A FINITE AXIOMATIZATION
 OF THE MODEL COMPANION OF SEMILATTICES

1. Preliminaries

Let $\mathcal{S L}$ be the class of meet semilattices $\mathbf{A}=(A, \wedge)$, and let $\mathcal{S} \mathcal{L}^{\text {ec }}$ be the subclass of existentially closed members of $\mathcal{S L}$. Since $\mathcal{S L}$ has the AP and JEP, $\mathcal{S L}^{\text {ec }}$ forms an elementary class, axiomatizable by $\forall \exists$-sentences.

For $\mathbf{A} \in \mathcal{S} \mathcal{L}$, one has $\mathbf{A} \in \mathcal{S} \mathcal{L}^{\text {ec }}$ iff for every finite $\mathbf{P} \leq \mathbf{A}$ and for every finite $\mathbf{Q} \in \mathcal{S L}$ that extends \mathbf{P}, that is, $\mathbf{P}<\mathbf{Q}$, the extension by \mathbf{Q} can be realized in \mathbf{A}, that is, there is an embedding $\alpha: \mathbf{Q} \hookrightarrow \mathbf{A}$ that leaves \mathbf{P} fixed.

In $\mathcal{S L}$ every finite extension $\mathbf{P}<\mathbf{Q}$ (meaning that $Q \backslash P$ is finite) can be realized by a sequence of 1 -element extensions

$$
\mathbf{P}=\mathbf{S}_{0} \leq \mathbf{S}_{1} \leq \cdots \leq \mathbf{S}_{n}=\mathbf{Q}
$$

that is, each $S_{i+1} \backslash S_{i}$ has exactly one element in it. To see this, let q be a minimal element of $Q \backslash P$. Then $S_{1}:=P \cup\{q\}$ is a subuniverse of \mathbf{Q}, so we have $\mathbf{P}<\mathbf{S}_{1} \leq \mathbf{Q}$, and \mathbf{S}_{1} is a 1-element extension of \mathbf{P}. Etc.

When working with semilattices, the following abbreviations are commonly used:

$$
\begin{array}{lll}
a \leq b & \text { means } & a \wedge b=a \\
a \not \leq b & \text { means } & \text { it is not the case that } a \leq b \\
a<b & \text { means } & (a \leq b) \&(a \neq b) \\
a \nless b & \text { means } & \text { it is not the case that } a<b .
\end{array}
$$

Likewise there are definitions for \geq and $>$. The relation \leq defines a partial order on a semilattice from which one can recapture the meet operation by $a \wedge b=\operatorname{glb}(a, b)$.

A 1-extension property $\varepsilon\left(x_{1}, \ldots, x_{n}\right)$ is a first-order formula in one of the two forms

$$
(\exists \sigma) \omega\left(x_{1}, \ldots, x_{n}, \sigma\right), \quad \omega_{1}\left(x_{1}, \ldots, x_{n}\right) \rightarrow(\exists \sigma) \omega_{2}\left(x_{1}, \ldots, x_{n}, \sigma\right),
$$

where $\omega(\vec{x}, \sigma), \omega_{1}(\vec{x}), \omega_{2}(\vec{x}, \sigma)$ are quantifier-free formulas, and $\omega(\vec{x}, \sigma), \omega_{2}(\vec{x}, \sigma)$ just (partially) describe how σ is related to x_{1}, \ldots, x_{n}. To say that a 1 -extension property $\varepsilon(\vec{x})$ holds in a semilattice \mathbf{A} means $\mathbf{A} \models(\forall \vec{x}) \varepsilon(\vec{x})$.
$\mathcal{S} \mathcal{L}^{\text {ec }}$ will be axiomatized by adding finitely many 1 -extension properties to the axioms for semilattices.

2. The 1-EXtension properties

E1: $\varepsilon_{1}(x, y)$ is $(\exists \sigma)(x<\sigma \& y<\sigma)$
This says there is an element σ above both x and y (x and y need not be distinct).
E2: $\varepsilon_{2}(x)$ is $(\exists \sigma)(\sigma<x)$
This says there is an element σ below x.
E3: $\varepsilon_{3}(x, y, z)$ is $(x<z \& y<z) \rightarrow(\exists \sigma)(x<\sigma \& y<\sigma \& \sigma<z)$.
This says that for elements x, y below z, there is an element σ above both x and y, and below z. (x, y need not be distinct.)
E4: $\varepsilon_{4}(x, y, z)$ is $(x<y \& x<z \& z \not \leq y) \rightarrow(\exists \sigma)(x<\sigma<z \& x=y \wedge \sigma)$
This says that if x is less than both y and z, and z is not $\leq y$, then there is an element σ properly between x and z whose meet with y is x.
E5: $\varepsilon_{5}(x, y)$ is $(x<y) \rightarrow(\exists \sigma)(x<\sigma \& x=y \wedge \sigma)$
This says that if x is less than y, then there is an element σ above x whose meet with y is x.
E6: $\varepsilon_{6}(x, y, z, u, v)$ is $(x<y \& x<z<u \& x=y \wedge z \& v<u \& y \wedge v \leq x) \rightarrow$ $(\exists \sigma)(z<\sigma<u \& v<\sigma \& x=y \wedge \sigma)$
This says that if x is less than both y and z, the meet of y and z is x, z and v are both less than u, and the meet of y and v is $\leq x$, then there is an element σ above both z and v, but below u, whose meet with y is x.

Remark 2.1. Thanks to Mick Adams for noting that E2 was missing from the paper [1], and E6 (as Axiom 3 of [1]) was not formulated correctly. Also Axiom 4 of [1] is not needed.

Proposition 2.2. $\mathcal{S L}^{e c}$ satisfies the 1-extension properties E1, ..., E6.

Proof. Each \mathbf{A} in $\mathcal{S} \mathcal{L}$ can be embedded in some power of the 2-element semilattice $\mathbf{2}=(\{0,1\}, \wedge)$, so we only need to consider existentially closed semilattices \mathbf{A} which are subalgebras of $\mathbf{2}^{I}$. Without loss of generality, we can assume that
${ }^{(* *)}$ every homomorphism $\alpha: \mathbf{A} \rightarrow \mathbf{2}$ appears more than once as a projection from $\pi_{i}: \mathbf{2}^{I} \rightarrow \mathbf{2}$,
that is, for more than one choice of i, for all $a \in A$ we have $\alpha(a)=\pi_{i}(a)$. In particular this means that:
($\varphi 1$) For $a \in A$ there are $i \in I$ with $a_{i}=0$.
$(\varphi 2)$ For $a \in A$ there are $i \in I$ with $a_{i}=1$ and, for every $b \in A$ with $a \not \leq b, b_{i}=0$.
Let \mathbf{A} be an existentially closed semilattice. We can assume \mathbf{A} is sitting inside some $\mathbf{2}^{I}$ as just described. The following method of proof is based on noting that if $\varepsilon(x, y, \ldots)$ is a 1 -extension property, if a, b, \ldots are elements of A such that we can find a $\sigma \in 2^{I}$ to witness the fact that $\mathbf{2}^{I} \models \varepsilon(a, b, \ldots)$, then $\mathbf{A} \models \varepsilon(a, b, \ldots)$ since \mathbf{A} is existentially closed and a subalgebra of $\mathbf{2}^{I}$.

For E1: Let $a, b \in A$. By $(\varphi 1)$, for some i we have $a_{i}=0$, and for some j we
have $b_{j}=0$. Thus $\sigma=\overrightarrow{1}$ witnesses the fact that $\mathbf{2}^{I} \models \varepsilon_{1}(a, b)$, where $\overrightarrow{1}$ is the largest element of $\mathbf{2}^{I}$.

For E2: Let $a \in A$. By $(\varphi 2)$, for some i we have $a_{i}=1$. Thus $\sigma=\overrightarrow{0}$ witnesses the fact that $\mathbf{2}^{I} \models \varepsilon_{2}(a)$, where $\overrightarrow{0}$ is the smallest element of $\mathbf{2}^{I}$.

For E3: Let $a, b<c \in A$. Since c is a maximal element among a, b, c, from $(\varphi 2)$ it follows that for some $i \neq j$ in I we have the values of a, b, c at the
indices i, j and $t \neq i, j$ given by the following table:

	i	j	$t \neq i, j$
a	0	0	a_{t}
b	0	0	b_{t}
c	1	1	c_{t}
σ	1	0	c_{t}

The last line of the table defines an element σ of 2^{I} that witnesses the fact that $\mathbf{2}^{I} \models \varepsilon_{3}(a, b, c)$ since:

- $a<\sigma$ follows from $a_{i}<\sigma_{i}, a_{j}=\sigma_{j}$ and $a_{t} \leq c_{t}=\sigma_{t}($ since $a<c)$.
- Likewise $b<\sigma$.
- $\sigma<c$ follows from $\sigma_{i}=c_{i}, \sigma_{j}<c_{j}$ and $\sigma_{t}=c_{t}$.

For E4: Suppose $a<b, c$ in \mathbf{A} with $c \not \leq b$. Again, since c is a maximal element among a, b, c, from $(\varphi 2)$ it follows that for some $i \neq j$ in I we have the values of a, b, c at the indices i, j and $t \neq i, j$ given by the table:

	i	j	$t \neq i, j$
a	0	0	a_{t}
b	0	0	b_{t}
c	1	1	c_{t}
σ	1	0	a_{t}

The last line of the table defines an element σ of 2^{I} that witnesses the fact that $\mathbf{2}^{I} \models \varepsilon_{4}(a, b, c)$ since:

- $a<\sigma$ follows from $a_{i}<\sigma_{i}, a_{j}=\sigma_{j}$, and $a_{t} \leq c_{t}=\sigma_{t}($ since $a<c)$.
- $\sigma<c$ follows from $\sigma_{i}=c_{i}, \sigma_{j}<c_{j}$, and $\sigma_{t}=c_{t}$.
- $a=b \wedge \sigma$ follows from $a_{i}=b_{i} \wedge \sigma_{i}, a_{j}=b_{j} \wedge \sigma_{j}$, and $a_{t}=b_{t} \wedge a_{t}=b_{t} \wedge \sigma_{t}$ (since $a<b$).
For E5: Suppose $a<b$ in A. Since $a, b<\overrightarrow{1}$ and $\overrightarrow{1} \not \leq b$ hold in $\mathbf{2}^{I}$, there must be an element c of \mathbf{A} such that $a, b<c$ and $c \not \approx b$ hold in \mathbf{A} (since \mathbf{A} is existentially closed). By E4, $\mathbf{A} \models \varepsilon_{4}(a, b, c)$, so there is a $\sigma \in A$ such that $a=b \wedge \sigma$ and $a<\sigma$. Thus $\mathbf{A} \models \varepsilon_{5}(a, b)$.

For E6: Suppose $a<b, a<c<d, a=b \wedge c$, and $e<d$ with $b \wedge e \leq c$ in \mathbf{A}. Since d is maximal among the elements a, b, c, d, e, from $(\varphi 2)$ it follows that for some $i \neq j$ in I we have the values of a, b, c, d, e at the indices i, j and $t \neq i, j$ given by the following table:

	i	j	$t \neq i, j$
a	0	0	a_{t}
b	0	0	b_{t}
c	0	0	c_{t}
d	1	1	d_{t}
e	0	0	e_{t}
σ	1	0	$\max \left(c_{t}, e_{t}\right)$

The last line of the table defines an element σ of 2^{I} that witnesses the fact that $\mathbf{2}^{I} \models \varepsilon_{6}(a, b, c, d, e)$ since:

- $c<\sigma$ follows from $c_{i}<\sigma_{i}, c_{j}=\sigma_{j}$ and $c_{t} \leq \max \left(c_{t}, e_{t}\right)=\sigma_{t}$.
- Likewise $e<\sigma$.
- $\sigma<d$ follows from $\sigma_{i}=d_{i}, \sigma_{j}<d_{j}$ and $\sigma_{t}=\max \left(c_{t}, e_{t}\right) \leq d_{t}$ since $c, e<d$.
- $a=b \wedge \sigma$ follows from $a_{i}=b_{i} \wedge \sigma_{i}, a_{j}=b_{j} \wedge \sigma_{j}$ and $a_{t}=b_{t} \wedge c_{t}=$ $\max \left(b_{t} \wedge c_{t}, b_{t} \wedge e_{t}\right)=b_{t} \wedge \max \left(c_{t}, e_{t}\right)=b_{t} \wedge \sigma_{t}($ since $b \wedge e \leq a=b \wedge c)$.

3. Axioms for $\mathcal{S} \mathcal{L}^{\text {EC }}$

Theorem 3.1. A semilattice \mathbf{A} is existentially closed iff each of the 1-extension properties $\varepsilon(x, y, \ldots)$ in the list $\mathrm{E} 1, \ldots \mathrm{E} 6$ holds in \mathbf{A}.

Proof. The previous section showed the (\Rightarrow) direction, so now we assume A satisfies the list of 1-extension properties and proceed to show that it must be existentially closed. Let \mathbf{P} be a finite subalgebra of \mathbf{A}, and let \mathbf{Q} be a 1-element extension of \mathbf{P}, say $Q=P \cup\{q\}, q \notin A$. We want to show that the extension \mathbf{Q} of \mathbf{P} can be realized in \mathbf{A}.

Define three subsets of P by:

$$
\begin{aligned}
M & :=\{a \in P: q<a\} \\
L & :=\{a \in P: a<q\} \\
K & :=P \backslash(L \cup M)
\end{aligned}
$$

The goal is
$(\Gamma):$ to find an element a of \mathbf{A} that satisfies the following three conditions:
$(\gamma 1)$ every element of L is below a,
$(\gamma 2) a$ is below every element of M, and
$(\gamma 3)$ for $k \in K$ one has $k \wedge a=k \wedge q$.
Then $S:=P \cup\{a\}$ is a subuniverse of \mathbf{A}, and $\mathbf{P} \leq \mathbf{S} \leq \mathbf{A}$ is a realization of the extension \mathbf{Q} of \mathbf{P} in \mathbf{A}.

It suffices to verify (Γ) for the case that each of K, L, M is nonempty because of the following. Let $p_{0}=\bigwedge P$. Since $\mathbf{A} \models \varepsilon_{2}\left(p_{0}\right)$, there is an $a_{0} \in A$ with $a_{0}<p_{0}$, so a_{0} is less than every member of P. Also by E1, using repeated applications if needed, there is an element $a_{1} \in A$ that is above every element of P. Since $a_{0}<a_{1}$, from $\mathbf{A} \models \varepsilon_{5}\left(a_{0}, a_{1}\right)$ there is an element $a_{2} \in A$ with $a_{0}=a_{1} \wedge a_{2}$. This implies that a_{2} is incomparable to every element of P. Note that $P^{\prime}:=P \cup\left\{a_{0}, a_{1}, a_{2}\right\}$ is a subuniverse of \mathbf{A}, and let \mathbf{P}^{\prime} be the corresponding semilattice. Let $Q^{\prime}:=Q \cup\left\{a_{0}, a_{1}, a_{2}\right\}$, define the relations $a_{0}<q<a_{1}$, and define $a_{2} \wedge q=a_{0}$. Then \mathbf{Q}^{\prime} is a semilattice that is a 1-element extension of \mathbf{P}^{\prime}; indeed, $Q^{\prime}=P^{\prime} \cup\{q\}$. By realizing the 1-element extension \mathbf{Q}^{\prime} of \mathbf{P}^{\prime} in \mathbf{A} one also realizes the 1-element extension \mathbf{Q} of \mathbf{P} in \mathbf{A}. The subsets $K^{\prime}, L^{\prime}, M^{\prime}$ of P^{\prime} are all nonempty.

So now we assume K, L, M are all nonempty. Then the following hold:
(V1) M is an upper segment of \mathbf{P}.
(V2) L is a lower segment of \mathbf{P}.
(V3) Every element of L is below every element of M.
(V4) $\mu_{0}:=\bigwedge M$ is an element of M.
(V5) For $k \in K$ let $\lambda_{k}:=k \wedge q$, and let $L_{k}:=\{\ell \in L: \ell<k\}$. Then $\lambda_{k} \in L_{k}$, so L_{k} is nonempty, and $\lambda_{k}=\max \left(L_{k}\right)$.
(V6) For $k \in K$ we have $k \wedge \mu_{0}=\lambda_{k}$.
We break the proof of Γ into two cases:
(Case 1): Suppose L has a largest element ℓ^{\star}. Let k_{1}, \ldots, k_{m} denote the distinct elements of K, and for $1 \leq i \leq m$ let $\ell_{i}:=\lambda_{k_{i}}$. (The ℓ_{i} need not be distinct.) Clearly $\ell_{i}=k_{i} \wedge \ell^{\star}$, for $1 \leq i \leq m$. We will show, by induction on n, that
$(\xi):$ for $1 \leq n \leq m$, there are elements $a_{1}, \ldots, a_{n} \in A$ such that $\ell^{\star}<a_{n} \leq \cdots \leq a_{1}<\mu_{0}$ and for $1 \leq i \leq n$ we have $\ell_{i}=k_{i} \wedge a_{n}$.

For $n=1$ we want to show that there is an $a_{1} \in A$ such that $\ell^{\star}<a_{1}<\mu_{0}$ and $\ell_{1}=k_{1} \wedge a_{1}$.

If $\ell_{1}=\ell^{\star}$, note that from $\ell^{\star}<\mu_{0}$ and $\mathbf{A} \models \varepsilon_{3}\left(\ell^{\star}, \mu_{0}, \mu_{0}\right)$ there is an element $\sigma \in A$ such that $\ell^{\star}<\sigma<\mu_{0}$. Then

$$
\ell_{1}=k_{1} \wedge \ell^{\star} \leq k_{1} \wedge \sigma \leq k_{1} \wedge \mu_{0}=\ell^{\star}=\ell_{1},
$$

so $\ell_{1}=k_{1} \wedge \sigma$ and $\ell^{\star}<\sigma<\mu_{0}$. Thus we can choose $a_{1}=\sigma$.
If $\ell_{1}<\ell^{\star}$ note that from $\ell_{1}<k_{1}, \ell_{1}<\ell^{\star}<\mu_{0}, \ell_{1}=k_{1} \wedge \ell^{\star}$ and $\mathbf{A} \models \varepsilon_{6}\left(\ell_{1}, k_{1}, \ell^{\star}, \mu_{0}, \ell_{1}\right)$, there is an element $\sigma \in A$ such that $\ell^{\star}<\sigma<\mu_{0}$ and $\ell_{1}=k_{1} \wedge \sigma$. We can let $a_{1}=\sigma$.

For $1<n \leq m$, assume we have found the desired a_{1}, \ldots, a_{n-1}. Then we have $\ell_{n}=k_{n} \wedge \ell^{\star} \leq k_{n} \wedge a_{n-1}$. If $\ell_{n}=k_{n} \wedge a_{n-1}$ then we can choose $a_{n}=a_{n-1}$. Otherwise, after noting that $\ell_{n}<k_{n}, \ell_{n}<\ell^{\star}<a_{n-1}$ and (again) $\ell_{n}=k_{n} \wedge \ell^{\star}$, from $\mathbf{A} \models \varepsilon_{6}\left(\ell_{n}, k_{n}, \ell^{\star}, a_{n-1}, \ell_{n}\right)$ it follows that there exists an element $\sigma \in A$ such that $\ell_{n}=k_{n} \wedge \sigma$ and $\ell^{\star}<\sigma<a_{n-1}$. Also, for $1 \leq i<n$ we have

$$
\ell_{i}=k_{i} \wedge \ell^{\star} \leq k_{i} \wedge \sigma \leq k_{i} \wedge a_{n-1}=\ell_{i}
$$

so $\ell_{i}=k_{i} \wedge \sigma$. Thus we can choose $a_{n}=\sigma$.
Having established (ξ), we can choose $a:=a_{m}$ to show (Γ) holds in Case 1.
(Case 2): Next we look at the case where L does not have a largest element. For each $k \in K$ we will first show that there is an $a_{k} \in A$ with $a_{k}<\mu_{0}, \lambda_{k}=k \wedge a_{k}$, and every element of L below a_{k}.

So fix an element $k \in K$, and let $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$ with $\ell_{1}=\lambda_{k}$. Since $\ell_{1}<k$, $\ell_{1}<\mu_{0}, \mu_{0} \not \leq k$ and $\mathbf{A} \models \varepsilon_{4}\left(\ell_{1}, k, \mu_{0}\right)$, there is an element $\sigma_{1} \in A$ with $\ell_{1}<\sigma_{1}<\mu_{0}$ and $k \wedge \sigma_{1}=\ell_{1}$. If $n=1$, then we can choose $a_{k}=\sigma_{1}$. Otherwise note that for any $\ell \in L$ we have, by V5, $k \wedge \ell \leq \ell_{1}$, since $k \wedge \ell \in L$ and $k \wedge \ell \leq k$. Then from $\mathbf{A} \models \varepsilon_{6}\left(\ell_{1}, k, \sigma_{1}, \mu_{0}, \ell_{2}\right)$ it follows that there is an element $\sigma_{2} \in A$ with $\sigma_{1}, \ell_{2}<\sigma_{2}<$ μ_{0} and $k \wedge \sigma_{2}=\ell_{1}$. Thus $\ell_{1}, \ell_{2}<\sigma_{2}<\mu_{0}$ and $k \wedge \sigma_{2}=\ell_{1}$. If $n=2$ the we can choose $a_{k}=\sigma_{2}$. Otherwise we repeat this application of E6 until one has an element $\sigma_{n} \in A$ that is greater than every element of L, that is below μ_{0}, and such that $k \wedge \sigma_{n}=\ell_{1}=\lambda_{k} ;$ and then let $a_{k}=\sigma_{n}$.

Now that we have found an a_{k} for each $k \in K$, let $a:=\bigwedge_{k \in K} a_{k}$. Clearly every member of L is $\leq a$, and $a<\mu_{0}$. a cannot belong to L since we have assumed L has no largest element. Thus every member of L is less than a. Also, for $k \in K$, we have $k \wedge a \leq k \wedge a_{k}=\lambda_{k} \leq k \wedge a$, so $\lambda_{k}=k \wedge a$, proving (Γ).

References

[1] Michael H. Albert and Stanley N. Burris, Finite axiomatizations for existentially closed posets and semilattices. Order 3 (1986), 169-178.

