
Handbook of Bishop Constructive Mathematics

Edited by

Douglas Bridges

Hajime Ishihara

Michael Rathjen

Helmut Schwichtenberg





Contents

Connections between the Minimalist Foundation and Bishop’s

constructive mathematics Maietti and Sambin page 1

1 Introduction 1

2 Why adopting a Minimalist Foundation. 5

3 The Minimalist Foundation 8

4 Why adopting the pointfree approach to develop

topology in MF 21

5 Extending MF with choice principles 34

6 Concluding remarks 37

Index 44

iv



Connections between the Minimalist Foundation
and Bishop’s constructive mathematics
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University of Padova

Giovanni Sambin
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Abstract: We describe what characteristics of the Minimalist Foundation,

for short MF, agree with Bishop’s conception of constructive mathematics

and what differ from it. In particular we explain why adopting the pointfree

approach of formal topology to develop mathematics in MF. We then end

by describing an extension of MF with choice principles closer to Bishop’s

conception of mathematics

Keywords: constructive type theory, pointfree topology, real numbers,

choice sequences, Bar Induction, axiom of unique choice

1 Introduction

A central aspect of Bishop’s constructive mathematics in Bishop (1967);

Bishop and Bridges (1985) emphasized in Bridges and Richman (1987) is

that of being a generalization of classical mathematics. Indeed, contrary to

other constructive approaches, such as Brouwer’s intuitionistic mathematics

or Markov’s recursive mathematics, in his mathematical development Bishop

did not use any principle incompatible with classical mathematics as that

formalizable in Zermelo-Fraenkel set theory. In this way Bishop produced

an analysis of mathematical concepts that is finer than in other approaches.

Bishop himself in Bishop (1967, 1970) and in unpublished notes sketched

a foundation for his mathematics. Many proposals of a formal system apt

to founding his constructive mathematics followed afterwards in the style

of axiomatic set theory in Myhill (1975); Aczel (1978, 1982, 1986); Fefer-

a From Handbook of Bishop Constructive Mathematics, edited by Douglas Bridges, Hajime Ishi-
hara, Michael Rathjen and Helmut Schwichtenberg c© 2021 Cambridge University Press.
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2 Maietti and Sambin

man (1979) and in that of type theory by Martin-Löf in Martin Löf (1975);

Nordström et al. (1990).

Most notably the so called notion of “setoid” over Martin-Löf’s type the-

ory appears to be close to the idea of “set” sketched in Bishop (1967) as

well as the notion of “type-theoretic function” appears to be an adequate

representation of Bishop’s notion of “operation” because it explicitly shows

its computational contents or “numerical meaning”.

Then the model of setoids formalized over Martin-Löf’s type theory ap-

pears to be a suitable framework where to formalize Bishop’s construc-

tive mathematics. A whole study of its categorical structure as a quotient

completion had been started and it is still on (see for example Nordström

et al. (1990); Palmgren and Wilander (2014); Maietti and Rosolini (2013b,a,

2015)) and many different kinds of setoid models had been considered (see

for example Hofmann (1997); Barthes et al. (2003)).

The main drawback of the formalization of mathematics in the setoid mod-

els is that it is very far from the language used in the informal mathematical

practice of constructive proofs, including that in Bishop’s literature and even

more that of classical mathematics. This is because the formalization in this

model, and more general in Martin-Löf’s type theory, requires to handle lots

of computational details useful for the extraction of programs from proofs

but apparently useless to develop the constructive proofs themselves.

To overcome this problem in Sambin and Valentini (1998) it was pro-

posed that Martin-Löf’s type theory should be extended with some abstract

concepts, like that of “proof-irrelevant proposition” and that of “subset”,

as soon as they satisfy the forget-restore principle introduced by the second

author of the present paper. This principle states that one can abstract away

from irrelevant computational information when these information can be

restored in the process of extracting a program from a constructive proof.

Pushing forward the idea of the forget-restore principle, in Maietti and

Sambin (2005) we introduced the notion of two-level foundation for con-

structive mathematics. Such a foundation should consist of:

- one theory acting as the extensional level written in a language close to

the usual mathematical practice of proofs;

- another theory acting as the intensional level written in a type-theoretic

language suitable for extraction of programs from proofs;

- an interpretation of the extensional level in (a model of) the intensional

level showing that the extensional level has been obtained from the inten-

sional one following the forget-restore principle.



the Minimalist Foundation and Bishop’s constructive mathematics 3

The introduction of a two-level foundation was also motivated by the need

of building a new foundation for constructive mathematics. Indeed since 2005

with Maietti and Sambin (2005) we embarked in the project of building a

Minimalist Foundation where the mathematics developed in it turns out to

be compatible with the different approaches to constructivism, and also with

classical mathematics. To this purpose to formalize Bishop’s mathematics

we intended to build an intuitionistic and predicative foundation finer than

the formal systems available in the literature and characterized by the lack of

whatsoever choice principle, including the so called axiom of unique choice.

In Maietti (2009) a full formal system, called “Minimalist Foundation”,

here named MF for short, was proposed.

In parallel, also a new approach to constructivism, called “dynamic”, was

put forward in Sambin (2002, 2008, 2011, 2012, 2017, 2019). This is inspired

by the constructive approach originated explicitly with Brouwer in the be-

ginning of last century and revived in the 60s and 70s by Bishop (1967),

Martin-Löf (1970) and others. The first chapter of Sambin (2022) will con-

tain a detailed introduction to dynamic constructivism.

In the following we are going to describe what aspects of our minimalist

approach and MF are in common with Bishop’s one, called BISH, and what

differ.

The main common aspects include the following ones:

- the compatibility with classical mathematics via a language close to that

of usual mathematical practice;

- the need of compiling this language in a strictly algorithmic language to

extract the computational contents of constructive proofs.

Both aspects are fulfilled in MF by crucially employing its two-level struc-

ture.

Indeed compatibility with the standard Zermelo-Fraenkel foundation for

classical mathematics is fulfilled at the extensional level of MF while the

extraction of programs from proofs at its intensional level. In particular the

intensional level can be interpreted in a realizability semantics extending

Kleene realizability of intuitionistic arithmetic as shown by Ishihara, Maietti,

Maschio and Streicher in Ishihara et al. (2018). This fact has two main

consequences which emphasize the constructivity of the whole MF.

The first is that the intensional level of MF is consistent with full axiom

of choice and formal Church thesis as advocated in Maietti and Sambin

(2005). This characteristic is generally not satisfied by the other constructive

intensional foundations in the literature such as the extension of Martin-
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Löf type theory called Homotopy Type Theory in Univalent Foundations

Program (2013)(because it satisfies the function extensionality principle).

The second consequence is that the extensional level of MF turns out

to be consistent with the formal Church thesis (see Maietti and Maschio

(2016)) via its interpretation at the intensional level.

Furthermore, the intensional level of MF could serve as a base for a

minimalist proof-assistant whose formalized proofs can, a priori, be reused

in proof-assistants based on the many extensions. This would be a practical

application of the fact that MF can well serve as a basic theory where to

compare the different approaches to mathematics and their proofs.

Then, we underline some major peculiarities of MF not present in Bishop’s

conception of mathematics BISH.

One main difference is about the concept of function. As in BISH in MF

we both have the notion of operation with the meaning of representing a

computable function, and that of functional relation. However contrary to

BISH and other type-theoretic foundations for BISH, in MF these two notions

are kept well distinct. In fact that, while operations between two sets do form

a set, functions do not generally do. This distinction is guaranteed by the

lack of the general validity of choice principles in both levels of MF (see

Maietti (2017)). Indeed it is enough to add a rule of unique choice to both

levels of MF to guarantee the validity of the axiom of unique choice which

makes the two notions coincide.

There is a major consequence of the absence of choice principles from

MF combined with its predicative nature (even à la Feferman see Maietti

and Maschio (2014, 2016); Ishihara et al. (2018)) when adopting MF to

develop topology. It is that the constructive pointfree approach to topology

introduced by Martin-Löf and the second author in the 80s in Sambin (1987)

under the name of formal topology constitutes not only a valid alternative

to pointwise approaches for constructive analysis by Brouwer (see Troelstra

and van Dalen (1988)) and Bishop (see Bishop (1967); Bishop and Bridges

(1985)), but it appears to be compulsory. The main reason, as sketched in

Maietti (2012, 2018), is that in MF real numbers, either as Dedekind cuts

or as Cauchy sequences, cannot be proven to be sets. Also choice sequences

of Baire and Cantor spaces do not form a set. All this is a consequence of the

fact that in MF functional relations between two sets do not generally form

a set. Instead a priori, using Martin-Löf’s type theory in Nordström et al.

(1990) as a foundation, both pointwise approaches and pointfree ones could

seem legitimate. In fact, one can define a pointwise topology on Dedekind

real numbers, because these are in bijective correspondence with Cauchy

sequences and the latter can be represented in Martin-Löf’s type theory
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as a setoid. Also in the predicative foundation of Aczel’s Constructive set

theory CZF in Aczel (1978, 1982, 1986) both Dedekind reals and Cauchy

reals form a set and a pointwise approach is possible.

In the paper we recall the basic definitions of formal topology necessary

to introduce the mentioned example of real numbers and Baire and Cantor

spaces by underlying how they are formalized in MF.

The way constructive topology is formalized in MF well agrees with our

minimalist attitude, especially if we want to work in a constructive foun-

dation compatible with classical predicativity where we can distinguish the

real (effective) structure of a topology from a corresponding ideal (infinitary)

structure of formal points.

A major benefit from developing pointfree topology in MF in the form of

formal topology is that we gain in clarity and in an analysis of topological

concepts finer than in other foundations.

Finally we conclude by describing an extension of MF, actually of its

extensional level, which appears closer to BISH.

This extension of MF is characterized by the validity of choice principles

including the axiom of unique choice and the axiom of countable choices. It

should also be interpretable in Martin-Löf’s type theory to form a two-level

foundation by extending the interpretation in Maietti (2009). But a proof

of this is left to future work.

2 Why adopting a Minimalist Foundation.

A plurality of philosophical reasons for a constructive approach to mathe-

matics have been proposed, both before and after Brouwer and Bishop.

Presently, various logical systems to formalize constructive mathemat-

ics are available in the literature. They range from axiomatic set theories,

as Aczel’s CZF in Aczel (1978, 1982, 1986) or Friedman’s IZF in Beeson

(1985), to the internal theory of categorical universes as topoi or pretopoi in

MacLane and Moerdijk (1992); Joyal and Moerdijk (1995); Maietti (2005a),

to type theories as Martin-Löf’s type theory in Nordström et al. (1990) or

Coquand’s Calculus of Inductive Constructions in Coquand (1990); Coquand

and Paulin-Mohring (1990). No existing constructive foundation has yet su-

perseded the others as the standard one, as Zermelo-Fraenkel axiomatic set

theory did for classical mathematics.

Also various machine-aided proof development systems are available to im-

plement mathematics (see, for example, Wiedijk (2006)). Many of those for

constructive mathematics are based on type systems which are also paradigm
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of (functional) programming languages with the possibility of extracting the

computational contents of constructive mathematical proofs. Some of these,

as for example Coq in Coq development team (2010) or Matita in Asperti

et al. (2011), are based on impredicative typed systems, while some others,

as for example Agda in Bove et al. (2009) and Nuprl in Allen et al. (2006),

are based on predicative ones.

Beginning with Maietti and Sambin (2005), we embarked in the project

of developing a foundation with minimal assumptions. The main reason for

this choice is to support our general attitude to preserve all effective notions

and conceptual distinctions as much as possible, with no a priori exception.

The result is a foundation which is minimalist also in the sense that it

becomes a common core among the most relevant constructive foundations.

Thus we expect that such a minimalist foundation should be useful not

only to constructive mathematicians but also to logicians, for example as a

base system to do constructive reverse mathematics, and also to computer

scientists, as a base for a minimalist proof-assistant suitable for formalizing

reusable proofs and for program extraction from proofs.

2.1 Why founding constructive mathematics on a two-level

theory

In our opinion, a constructive foundation should make evident those key

aspects which differentiate constructive mathematics from classical math-

ematics. For example, a typical characteristic of constructive proofs, con-

trary to classical ones, is the possibility of extracting programs computing

witnesses of true existential statements occurring in them.

Even better, any proof in a constructive system should be seen as a pro-

gram. Hence, a foundation for constructive mathematics should be at the

same time a theory of sets, in which to formalize mathematical theorems,

and a programming language, in which to extract the computational con-

tents of mathematical proofs.

In Maietti and Sambin (2005) we argued that such a constructive founda-

tion (validating Heyting arithmetics at least) should be a two-level theory

consisting of:

- a level, called extensional, which should be an extensional set theory (with

undecidable equality of sets and elements) formulated in a language close

to that used in the common practice of developing mathematics;

- another level, called intensional, which should be an intensional theory

(with decidable equality of sets and elements) enjoying extraction of pro-
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grams from proofs; according to Maietti and Sambin (2005) this level

should be possibly a proofs-as-programs theory, i.e. a theory consistent

with the axiom of choice

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

for A,B sets and R(x, y) a logical relation, and the formal Church thesis

for functions between natural numbers denoted with the symbol Fun(Nat,Nat)

(CT) ∀f ∈ Fun(Nat,Nat) ∃e ∈ Nat
( ∀x ∈ Nat ∃y ∈ Nat T (e, x, y) & U(y) = f(x) )

where Nat is the set of natural numbers and T (e, x, y) is the Kleene

predicate expressing that y is the computation executed by the program

numbered e on the input x and U(y) is output of the computation y.

- Then, in order to guarantee the extraction of programs even from proofs

written at the extensional level, we required that the extensional level

should be obtained as an abstraction of the intensional level according to

the forget-restore principle proposed by the second author of the present

paper in Sambin and Valentini (1998).

The link between the two-levels was then made more technical in Maietti

(2009), by requiring that the extensional level should be interpreted in the

intensional one by means of a quotient completion of the latter, i.e. the

extensional level should be seen as (a fragment of) the internal language of

a quotient completion built on the intensional one.

This kind of link captures what happens in the practice of computer-aided

formalization of mathematics in an intensional type theory, which makes

use of the so called model of “setoids” built on it (see Hofmann (1997);

Barthes et al. (2003)). Actually another motivation behind the notion of

two-level foundation in Maietti and Sambin (2005); Maietti (2009) is the

desire of making explicit the extensional theory validated in the quotient

model chosen to formalize mathematical proofs in intensional type theory.

Our two-level structure where the intensional level is consistent with ax-

iom of choice and formal Church thesis fully agrees with Bishop’s need of

exhibiting the computational contents of constructive proofs, in particular

of existential statements whose witness can be chosen computationally (see

chapter 1 of Bishop (1967) and Bishop (1970)).
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3 The Minimalist Foundation

In Maietti (2009) we presented a two-level formal system which satisfies

the requirements in Maietti and Sambin (2005) of a two-level foundation

for constructive mathematics. We call this system the two-level minimalist

foundation, for short MF. We are aware, however, that a specific formal

system, which is static by definition, cannot fully capture the dynamics of

the minimalist approach to constructivism, started in Maietti and Sambin

(2005); Sambin (2008, 2011, 2012).

The two levels of MF are both given by a type theory à la Martin-Löf:

the intensional level, called mTT, is an intensional type theory including

aspects of Martin-Löf’s one in Nordström et al. (1990) (and extending the

set-theoretic version in Maietti and Sambin (2005) with collections), and

its extensional level, called emTT, is an extensional type theory includ-

ing aspects of extensional Martin-Löf’s one in Martin-Löf (1984). Then a

quotient model of setoids à la Bishop in Bishop (1967); Hofmann (1997);

Barthes et al. (2003); Palmgren (2005a) is used in Maietti (2009) to inter-

pret the extensional level in the intensional one. A categorical study of this

quotient model has been carried on in Maietti and Rosolini (2013b,a, 2015)

and related to the construction of Hyland’s effective topos in Hyland (1982);

Hyland et al. (1980).

In the following we explain the main characteristics of the extensional

level emTT and of mTT viewed more as a many sorted logic than as a

type theory. This is because both levels of MF are given by a type theory

that includes a primitive notion of proposition, which allows us to control

the validity of choice principles.

Need of two types of entities: sets and collections. A minimalist foun-

dation for constructive mathematics should certainly be based on intuition-

istic predicate logic and include at least the axioms of Heyting arithmetic.

Hence we could expect to build it starting from a many-sorted logic, such as

Heyting arithmetic of finite types in Troelstra and van Dalen (1988), where

sorts, that we call types, include the basic sets we need to represent our

mathematical entities.

However, in order to develop topology in an intuitionistic and predicative

way, we need a foundation with two kinds of types: sets and collections.

The main reason is that the power of a non-empty set, namely the discrete

topology over a non-empty set, fails to be a set in a predicative foundation,

and it is only a collection.
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Need of two types of propositions. In parallel with the presence of sets

and collections, to keep the system predicative we also need to distinguish

two types of propositions: those closed under quantifications on sets, called

here small propositions as in Maietti (2009) (and proper propositions in Sam-

bin (2022)), from those closed under any kind of quantification, called here

simply propositions as in Maietti (2009) (and improper propositions in Sam-

bin (2022)). Both kind of propositions include propositional equalities which

are small propositions only if they refer to elements of a set.

Need of two types of functions. It is well known that adding the principle

of excluded middle to some constructive foundations, as Aczel’s CZF or

Martin-Löf’s type theory, one can derive that power-collections become sets

and thus get an impredicative theory. In both such theories this is due to the

fact that the collection of functions from a set A to the boolean set {0, 1},
called exponentiation of the boolean set over A, forms a set, too. Therefore,

if we wish compatibility with classical theories where the power of a non-

empty set is not a set as in Feferman’s predicative theories in Feferman

(1979), we need to avoid exponentiation of functions.

A drastic solution is to drop all axioms yielding any form of exponenti-

ation. What we propose is to allow exponentiation only of a certain kind,

as it happens in Feferman (1979). To this purpose, we introduce a primitive

notion of operation, represented by certain functional terms

f(x) ∈ B [x ∈ A]

in a set B with a free variable in the set A. These operations can be defined

as type-theoretic functions of a type theory, like in Martin-Löf’s type theories

in Nordström et al. (1990); Martin-Löf (1984). Clearly any operation f(x) ∈
B [x ∈ A] must give rise to a functional relation f(x) =B y [x ∈ A, y ∈ B],

i.e. what is usually called function. What we do not wish to guarantee is the

converse. Our idea is then that only exponentiation of operations from a set

A to a set B form a set.

3.1 The main types of the extensional level of the Minimalist

Foundation

The formal system emTT of the extensional level of the Minimalist Founda-

tion in Maietti (2009) is written in the style of Martin-Löf’s type theory in

Nordström et al. (1990) by means of the following four kinds of judgements:

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ]
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that is the type judgement (expressing that something is a specific type),

the type equality judgement (expressing that two types are equal), the term

judgement (expressing that something is a term of a certain type) and the

term equality judgement (expressing the definitional equality between terms

of the same type), respectively, all under a context Γ.

The word type is used as a meta-variable to indicate four kinds of entities:

collections, sets, propositions and small propositions, namely

type ∈ {coll, set, prop, props }

Therefore, in emTT types are actually formed by using the following judge-

ments:

A set [Γ] B coll [Γ] φ prop [Γ] ψ props [Γ]

saying that A is a set, that B is a collection, that φ is a proposition and

that ψ is a small proposition.

Here, contrary to Maietti (2009) where we use only capital latin letters

as meta-variables for all types, we use greek letters ψ, φ as meta-variables

for propositions and capital latin letters A,B as meta-variables for sets or

collections, and small latin letters a, b, c as meta-variables for terms, i.e.

elements of the various types.

Observe that for a set A, when we say that

a ∈ A [Γ]

is derivable in emTT, we actually mean that the term a is an element

of the set A under the context Γ and hence the symbol ∈ stands for a set

membership. As usual in type theory, equality of sets is given primitively

and is not defined by equating sets with the same elements. This is indeed a

main difference between a set theory defined as a typed system in the style

of Martin-Löf’s type theory in Nordström et al. (1990) and an axiomatic set

theory à la Zermelo-Fraenkel.

We now proceed by briefly describing the various kinds of types in emTT,

starting from small propositions and propositions, then sets and finally col-

lections.

Small propositions in emTT include all the logical constructors of intui-

tionistic predicate logic with equality and quantifications restricted to sets:

φ props ≡ ⊥ | φ ∧ ψ | φ ∨ ψ | φ→ ψ |

∀x ∈ A φ(x) | ∃x ∈ A φ(x) | x =A y

provided that A is a set. Here we use the more familiar x =A y for the
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extensional equality type Eq(A, a, b) of Martin-Löf type theory in Martin-

Löf (1984).

Then, propositions of emTT include all the logical constructors of intui-

tionistic predicate logic with equality and quantifications on all kinds of

types, i.e. sets and collections. Of course, small propositions are also propo-

sitions.

φ prop ≡ φ props | φ ∧ ψ | φ ∨ ψ | φ→ ψ |

∀x ∈ B φ(x) | ∃x ∈ B φ(x) | x =B y

In order to close sets under comprehension, for example to include the set

of positive natural numbers {x ∈ N | x ≥ 1}, and to define operations on

such sets, we need to think of propositions as types of their proofs: small

propositions are seen as sets of their proofs while generic propositions are

seen as collections of their proofs. That is, we add to emTT the following

rules

props-into-set)
φ props
φ set

prop-into-coll)
φ prop

φ coll

The difference between the notion of set and collection will be explained

later.

A key feature of the extensional typed system emTT is proof irrelevance

of propositions. This means that in emTT a proof of a proposition, if it

exists, is unique and equal to a canonical proof term called true thanks to

the following rules

prop-mono)
φ prop [Γ] p ∈ φ [Γ] q ∈ φ [Γ]

p = q ∈ φ [Γ]

prop-true)
φ prop p ∈ φ

true ∈ φ
Proof-irrelevance of propositions justifies the introduction of a judgement as-

serting that a proposition φ is true under a context Γ assuming propositions

ψ1, . . . , ψm true as in Martin-Löf (1984); Martin-Löf (1985). This judgement

can be directly interpreted in emTT as follows:

φ true [ Γ;ψ1 true, . . . , ψm true ] ≡ true ∈ φ [ Γ, y1 ∈ ψ1, . . . , ym ∈ ψm ]

In emTT sets are characterized as inductively generated types and they

include the following:

A set ≡ φ props | N0 | N1 | List(A) |

Σx∈AB(x) | A+B | Πx∈A B(x) | A/ρ



12 Maietti and Sambin

where the notation N0 stands for the empty set, N1 for the singleton set,

List(A) for the set of lists on the set A, Σx∈AB(x) for the indexed sum of the

family of sets B(x) set [x ∈ A] indexed on the set A, A+B for the disjoint

sum of the set A with the set B, Πx∈AB(x) for the product type of the family

of sets B(x) set [x ∈ A] indexed on the set A, and A/ρ for the quotient set

provided that ρ is a small equivalence relation ρ props [x ∈ A, y ∈ A].

Moreover, we call N the set of natural numbers represented by List(N1).

The notion of set in emTT agrees with that in Bishop (1967) and in

Martin-Löf (1970). According to them sets must have an effective nature

which is mostly forgotten in any axiomatic approach where a universe of

sets closed under certain properties is implicitely assumed as the underlying

range of the set variables. In fact, each set A must be specified by providing

a finite number of rules to construct all its elements (see the rules of emTT

forming elements of sets in Maietti (2009)). It is understood that the rules

defining a set are inductive, that is, their application can be iterated any

finite number of times. The infinite is only potential, and in a certain sense

it is always reduced to a finite description, at a higher order: not a finite

number of elements, but a finite number of rules to generate (the infinite

number of) them. In particular the elements of the product type Πx∈AB(x)

are only terms

b(x) ∈ B(x) [x ∈ A].

In the case the family B(x) set [x ∈ A] is just a constant set B indexed on

the set A, we indicate the product type simply as

A→ B ≡ Πx∈AB

and its elements are just operations

b(x) ∈ B [x ∈ A]

Hence, in emTT operations between two sets form a set, but generic func-

tions between them do not.

Finally, collections in emTT include the following types:

B coll ≡ A set | φ prop | P(1) | A→ P(1) | Σx∈B C(x)

where P(1) and A → P(1) stand for the power-collections of the singleton

and of a set A respectively, and Σx∈B C(x) stands for the indexed sum of the

family of collections C(x) col [x ∈ B] indexed on the collection B. Actually,
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for a set A, we will use the common abbreviation of power-collection

P(A) ≡ A→ P(1)1

Elements of the power-collections rely on the notion of subset, which in

emTT is inspired by that in Sambin and Valentini (1998) put on top of

Martin-Löf’s type theory. A subset of a set A is defined as the equivalence

class of a small predicates φ(x) depending on one argument in A with re-

spect to the equivalence relation of equiprovability. This is the minimum

we must require in order to close subsets under comprehension. Indeed, for

any small predicate φ(x) props [x ∈ A] on a set A we can define its subset

comprehension as

{x ∈ A | φ(x) } ∈ P(A)

Moreover, two equiprovable small predicates give rise to the same subset,

that is in emTT we can derive

φ1(x) ↔ φ2(x) true [x ∈ A]

{x ∈ A | φ1(x) } =P(A) {x ∈ A | φ2(x) } true

In the following we indicate subsets of a set A with capital letters U, V,W . . . .

Associated with the notion of subset we have also a subset membership

indicated with the symbol ε, which we distinguish from the primitive set

membership ∈ used to say that an element belongs to a certain set. Given

a subset U ⊆ A of a set A, i.e. U ∈ P(A), for any a ∈ A we define a new

small proposition

a ε U props .

We can prove in emTT that

U = {x ∈ A | x ε U } ∈ P(A)

and also that, for any small predicate φ(x) ∈ props [x ∈ A] on the set A and

for any element a ∈ A,

a ε {x ∈ A | φ(x) } ↔ φ(a) true

The subset equality is equivalent to usual extensional equality with respect

to membership ε, namely we can derive in emTT that

∀x ∈ A (x ε U ↔ x ε W ) ↔ U =P(A) W true

and, of course, that

{x ∈ A | φ(x) } =P(A) {x ∈ A | ψ(x) } ↔ ∀x∈A (φ(x)↔ ψ(x)) true

1 The notation A → P(1) for the power-collection P(A) is used to remember that its elements
are operations from a set A to the power-collection on the singleton.
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In particular, P(1) denotes the power-collection of the singleton N1 and

its elements are equivalence classes of small propositions closed under the

equivalence relation of equiprovability.

The fact that subset equality corresponds to usual extensional equality of

sets suggests that we can view the subset theory in emTT as a local set

theory where subsets of a set A can be considered local sets in Bell (1988) in

the style of Zermelo-Fraenkel set theory. Then, membership and extensional

equality via elements becomes a local property restricted to a given set A.

To this purpose, observe that among subsets of A, there is A itself thought

of as the subset

{x ∈ A | tt }

where tt is any tautology. Moreover, we can define quantifiers relativized to a

subset: this means that, if U ⊆ A and ϕ is a small predicate (or propositional

operation) with an argument in A, we write ∃x ε U ϕ as an abbreviation

for the formula ∃x ∈ A (x ε U & ϕ), and ∀x ε U ϕ as an abbreviation for

the formula ∀x ∈ A (x ε U → ϕ). A consequence of these definitions is that

all laws of many-sorted intuitionistic logic regarding quantifiers extend to

quantifiers relativized to a subset.

Note that the membership relation ε between terms and subsets is crucial

in emTT to obtain an embedding of subsets into sets, which associates the

set

Σx∈A x ε U set

to a subset U ⊆ A. In this way an operation from U ⊆ A to a set B can be

represented as an operation in Σx∈A x ε U → B.

The emTT-distinction between set and collection is analogous to the

distinction between set and class in axiomatic set theory. But while in ax-

iomatic set theory the distinction is mainly due to problems with consistency

(or size), here it is motivated by quality of information and preservation of

predicativity. Indeed, sets are kept distinct from collections to be able to

keep a distinction between computable, effective domains (represented by

sets) and non computable ones (represented by collections). This distinction

is also extended to propositions in emTT by selecting small propositions

as those propositions closed only under quantifications over sets and only

under propositional equality only on sets. Then, to avoid an impredicative

power-collection of a set, a subset must be defined as an equivalence class

of small predicates and not of generic ones.

An important conceptual reason why even the power-collection P(1) of

the singleton is only a collection and not a set is that in emTT we intend the
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notion of small proposition as open. The same we do for that of proposition,

of set and of collection. Indeed, whilst we have fixed the system emTT, new

sets or collections can be introduced at any time. This implies in particular

that the collection of small propositions (quotiented under equiprovability)

is not a set. Indeed, each time we fix our propositions or sets by fixing

a formal system, both notions become inductively generated. However, we

cannot support an induction principle inside the formal system, given that

the number of inductive hypotheses should change any time we introduce a

new set or proposition. This is different from the induction principle on the

set of natural numbers, which has only two hypothesis: what we do on the

number zero, and with any successor number.

3.2 The main types of the intensional level of the Minimalist

Foundation

Here we briefly describe the main types of the formal system mTT of the

intensional level of the Minimalist Foundation in Maietti (2009) by simply

pointing out the differences with those of emTT.

In essence mTT is a dependent type theory which provides a predicative

version of Coquand’s Calculus of Constructions in Coquand (1990). It is

written in the style of intensional Martin-Löf’s type theory in Nordström

et al. (1990) by means of the following four kinds of judgements:

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

As emTT, mTT includes small propositions and propositions which are

closed under the same type constructors as those in emTT except that the

propositional equality type is written Id(A, a, b) and has proper rules specify-

ing its elements. There are also the rules stating that small propositions are

propositions, that small propositions are sets and that propositions are col-

lections. A main difference with respect to emTT is that in mTT the rules

prop-mono) and prop-true) are omitted. As a consequence all propo-

sitions in mTT are seen as types of their proofs which are not in general

unique as usual in intensional type theory. Moreover, as in the intensional

version of Martin-Löf’s type theory, in mTT the definitional equality of

terms of the same type given by the judgement

a = b ∈ A [Γ]

which should be computable, is no longer equivalent to the propositional

equality type

Id(A, a, b) prop [Γ]
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which is not necessarily computable and not necessarily equipped with only

one proof.

Sets in mTT are closed under the same constructors as those in emTT

with the exception of the quotient set constructor A/ρ. As in emTT, in

mTT there is also the rule stating that sets are collections.

Finally, collections in mTT include the same constructors as those of

emTT except that the power-collection of the singleton P(1) is replaced

by the universe of small propositions props as well as the power-collection

constructor A→ P(1) on a set A is replaced by the collection A→ props of

predicates or propositional operations depending on the set A.

The dependent type theory mTT was designed in order to serve as a base

for a proof-assistant.

3.3 On the extraction of programs from proofs in MF

Here we describe how Bishop’s desire of compiling a foundation for construc-

tive mathematics in a programming language is fulfilled for MF.

First of all MF was structured as a two-level theory so that to interpret

constructive proofs done at its extensional level emTT to proofs done at

its intensional level mTT from which to extract the computational con-

tents in the form of programs. However the extraction of the computational

contents of proofs in mTT can not be performed in mTT itself as shown

in Maietti (2017) but in a stronger theory or in the realizability semantics

in Ishihara et al. (2018). One could then think of enlarging the intensional

level to become the stronger theory needed, but this would not satisfy the

forget-restore principle according to which the entities at the extensional

level should be obtained by abstraction from the intensional ones, or more

concretely as quotients of intensional entities.

A priori the intensional level mTT itself could serve as a programming

language where to compile proofs done at the extensional level. Indeed mTT

is a dependent type theory where we can construct a correct and terminating

program as a typed term meeting a certain specification defined as its type.

But to extract programs from constructive proofs it is desirable that from a

proof of an existential statement under hypothesis

p(x) ∈ ∃y ∈ B R(x, y) [x ∈ A]

for generic types A and B, one may extract a functional program f ∈ A→ B

whose graph is contained in the graph of R(x, y), namely for which we can
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prove that there exists a proof-term q(x) such that we can derive

q(x) ∈ R(x, f(x)) [x ∈ A]

This property is called choice rule.

In all the versions of Martin-Löf dependent type theory in Nordström et al.

(1990); Martin-Löf (1984) the choice rule is valid thanks to the identification

of the MLTT-existential quantifier with the the strong indexed sum of a set

family, which characterizes the so called propositions-as-sets isomorphism.

Then also the axiom of choice

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

is valid for generic types A and B.

However in mTT the existential quantifier is not identified with the strong

indexed sum type whilst it is still a type of its proofs. The result is that the

choice rule defined below is not valid.

Definition 1.1 The dependent type theory mTT satisfies the choice rule if

for every small proposition R(x, y) props [x ∈ A, y ∈ B] derivable in mTT,

for any derivable judgement in mTT of the form

p(x) ∈ ∃y∈B R(x, y) [x ∈ A]

there exists in mTT a typed term

f(x) ∈ B[x ∈ A]

for which we can find a proof-term q(x) and derive in mTT

q(x) ∈ R(x, f(x)) [x ∈ A]

Proposition 1.2 In mTT the choice rule is not valid.

Proof. See Maietti (2017).

Hence, when proving a statement of the form

∀x∈A∃y ∈ B R(x, y)

in the dependent typed theory mTT, we cannot always extract a functional

term f ∈ A → B computing the witness of the existential quantification

depending on a x ∈ A within the theory itself but we need to find it in a

more expressive proofs-as-programs theory.

For mTT we can use Martin-Löf’s type theory, for short MLTT, in Nord-

ström et al. (1990) as the more expressive theory where to perform the men-

tioned witness extraction. Indeed, we can interpret mTT inside MLTT as

shown in Maietti (2009) by preserving the meaning of its entities.
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This extraction is done by first embedding the proof-term

p ∈ ∀x∈A ∃y ∈ B R(x, y)

derived in mTT and then using MLTT-projections to extract f .

The other possibility is to perform this witness extraction in the real-

izability model of mTT in Ishihara et al. (2018). This realizability model

guarantees that the intensional level mTT of MF is a “proofs-as-programs

theory” in the sense of Maietti and Sambin (2005), namely that mTT is

consistent with the axiom of choice (AC) and the formal Church Thesis

(CT) by identifying Fun(Nat,Nat) in mTT with the type of functional

relations between natural numbers

ΣR∈P(N,N) ∀x∈A ∃!y ∈ B 〈x, y〉εR

where ∃!y ∈ B 〈x, y〉εR ≡ ∀y1∈B ∀y2∈B R(x, y1) & R(x, y1) → Id(B, y1, y2).

Actually in Ishihara et al. (2018) mTT is shown to be consistent with

(AC) and the Formal Church thesis for operations between natural numbers

(CTtt)
2 ∀f ∈ N→ N

∃e ∈ N ∀x ∈ N ∃y ∈ N ( T (e, x, y) ∧ U(y) =N f(x) )

stating that all operations between natural numbers are recursive.

The consistency of mTT with (AC) and (CTtt) implies the consistency

of mTT with (AC) and (CT) since we can easily show:

Lemma 1.3 In mTT extended with (AC) the formal Church thesis for

functional relations CT is equivalent to the formal Church thesis for opera-

tions CTtt.

Therefore we conclude:

Proposition 1.4 The intensional level mTT of MF in Maietti (2009) is

consistent with (CT) and the axiom of choice in the form

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

for A,B collections and R(x, y) any proposition in mTT.

Proof. It follows from lemma 1.3 and Ishihara et al. (2018).

As a consequence from the interpretation of the extensional level of MF

into its intensional level in Maietti (2009), we can deduce that also the

extensional level of MF is consistent with the formal Church thesis:

Proposition 1.5 The extensional level emTT of MF in Maietti (2009)

is consistent with (CT ).
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Proof. A proof of this proposition can be obtained in various ways. For

example it follows also from the realizability interpretations of mTT in

Maietti and Maschio (2014, 2016), or from the fact that emTT can be

interpreted by preserving the meaning of its entities both in the internal

theory of a topos and then in Hyland’s Effective Topos in Hyland (1982) or

in Aczel’s set theory in Aczel (1978). It would be also possibile to interpre

emTT in the predicative version of Hyland’s Effective Topos in Maietti and

Maschio (2020).

Observe that the consistency requirement of a proofs-as-programs theory

with (AC) and (CT) just guarantees that from proofs of existential state-

ments on natural numbers under hypothesis

∃y ∈ N R(x, y) true [x ∈ Nat]

we can extract of a computable choice function

f ∈ N→ N

producing a witness under hypothesis such that we can find a proof of

R(x, f(x)) true [x ∈ N]

It is then clear that our proofs-as-programs requirement does not fully

capture the idea of a foundational theory that is in the same time also a

programming language satisfying the choice rule, as MLTT in Nordström

et al. (1990).

It is still an open problem whether MLTT enjoys our proofs-as-programs

requirement, or equivalently, whether MLTT is consistent with the formal

Church thesis (CT).

Our purpose with the proofs-as-programs requirement in Maietti and

Sambin (2005) was to single out a property characterizing theories which

are interpretable in extensions of Kleene realizability semantics for Heyting

Arithmetics with finite types (see Troelstra and van Dalen (1988)).

3.4 Benefits of distinguishing operations from functions

Inspired by Brouwer’s difference between lawlike and choice sequences in

Troelstra and van Dalen (1988), in MF contrary to BISH we can define choice

sequences from the set of natural numbers N to a set B as functions (in the

sense of functional relations, that is, total and single-valued relations), and

lawlike sequences as operations:
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Definition 1.6 (choice and lawlike sequences) Given a set A, a choice

sequence from the set N of natural numbers to A is a function defined by a

small functional relation α(x, y) props [x ∈ N, y ∈ A] in emTT.

A lawlike sequence from the set N of natural numbers to A is an operation

f ∈ N→ A

in emTT, or equivalently, thanks to the rules in Maietti (2009) defining

elements in N→ A, an emTT-term f(x) ∈ A [x ∈ N].

It is possible to keep a distinction between choice sequences and lawlike

sequences because in emTT the axiom of unique choice

(AC!N,N ) ∀x ∈ N ∃!y ∈ NR(x, y) −→ ∃f ∈ N→ N ∀x ∈ NR(x, f(x)),

which turns a function between natural numbers into an operation, is not

valid, as shown in Maietti (2012, 2017). Our distinction allows us to clarify

and compare results about choice sequences in the literature, since choice

sequences are sometimes identified with our functions, for example in Rath-

jen (2005), sometimes with our operations, for example in Troelstra and van

Dalen (1988).

Another consequence of the distinction between operations and functions

is that we can refine the notion of decidable subset of the set of natural

numbers N. In constructive mathematics it is common to say that a subset

U ⊆ N is decidable if ∀x (x ε U ∨ x 6ε U ) holds. In our theory we can

distinguish three notions:

Definition 1.7 A subset U of the set N is said to be:

- complemented, if ∀x (x ε U ∨ (x 6ε U) ) holds. In this case U is classified

by a function from N to the boolean set Bool

χU (x, y) ≡ ( x ε U & y =Bool 1 ) ∨ (x 6ε U & y =Bool 0 )

- detachable, if the subset U is classified by an operation, namely we can

derive

∃f∈N→Bool ∀x ∈ N ( ( x ε U & f(x) =Bool 1 ) ∨ (x 6ε U & f(x) =Bool 0 ) )

- decidable, if U is classified by a computable operation, namely we can

derive

∃f∈N→Bool ( ∀x ∈ N ( ( x ε U & f(x) =Bool 1 ) ∨ (x 6ε U & f(x) =Bool 0 ) )

& ∃e ∈ N ∀x ∈ N ∃y ∈ N ( T (e, x, y) ∧ U(y) =N f(x) ) )
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where T (e, x, y) is the Kleene predicate expressing that y is the compu-

tation executed by the program numbered e on the input x and U(y) is

output of the computation y.

Observe that, classically, all subsets are complemented. Of course, in the

presence of the axiom of unique choice, functions and operations coincide and

hence complemented and detachable subsets coincide, too, as for example

in Martin-Löf’s type theory.

All the three kinds of subsets coincide in the Kleene realizability inter-

pretation of Heyting arithmetic. This interpretation is in some sense the

intended interpretation of the arithmetic fragment of a constructive foun-

dation. Hence, the identification of the name “decidable” with our notion

of complemented subsets, (that we do not follow here, though) has its own

(plausible) justification.

In Maietti (2012, 2018), we observed that if we extend emTT with the

principle of excluded middle then we can prove the existence of a power-set

of detachable subsets, which do not necessarily coincide with all subsets,

i.e. with complemented ones. This option of restricting exponentiation as a

set to lawlike sequences opens the way to build a theory compatible with

classical predicativity as those in Feferman (1979).

4 Why adopting the pointfree approach to develop topology
in MF

Bishop, like Brouwer, developed constructive analysis by adopting a point-

wise approach which presented some difficulties solved by them in different

ways (see Palmgren (2005b); Troelstra and van Dalen (1988)). When devel-

oping topology in MF we need to adopt the pointfree approach. The most

important reason is that, when working in MF, the pointwise approach is

not suitable because relevant examples of classical topologies (real numbers

both as Dedekind cuts or Cauchy sequences, Baire space, Cantor space,...)

do not give rise to a pointwise topology since their points do not form a set.

A solution is to work with the pointfree topology associated to each of

these spaces. The constructive approach to pointfree topology given by for-

mal topology has provided evidence that most important results of construc-

tive analysis (see for example Martin-Löf (1970); Palmgren (2005b)) can be

reached in a compatible way with classical mathematics as in Bishop’s con-

structive approach, but without assuming further principles, such as the Fan

Theorem adopted by Brouwer in his pointwise approach and in Bridges and



22 Maietti and Sambin

Richman (1987); Troelstra and van Dalen (1988); Ishihara (2005); Bridges

(2008).

Before entering into details, we briefly review a constructive notion of

topological space and then the main concepts of formal topology.

4.1 A predicative constructive notion of topological space

Considering that in a predicative foundation the discrete topology on a given

non-empty set is not a set but a collection, we need to review the concept of

topological space by distinguishing what belongs to the realm of sets from

what belongs to the realm of collections.

At first, one could think of simply keeping the traditional definition of

topological space (X, OX) by just declaring the topology OX to be only

a subcollection of the power of X which is a suplattice, i.e. a complete

join-semilattice, with finite distributive meets. This approach is compulsory

in order to include the discrete topology among topologies. Even more, as

shown in Curi (2010), there is no non-trivial suplattice, and hence no non-

trivial topology, which is a set.

One should then define suplattices as collections closed under sups of set-

indexed families. However, as in Sambin (1987) and Battilotti and Sambin

(2006), suplattices are easier to handle by restricting to the notion of set-

based suplattice, namely a semilattice that is generated by taking sups from

a set(-indexed family) of elements, called generators.

Topologically this means that we need to assume that the collection of

opens of a space has a base that is a set. To make this assumption rigorous,

we require that for a given set of points X we have a set S together with a

family of subsets ext (a) ⊆ X [a ∈ S] acting as a base for the topology on

X. Elements a of S act as names of basic opens of X; they are called formal

basic neighbourhoods or simply observables.

Then, following Sambin (2003), we define a subset of X to be open if it

is equal to extU ≡ ∪aεU ext a for some subset U ⊆ S. It is immediate to see

that open subsets are closed under unions of set-indexed families.

Then we need to require closure of open subsets under intersection. To this

purpose, it is convenient to start from basic neighbourhoods, that is subsets

of X of the form ext a for some a ∈ S. For all a, b ∈ S, the intersection

ext a ∩ ext b is open, that is, it is equal to extW for some W ⊆ S, if and

only if

B0 ext a ∩ ext b = ext (a ↓ b) for all a, b ∈ S,
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where

a ↓ b ≡ {c ∈ S : ext c ⊆ ext a ∩ ext b}.

In fact, ext (a ↓ b) is by its definition the greatest open subset contained in

ext a ∩ ext b. Then, from B0, by two applications of distributivity in PX,

we can easily obtain

B1 extU ∩ extV = ext (U ↓ V ) for all U, V ⊆ S,

where

U ↓ V ≡ ∪aεU ∪bεV a ↓ b.

Finally, to obtain that the whole space is open we need to add the require-

ment

B2 X = extS.

It is clear that for any family of subsets of X indexed by the set S,

i.e. for any ext a ⊆ X for a ∈ S, satisfying B1 and B2 the collection of

subsets extU ⊆ X for U ∈ PS is closed under set-indexed unions and finite

intersections.

Therefore we can give the following constructive version of topological

spaces (see Sambin (2003)):

Definition 1.8 A concrete space is a structure X = (X, ext , S) where

X, S are sets and ext (a) ⊆ X [a ∈ S] is a set-indexed family of subsets

satisfying:

B1 extU ∩ extV = ext (U ↓ V ) for all U, V ⊆ S,

B2 X = extS.

In an impredicative foundation with powersets, this is just a reformulation

of the common notion of topological space.

The notion of concrete space is present in Bishop (1967), under the name

of neighbourhood space. The discrete topology on a set X is obviously an

example of concrete space with X itself as base and ext (x) ≡ {x} for x ∈ X.

A useful example of concrete space is given by the set Q of rational num-

bers with the topology produced by the base of open intervals.

In more detail, the base is the set Q×Q of pairs 〈p, q〉 of rational numbers,

and the basic neighbourhood with index 〈p, q〉 is the subset

ext ( 〈p, q〉 ) ≡ {r ∈ Q | p < r < q }

for all p, q ∈ Q.
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In other constructive and predicative foundations, as Aczel’s CZF and

Martin-Löf’s type theory in Nordström et al. (1990), another example of

concrete space is that of real numbers. It is not so in our MF, as we shall

see later. Even when the topology of real numbers provides an example of

concrete space, it is well known from Brouwer that a constructive pointwise

development of analysis fails to get important properties (see Troelstra and

van Dalen (1988)), as compactness of the closed interval [0, 1], unless fur-

ther principles, as the Fan Theorem, are assumed or some basic topological

notions are changed as in Bishop’s approach (see Bishop (1967); Bishop and

Bridges (1985); Bridges and Richman (1987)). An alternative approach to

constructive topology, and analysis, is offered by formal topology.

4.2 The predicative constructive pointfree approach of formal

topology

The approach of formal topology to pointfree topology was introduced by

Per Martin-Löf and the second author in the 80s; the first published ac-

count is Sambin (1987). The intended foundation was then Martin-Löf’s

type theory MLTT in Nordström et al. (1990). However, as underlined in

the introduction of Sambin (1987), to the second author it was already clear

that it was necessary to work with an explicit notion of subset, and with

a primitive notion of proposition using the judgement that a proposition

is true without any reference to proof-terms in Martin-Löf (1985). Such a

conception of subsets and propositions was later specified in Sambin and

Valentini (1998) as a tool to be added on top of type theory. As noticed

in Maietti (1998, 2005a), working with existential quantifiers with no proof

terms means that the axiom of choice no longer holds. This is different from

MLTT where existential quantifications are identified with indexed sums,

according to the proposition-as-set isomorphism, thus making the axiom of

choice (AC) derivable. Moreover, this explains why in formal topology, as

developed by the second author, every use of the axiom of choice was ex-

plicit. Given that the notion of subset in Sambin and Valentini (1998) and

a primitive notion of proof-irrelevant propositions have been incorporated

in our Minimalist Foundation, all the main definitions and results on formal

topology (by the second author) can be carried in it. Actually the combi-

nation of the tool of extensional subsets with the intensional MLTT partly

anticipated the notion of two-level theory in Maietti and Sambin (2005),

because subsets are not formally included in MLTT.

The main idea of formal topology is to replace the notion of concrete

space with an abstract axiomatization of the structure of open subsets, and
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then to recover its points in a formal way as suitable subsets of opens. The

precise definition is reached by describing the structure of the set S of basic

neighbourhoods in a concrete space (X, ext , S) with no mention of the set

X of points.

While in the concept of concrete space (X, ext , S) points in X are given

in the same time with the formal basic neighbourhoods in S and both form a

set, in formal topology only the structure of opens is described starting from

the set S of formal basic neighbourhoods and from a new primitive relation

aCU , called formal cover, between formal basic neighbourhoods a ∈ S and

subsets U ⊆ S. A formal cover relation is the abstract counterpart of

ext a ⊆ extU

which expresses in a concrete space that the open extU is a covering of the

basic neighbourhood ext a. Then, the notion of formal topology extends that

of formal cover with the addition of a primitive predicate Pos(a) for a ∈ S,

which is the abstract counterpart of the assertion that the basic neighbour-

hood ext a is inhabited. Details of the definitions are now presented.

Definition 1.9 (formal cover) A formal cover A = (S,C) is given by a

set S and a relation C ⊆ S ×P(S) between elements and subsets of S that

satisfies the following rules for every a ∈ S and U, V ⊆ S:

a ε U
aC U

reflexivity
aC U U C V

aC V
transitivity

aC U aC V
aC U↓AV

convergence

where U C V
def⇐⇒ (∀ b ε U) (b C V ) and U ↓A V = {a ∈ S : (∃u ε U)(a C

u) & (∃v ε V )(aC v)}.

This definition provides a predicative counterpart of the impredicate no-

tion of pointfree topology called locale in MacLane and Moerdijk (1992);

Johnstone (1982). In fact, to any formal cover A = (S,C) we can associate

an operator A on P(S), i.e. an operation A : P(S) → P(S) (that by abuse

of notation we call as the formal cover itself!), by putting

AU def
= {a ∈ S | aC U}. (1)

for any U ⊆ S. Then, reflexivity and transitivity of the cover means that

the operator A is a saturation (or closure operator) and convergence means

that A satisfies

A(U ↓A V ) = AU ∩ AV.
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The collection Sat(A) of all fixed points of the operator A (i.e. all subsets U

of S satisfying A(U) = U) with the order given by inclusion form a locale.

See Ciraulo et al. (2013) for an account and discussion on the several variants

of the definitions of formal cover.

Then a formal topology is defined as follows:

Definition 1.10 A formal topology S = (S,C,Pos) is a formal cover (S,C)

equipped with a positivity predicate, that is a predicate Pos(a) for a ∈ S

which satisfies the conditions

(monotonicity)
Pos(a) a C U

(∃u ε U) Pos(u)
(positivity)

Pos(a)→ a C U

a C U

Formal topologies provide a predicative counterpart of the impredicative

notion of open locale in Joyal and Tierney ((1984)).

Formal covers, as well as formal topologies, can be inductively generated

from a set-indexed family of axioms of the form aC U :

Definition 1.11 Given a set S, an axiom-set is a pair I, C, given by a

family of sets I(a) for each a ∈ S and a family of subsets C(a, i) ⊆ S for

a ∈ S and i ∈ I(a) (with the intended meaning that aC C(a, i) holds).

The definition of inductively generated formal cover was introduced in

Coquand et al. (2003) and for our purposes we just recall that:

Definition 1.12 Given a pre-ordered set (S,≤) and an axiom-set I, C, the

inductively generated formal cover (formal topology) (S,CI,C) is a formal

cover (formal topology) satisfying:

(i) aCI,C C(a, i) for every a ∈ S and i ∈ I(a);

(ii) if C′ is another formal cover (formal topology) such that a C′ C(a, i) for

all a ∈ S and i ∈ I(A), then aCI,C U → aC′ U holds for all a ∈ S and

U ⊆ S.

Observe that in generating the formal topology the preorder on the set of

basic neighbourhoods (S,≤) is essential to produce a distributive lattice of

open subsets (see Ciraulo et al. (2013) for a detailed explanation).

In the Minimalist Foundation we can define some inductively generated

formal topologies but not all as shown in Maietti et al. (2021). For example,

in MF we can represent the point-free topology of real numbers or that

of the Cantor space by reproducing the argument used in Valentini (2007)

to define inductively generated formal covers, and formal topologies, in an

extension of Martin-Löf’s type theory with ordinals.

Therefore we assume the existence of an inductively generated cover when
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needed both at the extensional and at the intensional levels of MF. A proper

two-level extension of the Minimalist Foundation with generic inductively

generated formal topologies satisfying the requirements in Maietti and Sam-

bin (2005) was built in Maietti et al. (2021) and called MFind. In particular

in Maietti et al. (2021) the intensional level is shown to be consistent with

the formal Church thesis and the axiom of choice by extending Kleene real-

izability interpretation of intuitionistic arithmetic as done in Ishihara et al.

(2018) but in a constructive metatheory.

We now recall the notion of formal point. Given any formal topology S,

a formal point over S is a subset α of the set S such that it makes sense

to think of a ε α as meaning that the observable a is an approximation of

α. To obtain a precise definition, one considers the case in which S is the

topology of a concrete space X and takes some pointfree properties of the

subset { a ∈ A | x ε ext (a) }, which is the trace on S of a concrete point

x ∈ X, as the conditions to define a subset α ⊆ S to be a formal point.

Definition 1.13 (Formal point) Let A ≡ (A,C) be a formal cover. An

inhabited subset α of A is a formal point if, for any a, b ∈ A and any U ⊆ A,

it satisfies the following conditions:

(α is filtering)
a ε α b ε α

(∃c ε {a} ↓A {b}) c ε α
(α splits the cover)

a ε α a C U

(∃u ε U) u ε α

Then, one can take the collection of Pt(A) ≡ {α ∈ P(S) | α formal point }
and make it a formal space as follows:

Definition 1.14 (formal topology!formal space) For any formal cover

A ≡ (S,C), the collection Pt(A) of formal points of A with the topol-

ogy generated by the basic neighbourhoods of the form Ext (a) ≡ { α ∈
Pt(A) | a ε α } for a ∈ S defines the formal space of points of A (that by

abuse of notation we still call Pt(A)).

In an impredicative foundation, where power-collections are sets, it is clear

that Pt(A) defines a concrete space for any formal cover A. Hence, as it is

well known, impredicatively one can prove the existence of an adjunction

between formal covers and concrete spaces (see Johnstone (1982); MacLane

and Moerdijk (1992)). This impredicative adjunction associates to a formal

cover its formal space, and conversely to a concrete space (X, ext , S) the

formal cover (S,CX) defined by

aCX U ≡ ext a ⊆ extU

But, not all formal covers arise from concrete spaces in this way. Moreover,

the formal cover induced by a formal space is not necessarily equal to the
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starting formal cover A, i.e. not all formal covers are spatial. And even

more the formal space of a formal cover arising from a concrete space is

not necessarily equivalent to the starting concrete space, i.e. not all concrete

spaces are sober.

In a constructive and predicative foundation as our minimalist one, such

an adjunction is no longer available, because the collection Pt(A) is not

necessarily a set.

Here we will see at least three relevant examples of proper formal spaces,

i.e. formal spaces whose formal points cannot form a set in our MF: the

formal space of real numbers, Cantor and Baire spaces. In all these examples,

we will see how our foundation allows to distinguish points which are given

effectively, i.e. concrete points identified with lawlike sequences, from points

which are only ideally so, i.e. formal points, which are identified with choice

sequences. It is a predicative foundation which allows one, and, in the same

time compels one, to take care of this distinction between an effective or

real structure, as that of open basic neghbourhoods, from an ideal or non

effective structure as that of formal points.

So in a constructive approach to topology as our minimalist one, formal

topologies and formal points are not just an option to describe something

which is there in any case. They are introduced as the only way to treat also

those spaces which otherwise would be constructively unreachable.

4.3 Examples of pointfree topologies whose formal points do not

form a set

The first example of topology whose formal points do not form a set in the

Minimalist Foundation is the formal topology of real numbers as Dedekind

cuts:

Definition 1.15 (Formal topology of real numbers) The formal topology

of real numbers R ≡ (Q × Q,CR,PosR) is an inductively generated formal

topology defined as follows. The base is Q×Q and the basic neighbourhoods

are pairs of rational numbers, 〈p, q〉 with p, q ∈ Q. A preorder on Q × Q is

defined as follows

〈p, q〉 ≤ 〈p′, q′〉 ≡ p′ ≤ p ≤ q ≤ q′

for p, q, p′, q′ in Q. The cover is defined inductively by the following rules

(which are a formulation in our context of Joyal axioms, cf. Johnstone (1982),

pp. 123-124):
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q ≤ p
〈p, q〉CR U

〈p, q〉 ∈ U
〈p, q〉CR U

p′ ≤ p < q ≤ q′ 〈p′, q′〉CR U
〈p, q〉CR U

p ≤ r < s ≤ q 〈p, s〉CR U 〈r, q〉CR U
〈p, q〉CR U

wc
wc(〈p, q〉) CR U
〈p, q〉CR U

where in the last axiom we have used the abbreviation

wc(〈p, q〉) ≡ { 〈p′, q′〉 ∈ Q × Q | p < p′ < q′ < q}

(wc stands for ‘well-covered’).

The positivity predicate is PosR( 〈p, q〉 ) ≡ p < q, expressing that the pair

of rationals represents a non-empty interval.

As shown in Negri and Soravia (1999), formal points of the formal topology

R are in bijection with the collection of Dedekind cuts on the rationals. The

proof carries over to our foundation after observing that R can be defined

in emTT as described in Maietti et al. (2021).

Definition 1.16 A Dedekind cut on the rationals is a pair (L,U) with

inhabited L,U ⊆ Q satisfying the following properties:
(disjointness) ∀q ∈ Q ¬( q ε U & q ε L )

(L-openess) ∀p ε L ∃q ε L p < q

(U -openess) ∀q ε U ∃p ε U p < q

(L-monotonicity) ∀q ε L ∀p ∈ Q ( p < q → p ε L )

(U -monotonicity) ∀p ε U ∀q ∈ Q ( p < q → q ε U )

(locatedness) ∀q ∈ Q ∀p ∈ Q ( p < q → p ε L ∨ q ε U )

Proposition 1.17 In emTT the formal points of the inductively gener-

ated formal topology R are in bijection with the collection of Dedekind cuts

on the rationals.

Proof Given a formal point α ∈ Pt(R) we can build the following Dedekind

cut:

Lα ≡ { p ∈ Q | ∃q∈Q 〈p, q〉 ε α } Uα ≡ { q ∈ Q | ∃p∈Q 〈p, q〉 ε α }3

Conversely, given a Dedekind cut (L,U) we can define the following formal

point

α(L,U) ≡ { 〈p, q〉 ∈ Q×Q | p ε L & q ε U }

In Negri and Soravia (1999) it is proved that formal points ofR, or Dedekind

cuts, are also in bijective correspondence with Cauchy sequences à la Bishop

in Bishop (1967). This correspondence does not work in emTT: only Cauchy

3 Note that the base of our topology R does not contain +∞,−∞ as that in Negri and Soravia
(1999).
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sequences à la Bishop can be shown to be formal points of R. To make this

point clear, we recall the notion of Cauchy sequence à la Bishop. In the

following with N+ we mean the set of positive natural numbers.

Definition 1.18 (Cauchy sequence à la Bishop) A functionR(n, x) props [n ∈
N+, x ∈ Q], indicated with the usual notation (xn)n∈N+ , is a Cauchy se-

quence in emTT if we can prove for any n,m ∈ N+

| xn − xm | ≤ 1/n+ 1/m4

As in Negri and Soravia (1999), also in emTT we can prove that any

Cauchy sequence (xn)x∈N determines a formal point α of the formal topology

R if we define it by:

α ≡ { 〈p, q〉 ∈ Q×Q | ∃n ∈ N+ p < xn − 2/n < xn + 2/n < q }

Conversely, given a formal point α, we can prove in emTT that within α

there exists a countable number of strictly decreasing intervals as follows

∀n ∈ N+ ∃ 〈xn, yn〉 ∈ Q×Q ( ( 〈xn, yn〉 ε α & | xn − yn |< (2/3)n )

& ∃ 〈xn+1, yn+1〉 ∈ Q×Q ( xn ≤ xn+1 < yn+1 ≤ yn &

( 〈xn+1, yn+1〉 ε α & | xn+1 − yn+1 |< (2/3)n+1 ) ) )

This is proved by induction; in fact, for n ∈ N and 〈xn, yn〉 ε α we can find

a covering

〈xn, yn〉CR { ln1 , ln2 }

such that ln1 ≡ 〈xn, zn1〉 and ln2 ≡ 〈zn2 , yn〉 with zn1 ≡ xn + (2 · (yn −
xn))/3 and zn2 ≡ xn+(yn−xn)/3. Since the formal point α splits the cover,

we can prove

∀n ∈ N ∃ i ( iε{1, 2} & lni ε α ).

However, such lni is not necessarily unique, because the formal point can be

cointained in both!

Classically, one can define a function L(n) for n ∈ N by cases by putting

L(n) ≡

{
ln1 if ln1 ε α

ln2 if ln2 ε α & ¬ln1 ε α

Constructively this does not work because α is not complemented. But, if

we work in a foundation as Martin-Löf’s type theory MLTT, actually in the

setoid model over it, by using the axiom of dependent choice on Q × Q we

4 This is formally written as ∀ p ∈ Q ∀ q ∈ Q ( R(n, p) & R(m, q) → | q − p |≤ 1/n + 1/m )
where the definition of module is the usual one.
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can even extract an operation l(n) ∈ Q × Q [n ∈ N+] such that for any

n ∈ N+

l(n) ε α

and, after naming l(n) =Q×Q 〈xn, yn〉 the values of the operation on each

natural number, the conditions xn−yn ≤ (2/3)n and xn ≤ xn+1 < yn+1 ≤ yn
hold for each natural number n. Then, a Cauchy sequence can be defined

by taking the first components (xn)n∈N or the second components (yn)n∈N .

Hence, any Dedekind cut or formal point of R corresponds to a lawlike

Cauchy sequence à la Bishop in MLTT.

Since in our foundation no axiom of choice is available, this proof cannot

be carried out. At a closer look, it does not appear constructively justified

to be able to extract a choice of the interval where the formal point is, with

no extra information.

What actually happens in MLTT is that the splitting of points is already

given with an operation choosing an interval where the point is, and hence

from this choice a definition by cases can be given similarly to that done

classically. This example explains why in Martin-Löf’s type theory real num-

bers as formal points are only the lawlike ones, namely those for which we

can extract a lawlike Cauchy sequence.

This is not true in our foundation. In fact, the property that a for-

mal point splits the cover is expressed through an existential quantifier

∃x∈A φ(x) [w ∈ Γ] under a context Γ, which does not necessarily provide

an operation wit(d) ∈ A [w ∈ Γ] (depending on the context Γ) returning a

witness for the existential statement when this holds. Such an operation is

available only in a Kleene realizability interpretation of our foundation. As

expected, in emTT real numbers as formal points of the formal topology R
cannot coincide with lawlike Cauchy sequences (see Maietti (2012, 2018)).

Even more, real numbers as formal points of R, and hence as Dedekind cuts,

do not form a set. Analogously, also real numbers as Cauchy sequences à la

Bishop do not form a set. These results are obtained through a realizability

interpretation of emTT which interprets emTT-sets as countable subsets of

natural numbers and emTT-collections as entities which are not necessarily

countable.

Now we describe two other examples of formal topologies whose formal

points do not form a set in emTT. These are Cantor and Baire formal

topologies, which are defined as instances of the more general notion of for-

mal topology on the tree over a set. In order to define such formal topologies,

we need to represent the tree over a set A, which we identify with the nodes

labelled by lists of elements in a set A, using the abbreviation A∗ ≡ List(A).
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We write [l, x] for the list obtained by appending x ∈ A to the list l ∈ A∗
and [l, t] for the list obtained by appending the list t ∈ A∗ to the list l ∈ A∗.

Definition 1.19 The tree formal topology over a set A is the formal topol-

ogy AN ≡ (A∗, /AN ,PosAN ) where /AN is inductively generated by the

following rules

rfl
l ε V

l /AN V
≤ s v l l /AN V

s /AN V
tr
∀x ∈ A [l, x] /AN V

l /AN V

where s v l ≡ ∃t∈A∗ s =A∗ [l, t], i.e. l is an initial segment of s.

The positivity predicate is true on any element, i.e. PosAN (l) ≡ tt for any

l ∈ A∗.

Among tree formal topologies, we distinguish Cantor and Baire formal

topologies as follows:

Definition 1.20 (Cantor and Baire formal topologies) The tree formal

topology when A ≡ { 0, 1 }, namely

{ 0, 1 }N ≡ ({ 0, 1 }∗, /{ 0,1 }N ,Pos{0 , 1}N )

is called Cantor formal topology.

The tree formal topology when A ≡ N, namely

NN ≡ (N∗, /NN ,PosNN )

is called Baire formal topology.

Note that the Cantor formal topology is definable in MF but the Baire

formal topology is not as specified in Maietti et al. (2021).

Formal points of such topologies coincide with choice sequences of defini-

tion 1.6:

Proposition 1.21 Formal points Pt(AN ) of the tree formal topology over

a set A are in bijective correspondence with choice sequences on the tree A∗.

Proof. Given a formal point α, we define a function Rα(n, x) props [n ∈
N, x ∈ A] as follows:

Rα(n, a) ≡ ∃ l ε α ln+1 =A a

where ln is the n-th component of l.

Conversely, given a function R(n, x) props [n ∈ N, x ∈ A] the subset

αR ≡ { l ∈ A∗ | ∀n ∈ N ( n < lh(l) → R(n, ln+1) )}

where lh(l) is the length of l, turns out to be a formal point.
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An alternative proof follows after noting, as observed in Sigstam (1995),

that the tree formal topology over a set A is isomorphic to the exponen-

tial formal topology of the discrete formal topology of N over the discrete

formal topology on the set A (see Maietti (2005b) for a predicative treat-

ment of exponentiation). Therefore its formal points are in bijection with

functions, because every function between discrete topologies is continuous.

This explains why we denote the tree formal topology with the symbol AN .

The realizability interpretation in Maietti (2012, 2018), showing that real

numbers (both as Dedekind cuts or Cauchy sequences) do not form a set,

also shows that choices sequences as formal points of Cantor or Baire formal

topology do not form a set either and hence they only form a proper collec-

tion. Therefore predicatively we can only work with the pointfree topologies

of usual Cantor and Baire spaces.

The equivalence of each of our pointfree topologies with the corresponding

pointwise topology of their formal spaces as in definition 1.14, i.e. spatiality,

is not generally valid in emTT. Indeed, spatiality of our tree formal topolo-

gies amounts to the well known principle of Bar Induction , as first observed

in Fourman and Grayson (1982).

Definition 1.22 (Bar Induction in topological form) In emTT extended

with the inductive definitions necessary to define the formal topologies /AN

for any set A, the principle of Bar Induction is the following statement: for

any given set A

( BI(A) )

∀l ∈ A∗ ∀V ∈ P(A∗) ( ∀α ε Pt(/AN ) ( l ε α → α G V )→ l /AN V )

where

V GW ≡ ∃a ∈ A ( a ε V ∧ a ε W )

expresses that two subsets V,W of a set A overlap (see Sambin (2003)).

The above formulation of BI(A) means that the topology put on the for-

mal points of the tree A∗, that are its choice sequences, coincides with the

pointfree one. Hence, Bar Induction implies that we can reason topologi-

cally on choice sequences by induction on finite sequences, given that the

pointfree topologies are inductively generated (see Sambin (2008, 2022)).

The usual Fan theorem in Troelstra and van Dalen (1988) is then an

instance of Bar Induction (see Fourman and Grayson (1982); Gambino and

Schuster (2007)):

Definition 1.23 (Fan theorem) We call Fan theorem the formulation

BI({ 0, 1 }) of BI(A) on Cantor formal topology, namely when A ≡ { 0, 1 }.
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Spatiality of Cantor formal topology allows to derive compactness of Can-

tor space in Fourman and Grayson (1982).

In Maietti (2012, 2018) it is shown that emTT is compatible with the de-

scribed principle of Bar Induction BI(A) for any set A, and the identification

of lawlike sequences with recursive ones. Indeed, there exists a realizability

interpretation showing that real numbers and choice sequences do not form

a set validating the Formal Church thesis for operations between natural

numbers (CTtt).

Hence, the realizability interpretation in Maietti (2012, 2018) shows that

emTT is compatible with constructive foundations where Bar Induction

or Fan theorem is used as in Brouwer’s constructive pointwise approach

of topology, by keeping a computable interpretation of operations between

natural numbers with the validity of CTtt. Actually a motivation to develop

our MF was exactly to study a development of topology in the presence of

these extra axioms.

Observe that compatibility with Bar Induction and CTtt is not possible

for Martin-Löf’s type theory, because the axiom of choice, and hence also

the axiom of unique choice, is valid in there. To see this, first observe that

in our MF we can prove the well known result by Kleene Troelstra and

van Dalen (1988) that formal Church thesis for choice sequences is con-

tradictory with Fan Theorem, and hence also with Bar Induction. Observe

then that this result can be formulated by saying that there is no model of

emTT +/AN + FT + CTtt + AC!N,N. Therefore a theory validating the

axiom of unique choice cannot keep together a computational interpretation

of operations and Bar Induction. Hence, the consistency of emTT with Bar

Induction and CTtt explains why the axiom of unique choice, and a fortiori

the axiom of choice, is not valid in emTT.

5 Extending MF with choice principles

The aim of this section is to show an extension of MF with choice principles

in the spirit of BISH.

Ideally one would choose - as the most adequate basic foundation for

Bishop’s mathematics - a theory which fully axiomatizes the setoid model

on Martin-Löf’s type theory in Nordström et al. (1990). But Martin-Löf’s

type theory is intended as a full-scale theory for formalizing constructive

mathematics only if it is left opened to further extensions with all the needed

inductive definitions. Currently only the first order fragment of the setoid

model has been axiomatized categorically in Palmgren (2012). It would be
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desirable to have a type-theoretic presentation of the internal theory of the

setoid model over MLTT as an extension of emTT, or better as an ex-

tension of the internal type theory of an arithmetic locally cartesian closed

pretopos in Maietti (2005a).

Here we just consider an extension of emTT with the forms of axiom

of choice which are acceptable constructively. Indeed it is well known since

Goodman and Myhill (1978) that the full axiom of choice is not construc-

tively acceptable in foundations with extensional principles.

The two-level structure of MF makes very evident the connection estab-

lished in Martin-Löf (2006) between Zermelo’s choice axiom and the type-

theoretical axiom of choice in showing that the formula of the full axiom of

choice

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

for A,B sets and R(x, y) a small proposition, written at the extensional

level of MF gets interpreted at the intensional level of MF as Martin-Löf ’s

extensional axiom of choice in Martin-Löf (2006) represented by the formula

(ACext)

∀x ∈ A ∃y ∈ B R(x, y) −→
∃f ∈ A→ B ( Ext(f)'B

'A
& ∀x ∈ A R(x , f(x) ) )

where A , B are sets and

Ext(f)'B
'A
≡ ∀x1 ∈ A ∀x2 ∈ A ( x 'A y → f(x1) 'B f(x2) )

provided that R(x, y) is a small proposition preserving given equivalence

relations 'A and 'B in the sense that we can find in mTT a proof of

∀x1 ∈ A ∀x2 ∈ A ∀y ∈ B ( x1 'A x2 → ( R(x1, y)↔ R(x2, y) ) )

and of

∀x ∈ A ∀y1 ∈ B ∀y2 ∈ B ( y1 'B y2 → ( R(x, y1)↔ R(x, y2) ) )

As expected, the extensional axiom of choice (ACext) is not constructively

acceptable since it implies the law of the excluded middle (see Carlström

(2004); Martin-Löf (2006); Maietti (2009)).

Therefore, to develop constructive mathematics we can not use the axiom

of choice on all sets if we work in an extensional foundation as emTT. On

the contrary as shown in section 3.3, the intensional level mTT is consistent
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with the full axiom of choice

(AC)

∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

which is called intensional by Martin-Löf in Martin-Löf (2006).

The different status of (AC) in the extensional and intensional levels of

MF reflects the different status of the axiom of choice in axiomatic set

theory and in type theory. This fact was another motivation for building a

two-level theory where to distinguish the various kinds of choice principles.

Indeed, as described above the two forms of (AC) can only be visible in an

intensional theory, like mTT or MLTT, but the fact that they express the

same formula in different contexts is only visible in the two-level structure

of MF.

5.1 The extension emttac of MF

We extend the extensional level of MF to form a theory that we call emttac
for short.

This theory emttac is simply obtained from emTT by adding the axiom

of unique choice for all types and the axiom of choice for what we call

intensional sets.

Intensional sets are sets of emTT whose interpretations in mTT given in

Maietti (2009) turn out to be “faithful copies” of them in mTT (with their

terms and their propositional equality), and they include the following:

A seti ≡ N0 | N1 | List(A) | Σx∈AB(x) | A+B

provided that A and B are intensional sets, as well as B(x) [x ∈ A] is a

family of intensional sets on an intensional set A.

Then, formally the theory emttac is obtained by extending emTT with:

- the axiom of unique choice written as follows

(AC!R)

R(a, b) prop [a ∈ A, b ∈ B]
∀x ∈ A ∃!y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x)) true

for all A and B types in emTT where as usual

∃!y ∈ AR(x, y) ≡ ∃y ∈ B R(x, y) ∧ ∀y1, y2 ∈ B (R(x, y1)∧R(x, y1)→ y1 =B y2 )

- the axiom of choice on intensional sets

(iACR)

A seti B set R(a, b) props [a ∈ A, b ∈ B]
∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x)) true
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By adding the axiom of unique choice we guarantee that the graph of

each functional relation is also a graph of an operation and hence has a

computational meaning in accordance with BISH.

Following the interpretation in Maietti (2009) emttac can be interpreted

in mTT extended with a proof term pac

(ACR)

A set B set R(a, b) props [a ∈ A, b ∈ B]
pac ∈ ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

In turn this extension of mTT naturally interprets in Martin-Löf’s type

theory MLTT where we can also extract programs from its proofs. Hence,

MLTT could serve for the intensional level of a two-level foundation with

emttac for the extensional level. But a direct extension of the interpretation

in Maietti (2009) for emttac into MLTT is left to future work.

6 Concluding remarks

In our opinion the existence in MF of proper formal spaces, as the space

of real numbers both as Dedekind cuts or Cauchy sequences, constitutes an

advantage which could be useful for performing reverse Bishop constructive

mathematics. In fact, a positive and practical motivation of the minimalist

approach is to provide with a finer grid to look at reality, in particular topol-

ogy, and thus preserve pieces of information, structures, conceptual distinc-

tions (for example, all what is necessary to be able to instruct a computer)

which would be lost, and actually are not even considered, in a classical or

impredicative foundation. For instance, our Minimalist Foundation allows us

to distinguish infinitary or ideal topological concepts not enjoying induction

principles, like Brouwer’s choice sequences, from inductive or real ones, as

for example lawlike sequences. On the other hand, the minimalist attitude

means that all results in the Minimalist Foundation about topology are valid

also for the most relevant constructive and classical foundations.

Another important motivation supporting the pointfree approach to topol-

ogy is given by a recent result showing that pointfree topology can be seen

as a generalization of topology with points. To obtain this, one first has to

introduce the notion of positive topology, that is an enrichment of formal

topologies by the addition of a suitable primitive notion of closed subset.

Then one can show that the category of concrete spaces can be embedded
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in the category of positive topologies. A full book Sambin (2022) on positive

topologies and their developments is going to appear.

For the future, we plan to investigate topologies of real numbers and of

choice sequences using the more powerful tool provided by positive topolo-

gies.

Acknowledgements: We heartily thank Per Martin-Löf, MIchael Rath-

jen and Thomas Streicher for fruitful discussions on the topics of this paper.

References

Aczel, P. 1978. The type theoretic interpretation of constructive set theory.
In: Logic Colloquium ’77 (Proc. Conf., Wroc law, 1977). Stud. Logic
Foundations Math., vol. 96. Amsterdam-New York: North-Holland.

Aczel, P. 1982. The type theoretic interpretation of constructive set theory:
choice principles. In: Anne Troelstra, Dirk van Dalen (ed), The L.E.J.
Brouwer Centenary Symposium (Noordwijkerhout, 1981). Stud. Logic
Foundations Math., vol. 110. Amsterdam-New York: North-Holland.

Aczel, P. 1986. The type theoretic interpretation of constructive set the-
ory: inductive definitions. In: Logic, methodology and philosophy of
science, VII (Salzburg, 1983). Stud. Logic Foundations Math., vol. 114.
Amsterdam-New York: North-Holland.

Allen, S. F., Bickford, M., Constable, R. L., Eaton, R., Kreitz, C., Lorigo,
L., and Moran, E. 2006. Innovations in Computational Type Theory
using Nuprl. Journal of Applied Logic, 4(4), 428–469.

Asperti, A., Ricciotti, W., Coen, C. Sacerdoti, and Tassi, E. 2011. The
Matita Interactive Theorem Prover. In: Proceedings of the 23rd Inter-
national Conference on Automated Deduction (CADE-2011), Wroclaw,
Poland. LNCS, vol. 6803.

Barthes, G., Capretta, V., and Pons, O. 2003. Setoids in type theory. J.
Funct. Programming, 13(2), 261–293. Special issue on ”Logical frame-
works and metalanguages”.

Battilotti, G., and Sambin, G. 2006. Pretopologies and a uniform presenta-
tion of sup-lattices, quantales and frames. Pages 30–61 of: Special Issue:
Papers presented at the 2nd Workshop on Formal Topology (2WFTop
2002). Annals of Pure and Applied Logic, vol. 137.

Beeson, M. 1985. Foundations of Constructive Mathematics. Berlin:
Springer-Verlag.

Bell, J. L. 1988. Toposes and Local Set Theories: an introduction. Oxford:
Clarendon Press.

Bishop, E. 1967. Foundations of constructive analysis. McGraw-Hill.



the Minimalist Foundation and Bishop’s constructive mathematics 39

Bishop, E. 1970. Mathematics as a Numerical Language. Pages 53 – 71
of: Kino, A., Myhill, J., and Vesley, R.E. (eds), Intuitionism and Proof
Theory: Proceedings of the Summer Conference at Buffalo N.Y. 1968.
Studies in Logic and the Foundations of Mathematics, vol. 60. Elsevier.

Bishop, E., and Bridges, D. S. 1985. Constructive analysis. Springer.
Bove, A., Dybjer, P., and Norell, U. 2009. A Brief Overview of Agda - A

Functional Language with Dependent Types. Pages 73–78 of: Berghofer,
S., Nipkow, T., Urban, C., and Wenzel, M. (eds), Theorem Proving in
Higher Order Logics, 22nd International Conference, TPHOLs 2009.
Lecture Notes in Computer Science, vol. 5674. Springer.

Bridges, D. 2008. A reverse look at Brouwer’s Fan Theorem. Pages 316–325
of: One Hundred Years of Intuitionism (1907-2007). Birkäuser.

Bridges, D., and Richman, F. 1987. Varieties of constructive mathematics.
London Mathematical Society Lecture Note Series, vol. 97. Cambridge
University Press.

Carlström, J. 2004. EM + Ext- + ACint is equivalent to ACext. Mathe-
matical Logic Quarterly, 50(3), 236–240.

Ciraulo, F., Maietti, M. E., and Sambin, G. 2013. Convergence in formal
topology: a unifying presentation. Logic and Analysis, 5(2), 1–45.

Coq development team. 2010. The Coq Proof Assistant Reference Manual:
release 8.3. Orsay, France: INRIA.

Coquand, T. 1990. Metamathematical investigation of a calculus of construc-
tions. Pages 91–122 of: Odifreddi, P. (ed), Logic in Computer Science.
Academic Press.

Coquand, T., Sambin, G., Smith, J., and Valentini, S. 2003. Inductively
generated formal topologies. Annals of Pure and Applied Logic, 124(1-
3), 71–106.

Coquand, Th., and Paulin-Mohring, C. 1990. Inductively defined types.
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Martin-Löf, P. 1984. Intuitionistic Type Theory. Notes by G. Sambin of a
series of lectures given in Padua, June 1980. Bibliopolis, Naples.
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