Übungsblatt #8 Lineare Algebra und Analytische Geometrie 1

WS 2014/15 Dozent: Ingo Runkel

Kurze Information

Der FSR Mathematik lädt Sie herzlich zur Weihnachtsfeier des Fachbereichs Mathematik ein. Diese findet am 17.12. ab 18 Uhr in Raum

$$\dim \ker f$$

statt, wobei $f: \operatorname{Mat}(11 \times 22, \mathbb{Q}) \to \mathbb{Q}, f(M) = M_{1,1} + M_{2,2} + \ldots + M_{11,11}$. Der FSR hofft auf viele Anwesende.

Kurze Fragen (5 P)

Bitte beantworten Sie die folgenden Fragen mit kurzer Begründung (1-2 Sätze).

- 1. Beweisen oder widerlegen Sie: Sei V ein K-Vektorraum und (v_1, \ldots, v_n) eine Familie linear abhängiger Vektoren. Dann ist dim V < n.
- 2. Sei V ein K-Vektorraum mit dim V=n. Zeigen Sie: (vgl. Korollar 2.4.15)
 - (a) Eine Familie $(v_i)_{i \in I}$ mit |I| > n ist linear abhängig.
 - (b) Ein Erzeugendensystem mit n Elementen ist eine Basis.
 - (c) Eine linear unabhängige Familie mit n Elementen ist eine Basis.
- 3. Sei $n \in \mathbb{N}$, $k \in K$, $1 \le i, j \le n$, $i \ne j$. Was ist das Inverse von $I_{n \times n} + kE_{ij}$? (Die Matrix E_{ij} wurde in Kapitel 2.4 definiert.)

Aufgabe 34 (10 P) Seien V, W K-Vektorräume und $f: V \to W$ K-linear.

- 1. Sei $(v_i)_{i \in I}$ eine Basis von V. Zeigen Sie:
 - (a) f injektiv \Leftrightarrow $(f(v_i))_{i \in I}$ ist linear unabhängig
 - (b) f surjektiv \Leftrightarrow $(f(v_i))_{i \in I}$ ist ein Erzeugendensystem
 - (c) f bijektiv \Leftrightarrow $(f(v_i))_{i \in I}$ ist eine Basis
- 2. Seien V, W endlichdimensional mit dim $V = \dim W$. Zeigen Sie:

$$f$$
 injektiv $\Leftrightarrow f$ surjektiv $\Leftrightarrow f$ bijektiv .

3. Gilt Aussage 2 auch für unendlichdimensionale Vektorräume? Gilt Aussage 2 auch, falls f nicht K-linear ist?

Bitte wenden.

Aufgabe 35 (2 P) Sei $A \in Mat(3 \times 5, \mathbb{R})$ gegeben als

$$A = \begin{pmatrix} -2 & 7 & 0 & 5 & 9 \\ 3 & -3 & 1 & 1 & -7 \\ 1 & 2 & -6 & -3 & 7 \end{pmatrix}.$$

Geben Sie eine Basis von $L_0 := \{x \in \mathbb{R}^5 \mid Ax = 0\}$ an.

 $\bf Aufgabe~36~(2~P)~$ Beweisen Sie Satz 2.4.17 aus der Vorlesung: Seien V,Wendlichdimensionale $K\text{-}{\rm Vektorr\ddot{a}ume.}$ Dann gilt

$$V \cong W \Leftrightarrow \dim V = \dim W$$
.

Aufgabe 37 (3 P) Beweisen Sie Korollar 2.5.4 aus der Vorlesung: Sei $A \in \operatorname{Mat}(m \times n, K)$, $b \in K^m$ und $L_b := \{x \in K^n \mid Ax = b\}$. Dann ist entweder $L_b = \emptyset$, oder für ein beliebig aber fix gewähltes $x_0 \in L_b$ lässt sich jedes $x \in L_b$ eindeutig schreiben als

$$x = x_0 + u ,$$

wobei $u \in L_0$.

Aufgabe 38 (2 P) Sei V ein K-Vektorraum und seien $N, F \in \operatorname{End}(V)$ mit $N \circ F = F \circ N$, F invertierbar und $N^k = 0$ für ein $k \in \mathbb{N}$. Hierbei heißt $N^k = N \circ N \circ \ldots \circ N$ (k mal). Zeigen Sie, dass F + N invertierbar ist, und geben Sie das Inverse an.

Hinweis: Sei x Element eines Ringes mit Eins und $k \in \mathbb{N}$. Es gilt

$$1 - x^k = (1 - x)(1 + x + \ldots + x^{k-1}),$$

wobei $x^k = x \cdot x \cdot \ldots \cdot x$ (k mal). (Beweisen Sie dies, wenn Sie es benutzen.)