A FINITE AXIOMATIZATION OF THE MODEL COMPANION OF SEMILATTICES

1. Preliminaries

Let \mathcal{SL} be the class of meet semilattices $\mathbf{A} = (A, \wedge)$, and let \mathcal{SL}^{ec} be the subclass of existentially closed members of \mathcal{SL} . Since \mathcal{SL} has the AP and JEP, \mathcal{SL}^{ec} forms an elementary class, axiomatizable by $\forall \exists$ -sentences.

For $\mathbf{A} \in \mathcal{SL}$, one has $\mathbf{A} \in \mathcal{SL}^{ec}$ iff for every finite $\mathbf{P} \leq \mathbf{A}$ and for every finite $\mathbf{Q} \in \mathcal{SL}$ that extends \mathbf{P} , that is, $\mathbf{P} < \mathbf{Q}$, the extension by \mathbf{Q} can be realized in \mathbf{A} , that is, there is an embedding $\alpha : \mathbf{Q} \hookrightarrow \mathbf{A}$ that leaves \mathbf{P} fixed.

In \mathcal{SL} every finite extension $\mathbf{P} < \mathbf{Q}$ (meaning that $Q \smallsetminus P$ is finite) can be realized by a sequence of 1-element extensions

$$\mathbf{P} = \mathbf{S}_0 \leq \mathbf{S}_1 \leq \cdots \leq \mathbf{S}_n = \mathbf{Q},$$

that is, each $S_{i+1} \\ \\S_i$ has exactly one element in it. To see this, let q be a minimal element of $Q \\ P$. Then $S_1 := P \cup \{q\}$ is a subuniverse of \mathbf{Q} , so we have $\mathbf{P} < \mathbf{S}_1 \leq \mathbf{Q}$, and \mathbf{S}_1 is a 1-element extension of \mathbf{P} . Etc.

When working with semilattices, the following abbreviations are commonly used:

 $a \leq b$ means $a \wedge b = a$ $a \not\leq b$ means it is not the case that $a \leq b$ a < b means $(a \leq b) \& (a \neq b)$ $a \not< b$ means it is not the case that a < b.

Likewise there are definitions for \geq and >. The relation \leq defines a partial order on a semilattice from which one can recapture the meet operation by $a \wedge b = \text{glb}(a, b)$.

Date: August 29, 2011.

FINITE AXIOMATIZATION

A 1-extension property $\varepsilon(x_1, \ldots, x_n)$ is a first-order formula in one of the two forms

$$(\exists \sigma)\omega(x_1,\ldots,x_n,\sigma), \qquad \omega_1(x_1,\ldots,x_n) \rightarrow (\exists \sigma)\omega_2(x_1,\ldots,x_n,\sigma),$$

where $\omega(\vec{x}, \sigma), \omega_1(\vec{x}), \omega_2(\vec{x}, \sigma)$ are quantifier-free formulas, and $\omega(\vec{x}, \sigma), \omega_2(\vec{x}, \sigma)$ just (partially) describe how σ is related to x_1, \ldots, x_n . To say that a 1-extension property $\varepsilon(\vec{x})$ holds in a semilattice **A** means **A** $\models (\forall \vec{x})\varepsilon(\vec{x})$.

 \mathcal{SL}^{ec} will be axiomatized by adding finitely many 1-extension properties to the axioms for semilattices.

2. The 1-extension properties

E1: $\varepsilon_1(x,y)$ is $(\exists \sigma)(x < \sigma \& y < \sigma)$

This says there is an element σ above both x and y (x and y need not be distinct).

E2: $\varepsilon_2(x)$ is $(\exists \sigma)(\sigma < x)$

This says there is an element σ below x.

E3: $\varepsilon_3(x, y, z)$ is $(x < z \& y < z) \rightarrow (\exists \sigma)(x < \sigma \& y < \sigma \& \sigma < z).$

This says that for elements x, y below z, there is an element σ above both x and y, and below z. (x, y need not be distinct.)

E4: $\varepsilon_4(x, y, z)$ is $(x < y \& x < z \& z \nleq y) \rightarrow (\exists \sigma)(x < \sigma < z \& x = y \land \sigma)$

This says that if x is less than both y and z, and z is not $\leq y$, then there is an element σ properly between x and z whose meet with y is x.

E5: $\varepsilon_5(x, y)$ is $(x < y) \rightarrow (\exists \sigma)(x < \sigma \& x = y \land \sigma)$

This says that if x is less than y, then there is an element σ above x whose meet with y is x.

E6: $\varepsilon_6(x, y, z, u, v)$ is $(x < y \& x < z < u \& x = y \land z \& v < u \& y \land v \le x) \rightarrow (\exists \sigma)(z < \sigma < u \& v < \sigma \& x = y \land \sigma)$

This says that if x is less than both y and z, the meet of y and z is x, z and v are both less than u, and the meet of y and v is $\leq x$, then there is an element σ above both z and v, but below u, whose meet with y is x.

Remark 2.1. Thanks to Mick Adams for noting that E2 was missing from the paper [1], and E6 (as Axiom 3 of [1]) was not formulated correctly. Also Axiom 4 of [1] is not needed.

Proposition 2.2. SL^{ec} satisfies the 1-extension properties E1, ..., E6.

Proof. Each **A** in $S\mathcal{L}$ can be embedded in some power of the 2-element semilattice $\mathbf{2} = (\{0, 1\}, \wedge)$, so we only need to consider existentially closed semilattices **A** which are subalgebras of $\mathbf{2}^{I}$. Without loss of generality, we can assume that

(**) every homomorphism $lpha: {f A}
ightarrow {f 2}$ appears more than once as a projection from $\pi_i: {f 2}^I
ightarrow {f 2}$,

that is, for more than one choice of i, for all $a \in A$ we have $\alpha(a) = \pi_i(a)$. In particular this means that:

 $(\varphi 1)$ For $a \in A$ there are $i \in I$ with $a_i = 0$.

 $(\varphi 2)$ For $a \in A$ there are $i \in I$ with $a_i = 1$ and, for every $b \in A$ with $a \nleq b, b_i = 0$.

Let **A** be an existentially closed semilattice. We can assume **A** is sitting inside some 2^{I} as just described. The following method of proof is based on noting that if $\varepsilon(x, y, ...)$ is a 1-extension property, if a, b, ... are elements of A such that we can find a $\sigma \in 2^{I}$ to witness the fact that $2^{I} \models \varepsilon(a, b, ...)$, then $\mathbf{A} \models \varepsilon(a, b, ...)$ since **A** is existentially closed and a subalgebra of 2^{I} .

- For E1: Let $a, b \in A$. By $(\varphi 1)$, for some *i* we have $a_i = 0$, and for some *j* we have $b_j = 0$. Thus $\sigma = \vec{1}$ witnesses the fact that $\mathbf{2}^I \models \varepsilon_1(a, b)$, where $\vec{1}$ is the largest element of $\mathbf{2}^I$.
- For E2: Let $a \in A$. By $(\varphi 2)$, for some *i* we have $a_i = 1$. Thus $\sigma = \vec{0}$ witnesses the fact that $\mathbf{2}^I \models \varepsilon_2(a)$, where $\vec{0}$ is the smallest element of $\mathbf{2}^I$.
- For E3: Let $a, b < c \in A$. Since c is a maximal element among a, b, c, from (φ^2) it follows that for some $i \neq j$ in I we have the values of a, b, c at the

indices i, j and $t \neq i, j$ given by the following table:

	i	j	$t \neq i, j$
a	0	0	a_t
b	0	0	b_t
С	1	1	c_t
σ	1	0	c_t

The last line of the table defines an element σ of 2^I that witnesses the fact that $\mathbf{2}^I \models \varepsilon_3(a, b, c)$ since:

- $a < \sigma$ follows from $a_i < \sigma_i$, $a_j = \sigma_j$ and $a_t \le c_t = \sigma_t$ (since a < c).
- Likewise $b < \sigma$.
- $\sigma < c$ follows from $\sigma_i = c_i, \sigma_j < c_j$ and $\sigma_t = c_t$.
- For E4: Suppose a < b, c in **A** with $c \nleq b$. Again, since c is a maximal element among a, b, c, from ($\varphi 2$) it follows that for some $i \neq j$ in I we have the values of a, b, c at the indices i, j and $t \neq i, j$ given by the table:

	i	j	$t \neq i,j$
a	0	0	a_t
b	0	0	b_t
С	1	1	c_t
σ	1	0	a_t

The last line of the table defines an element σ of 2^I that witnesses the fact that $\mathbf{2}^I \models \varepsilon_4(a, b, c)$ since:

- $a < \sigma$ follows from $a_i < \sigma_i$, $a_j = \sigma_j$, and $a_t \le c_t = \sigma_t$ (since a < c).
- $\sigma < c$ follows from $\sigma_i = c_i, \sigma_j < c_j$, and $\sigma_t = c_t$.
- $a = b \wedge \sigma$ follows from $a_i = b_i \wedge \sigma_i$, $a_j = b_j \wedge \sigma_j$, and $a_t = b_t \wedge a_t = b_t \wedge \sigma_t$ (since a < b).
- For E5: Suppose a < b in A. Since $a, b < \vec{1}$ and $\vec{1} \not\leq b$ hold in 2^{I} , there must be an element c of A such that a, b < c and $c \not\leq b$ hold in A (since A is existentially closed). By E4, $A \models \varepsilon_4(a, b, c)$, so there is a $\sigma \in A$ such that $a = b \land \sigma$ and $a < \sigma$. Thus $A \models \varepsilon_5(a, b)$.

For E6: Suppose a < b, a < c < d, $a = b \land c$, and e < d with $b \land e \leq c$ in A. Since d is maximal among the elements a, b, c, d, e, from ($\varphi 2$) it follows that for some $i \neq j$ in I we have the values of a, b, c, d, e at the indices i, j and $t \neq i, j$ given by the following table:

	i	j	$t \neq i, j$
a	0	0	a_t
b	0	0	b_t
c	0	0	c_t
d	1	1	d_t
e	0	0	e_t
σ	1	0	$\max(c_t, e_t)$

The last line of the table defines an element σ of 2^{I} that witnesses the fact that $\mathbf{2}^{I} \models \varepsilon_{6}(a, b, c, d, e)$ since:

- $c < \sigma$ follows from $c_i < \sigma_i$, $c_j = \sigma_j$ and $c_t \le \max(c_t, e_t) = \sigma_t$.
- Likewise $e < \sigma$.
- $\sigma < d$ follows from $\sigma_i = d_i$, $\sigma_j < d_j$ and $\sigma_t = \max(c_t, e_t) \leq d_t$ since c, e < d.
- $a = b \wedge \sigma$ follows from $a_i = b_i \wedge \sigma_i$, $a_j = b_j \wedge \sigma_j$ and $a_t = b_t \wedge c_t = \max(b_t \wedge c_t, b_t \wedge e_t) = b_t \wedge \max(c_t, e_t) = b_t \wedge \sigma_t$ (since $b \wedge e \leq a = b \wedge c$).

3. Axioms for SL^{ec}

Theorem 3.1. A semilattice **A** is existentially closed iff each of the 1-extension properties $\varepsilon(x, y, ...)$ in the list E1,... E6 holds in **A**.

Proof. The previous section showed the (\Rightarrow) direction, so now we assume **A** satisfies the list of 1-extension properties and proceed to show that it must be existentially closed. Let **P** be a finite subalgebra of **A**, and let **Q** be a 1-element extension of **P**, say $Q = P \cup \{q\}, q \notin A$. We want to show that the extension **Q** of **P** can be realized in **A**. Define three subsets of P by:

$$M := \{a \in P : q < a\}$$
$$L := \{a \in P : a < q\}$$
$$K := P \smallsetminus (L \cup M).$$

The goal is

(Γ): to find an element *a* of **A** that satisfies the following three conditions:

 $(\gamma 1)$ every element of L is below a,

- $(\gamma 2)$ a is below every element of M, and
- $(\gamma 3)$ for $k \in K$ one has $k \wedge a = k \wedge q$.

Then $S := P \cup \{a\}$ is a subuniverse of **A**, and $\mathbf{P} \leq \mathbf{S} \leq \mathbf{A}$ is a realization of the extension **Q** of **P** in **A**.

It suffices to verify (Γ) for the case that each of K, L, M is nonempty because of the following. Let $p_0 = \bigwedge P$. Since $\mathbf{A} \models \varepsilon_2(p_0)$, there is an $a_0 \in A$ with $a_0 < p_0$, so a_0 is less than every member of P. Also by E1, using repeated applications if needed, there is an element $a_1 \in A$ that is above every element of P. Since $a_0 < a_1$, from $\mathbf{A} \models \varepsilon_5(a_0, a_1)$ there is an element $a_2 \in A$ with $a_0 = a_1 \land a_2$. This implies that a_2 is incomparable to every element of P. Note that $P' := P \cup \{a_0, a_1, a_2\}$ is a subuniverse of \mathbf{A} , and let \mathbf{P}' be the corresponding semilattice. Let $Q' := Q \cup \{a_0, a_1, a_2\}$, define the relations $a_0 < q < a_1$, and define $a_2 \land q = a_0$. Then \mathbf{Q}' is a semilattice that is a 1-element extension of \mathbf{P}' ; indeed, $Q' = P' \cup \{q\}$. By realizing the 1-element extension \mathbf{Q}' of \mathbf{P}' in \mathbf{A} one also realizes the 1-element extension \mathbf{Q} of \mathbf{P} in \mathbf{A} . The subsets K', L', M' of P' are all nonempty.

So now we assume K, L, M are all nonempty. Then the following hold:

- (V1) M is an upper segment of **P**.
- (V2) L is a lower segment of **P**.
- (V3) Every element of L is below every element of M.
- (V4) $\mu_0 := \bigwedge M$ is an element of M.

- (V5) For $k \in K$ let $\lambda_k := k \wedge q$, and let $L_k := \{\ell \in L : \ell < k\}$. Then $\lambda_k \in L_k$, so L_k is nonempty, and $\lambda_k = \max(L_k)$.
- (V6) For $k \in K$ we have $k \wedge \mu_0 = \lambda_k$.

We break the proof of Γ into two cases:

<u>(Case 1)</u>: Suppose L has a largest element ℓ^* . Let k_1, \ldots, k_m denote the distinct elements of K, and for $1 \leq i \leq m$ let $\ell_i := \lambda_{k_i}$. (The ℓ_i need not be distinct.) Clearly $\ell_i = k_i \wedge \ell^*$, for $1 \leq i \leq m$. We will show, by induction on n, that

(ξ): for $1 \leq n \leq m$, there are elements $a_1, \ldots, a_n \in A$ such that $\ell^* < a_n \leq \cdots \leq a_1 < \mu_0$ and for $1 \leq i \leq n$ we have $\ell_i = k_i \wedge a_n$.

For n = 1 we want to show that there is an $a_1 \in A$ such that $\ell^* < a_1 < \mu_0$ and $\ell_1 = k_1 \wedge a_1$.

If $\ell_1 = \ell^*$, note that from $\ell^* < \mu_0$ and $\mathbf{A} \models \varepsilon_3(\ell^*, \mu_0, \mu_0)$ there is an element $\sigma \in A$ such that $\ell^* < \sigma < \mu_0$. Then

$$\ell_1 = k_1 \wedge \ell^* \le k_1 \wedge \sigma \le k_1 \wedge \mu_0 = \ell^* = \ell_1,$$

so $\ell_1 = k_1 \wedge \sigma$ and $\ell^* < \sigma < \mu_0$. Thus we can choose $a_1 = \sigma$.

If $\ell_1 < \ell^*$ note that from $\ell_1 < k_1$, $\ell_1 < \ell^* < \mu_0$, $\ell_1 = k_1 \land \ell^*$ and $\mathbf{A} \models \varepsilon_6(\ell_1, k_1, \ell^*, \mu_0, \ell_1)$, there is an element $\sigma \in A$ such that $\ell^* < \sigma < \mu_0$ and $\ell_1 = k_1 \land \sigma$. We can let $a_1 = \sigma$.

For $1 < n \leq m$, assume we have found the desired a_1, \ldots, a_{n-1} . Then we have $\ell_n = k_n \wedge \ell^* \leq k_n \wedge a_{n-1}$. If $\ell_n = k_n \wedge a_{n-1}$ then we can choose $a_n = a_{n-1}$. Otherwise, after noting that $\ell_n < k_n$, $\ell_n < \ell^* < a_{n-1}$ and (again) $\ell_n = k_n \wedge \ell^*$, from $\mathbf{A} \models \varepsilon_6(\ell_n, k_n, \ell^*, a_{n-1}, \ell_n)$ it follows that there exists an element $\sigma \in A$ such that $\ell_n = k_n \wedge \sigma$ and $\ell^* < \sigma < a_{n-1}$. Also, for $1 \leq i < n$ we have

$$\ell_i = k_i \wedge \ell^\star \le k_i \wedge \sigma \le k_i \wedge a_{n-1} = \ell_i,$$

so $\ell_i = k_i \wedge \sigma$. Thus we can choose $a_n = \sigma$.

Having established (ξ) , we can choose $a := a_m$ to show (Γ) holds in Case 1.

FINITE AXIOMATIZATION

<u>(Case 2)</u>: Next we look at the case where L does not have a largest element. For each $k \in K$ we will first show that there is an $a_k \in A$ with $a_k < \mu_0$, $\lambda_k = k \wedge a_k$, and every element of L below a_k .

So fix an element $k \in K$, and let $L = \{\ell_1, \ldots, \ell_n\}$ with $\ell_1 = \lambda_k$. Since $\ell_1 < k$, $\ell_1 < \mu_0, \mu_0 \nleq k$ and $\mathbf{A} \models \varepsilon_4(\ell_1, k, \mu_0)$, there is an element $\sigma_1 \in A$ with $\ell_1 < \sigma_1 < \mu_0$ and $k \land \sigma_1 = \ell_1$. If n = 1, then we can choose $a_k = \sigma_1$. Otherwise note that for any $\ell \in L$ we have, by V5, $k \land \ell \leq \ell_1$, since $k \land \ell \in L$ and $k \land \ell \leq k$. Then from $\mathbf{A} \models \varepsilon_6(\ell_1, k, \sigma_1, \mu_0, \ell_2)$ it follows that there is an element $\sigma_2 \in A$ with $\sigma_1, \ell_2 < \sigma_2 < \mu_0$ and $k \land \sigma_2 = \ell_1$. Thus $\ell_1, \ell_2 < \sigma_2 < \mu_0$ and $k \land \sigma_2 = \ell_1$. If n = 2 the we can choose $a_k = \sigma_2$. Otherwise we repeat this application of E6 until one has an element $\sigma_n \in A$ that is greater than every element of L, that is below μ_0 , and such that $k \land \sigma_n = \ell_1 = \lambda_k$; and then let $a_k = \sigma_n$.

Now that we have found an a_k for each $k \in K$, let $a := \bigwedge_{k \in K} a_k$. Clearly every member of L is $\leq a$, and $a < \mu_0$. a cannot belong to L since we have assumed Lhas no largest element. Thus every member of L is less than a. Also, for $k \in K$, we have $k \wedge a \leq k \wedge a_k = \lambda_k \leq k \wedge a$, so $\lambda_k = k \wedge a$, proving (Γ).

References

 Michael H. Albert and Stanley N. Burris, *Finite axiomatizations for existentially closed posets* and semilattices. Order 3 (1986), 169–178.