that whenever

u > 11.75 + 16∆11.75 = 11.9559696,

then the desired conclusion (5.19) holds. This establishes that ∆u = 0 is
admissible, completing the proof of the corollary. �

This corollary implies and is more or less equivalent to Theorem 1.2. We
performed extensive numerical computations in order to determine the optimal
choice for s in Theorem 5.1 in order that the value of u, with the exponent
∆u = 0, be minimised. It transpires that this optimal value is equal to 11.75.
We should remark that it is not altogether surprising that the optimal value
occurs at a value of s of the shape s = 12− 2−j for some non-negative integer
j, because at each such value, it follows from Lemma 4.2 and the kind of
arguments underlying Theorems 4.3 to 4.5 that there is a jump in the derivative
of ∆s with respect to s. Here, we are thinking of ∆s as representing the least
permissible admissible exponent as a function of s.
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