
A FINITE AXIOMATIZATION
OF THE MODEL COMPANION

OF SEMILATTICES

1. Preliminaries

Let SL be the class of meet semilattices A = (A,∧), and let SLec be the subclass

of existentially closed members of SL. Since SL has the AP and JEP, SLec forms

an elementary class, axiomatizable by ∀∃-sentences.

For A ∈ SL, one has A ∈ SLec iff for every finite P ≤ A and for every finite

Q ∈ SL that extends P, that is, P < Q, the extension by Q can be realized in A,

that is, there is an embedding α : Q ↪→ A that leaves P fixed.

In SL every finite extension P < Q (meaning that QrP is finite) can be realized

by a sequence of 1-element extensions

P = S0 ≤ S1 ≤ · · · ≤ Sn = Q,

that is, each Si+1 r Si has exactly one element in it. To see this, let q be a minimal

element of QrP . Then S1 := P ∪{q} is a subuniverse of Q, so we have P < S1 ≤ Q,

and S1 is a 1-element extension of P. Etc.

When working with semilattices, the following abbreviations are commonly used:

a ≤ b means a ∧ b = a

a � b means it is not the case that a ≤ b

a < b means (a ≤ b) & (a 6= b)

a ≮ b means it is not the case that a < b.

Likewise there are definitions for ≥ and >. The relation ≤ defines a partial order on

a semilattice from which one can recapture the meet operation by a ∧ b = glb(a, b).
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A 1-extension property ε(x1, . . . , xn) is a first-order formula in one of the two forms

(∃σ)ω(x1, . . . , xn, σ), ω1(x1, . . . , xn) → (∃σ)ω2(x1, . . . , xn, σ),

where ω(~x, σ), ω1(~x), ω2(~x, σ) are quantifier-free formulas, and ω(~x, σ), ω2(~x, σ) just

(partially) describe how σ is related to x1, . . . , xn. To say that a 1-extension property

ε(~x) holds in a semilattice A means A |= (∀~x)ε(~x).

SLec will be axiomatized by adding finitely many 1-extension properties to the

axioms for semilattices.

2. The 1-extension properties

E1: ε1(x, y) is (∃σ)(x < σ & y < σ)

This says there is an element σ above both x and y (x and y need not be

distinct).

E2: ε2(x) is (∃σ)(σ < x)

This says there is an element σ below x.

E3: ε3(x, y, z) is (x < z & y < z) → (∃σ)(x < σ & y < σ & σ < z).

This says that for elements x, y below z, there is an element σ above both x

and y, and below z. (x, y need not be distinct.)

E4: ε4(x, y, z) is (x < y & x < z & z � y)→ (∃σ)(x < σ < z & x = y ∧ σ)

This says that if x is less than both y and z, and z is not ≤ y, then there is

an element σ properly between x and z whose meet with y is x.

E5: ε5(x, y) is (x < y)→ (∃σ)(x < σ & x = y ∧ σ)

This says that if x is less than y, then there is an element σ above x whose

meet with y is x.

E6: ε6(x, y, z, u, v) is (x < y & x < z < u & x = y ∧ z & v < u & y ∧ v ≤ x)→
(∃σ)(z < σ < u & v < σ & x = y ∧ σ)

This says that if x is less than both y and z, the meet of y and z is x, z and v

are both less than u, and the meet of y and v is ≤ x, then there is an element

σ above both z and v, but below u, whose meet with y is x.
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Remark 2.1. Thanks to Mick Adams for noting that E2 was missing from the paper

[1], and E6 (as Axiom 3 of [1]) was not formulated correctly. Also Axiom 4 of [1] is

not needed.

Proposition 2.2. SLec satisfies the 1-extension properties E1, . . . , E6.

Proof. Each A in SL can be embedded in some power of the 2-element semilattice

2 = ({0, 1},∧), so we only need to consider existentially closed semilattices A which

are subalgebras of 2I . Without loss of generality, we can assume that

(**) every homomorphism α : A → 2 appears more than once as a

projection from πi : 2I → 2,

that is, for more than one choice of i, for all a ∈ A we have α(a) = πi(a). In

particular this means that:

(ϕ1) For a ∈ A there are i ∈ I with ai = 0.

(ϕ2) For a ∈ A there are i ∈ I with ai = 1 and, for every b ∈ A with a � b, bi = 0.

Let A be an existentially closed semilattice. We can assume A is sitting inside

some 2I as just described. The following method of proof is based on noting that if

ε(x, y, . . .) is a 1-extension property, if a, b, . . . are elements of A such that we can

find a σ ∈ 2I to witness the fact that 2I |= ε(a, b, . . .), then A |= ε(a, b, . . .) since A

is existentially closed and a subalgebra of 2I .

For E1: Let a, b ∈ A. By (ϕ1), for some i we have ai = 0, and for some j we

have bj = 0. Thus σ = ~1 witnesses the fact that 2I |= ε1(a, b), where ~1 is the

largest element of 2I .

For E2: Let a ∈ A. By (ϕ2), for some i we have ai = 1. Thus σ = ~0 witnesses

the fact that 2I |= ε2(a), where ~0 is the smallest element of 2I .

For E3: Let a, b < c ∈ A. Since c is a maximal element among a, b, c, from

(ϕ2) it follows that for some i 6= j in I we have the values of a, b, c at the
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indices i, j and t 6= i, j given by the following table:

i j t 6= i, j

a 0 0 at

b 0 0 bt

c 1 1 ct

σ 1 0 ct

The last line of the table defines an element σ of 2I that witnesses the fact

that 2I |= ε3(a, b, c) since:

• a < σ follows from ai < σi, aj = σj and at ≤ ct = σt (since a < c).

• Likewise b < σ.

• σ < c follows from σi = ci, σj < cj and σt = ct.

For E4: Suppose a < b, c in A with c � b. Again, since c is a maximal element

among a, b, c, from (ϕ2) it follows that for some i 6= j in I we have the values

of a, b, c at the indices i, j and t 6= i, j given by the table:

i j t 6= i, j

a 0 0 at

b 0 0 bt

c 1 1 ct

σ 1 0 at

The last line of the table defines an element σ of 2I that witnesses the fact

that 2I |= ε4(a, b, c) since:

• a < σ follows from ai < σi, aj = σj, and at ≤ ct = σt (since a < c).

• σ < c follows from σi = ci, σj < cj, and σt = ct.

• a = b∧σ follows from ai = bi ∧σi, aj = bj ∧σj, and at = bt ∧ at = bt ∧σt
(since a < b).

For E5: Suppose a < b in A. Since a, b < ~1 and ~1 � b hold in 2I , there must

be an element c of A such that a, b < c and c � b hold in A (since A is

existentially closed). By E4, A |= ε4(a, b, c), so there is a σ ∈ A such that

a = b ∧ σ and a < σ. Thus A |= ε5(a, b).



FINITE AXIOMATIZATION 5

For E6: Suppose a < b, a < c < d, a = b ∧ c, and e < d with b ∧ e ≤ c in A.

Since d is maximal among the elements a, b, c, d, e, from (ϕ2) it follows that

for some i 6= j in I we have the values of a, b, c, d, e at the indices i, j and

t 6= i, j given by the following table:

i j t 6= i, j

a 0 0 at

b 0 0 bt

c 0 0 ct

d 1 1 dt

e 0 0 et

σ 1 0 max(ct, et)

The last line of the table defines an element σ of 2I that witnesses the fact

that 2I |= ε6(a, b, c, d, e) since:

• c < σ follows from ci < σi, cj = σj and ct ≤ max(ct, et) = σt.

• Likewise e < σ.

• σ < d follows from σi = di, σj < dj and σt = max(ct, et) ≤ dt since

c, e < d.

• a = b ∧ σ follows from ai = bi ∧ σi, aj = bj ∧ σj and at = bt ∧ ct =

max(bt ∧ ct, bt ∧ et) = bt ∧max(ct, et) = bt ∧ σt (since b ∧ e ≤ a = b ∧ c).

�

3. Axioms for SLec

Theorem 3.1. A semilattice A is existentially closed iff each of the 1-extension

properties ε(x, y, . . .) in the list E1,. . . E6 holds in A.

Proof. The previous section showed the (⇒) direction, so now we assume A satisfies

the list of 1-extension properties and proceed to show that it must be existentially

closed. Let P be a finite subalgebra of A, and let Q be a 1-element extension of P,

say Q = P ∪{q}, q /∈ A. We want to show that the extension Q of P can be realized

in A.
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Define three subsets of P by:

M := {a ∈ P : q < a}

L := {a ∈ P : a < q}

K := P r (L ∪M).

The goal is

(Γ): to find an element a of A that satisfies the following three con-

ditions:

(γ1) every element of L is below a,

(γ2) a is below every element of M , and

(γ3) for k ∈ K one has k ∧ a = k ∧ q.

Then S := P ∪ {a} is a subuniverse of A, and P ≤ S ≤ A is a realization of the

extension Q of P in A.

It suffices to verify (Γ) for the case that each of K,L,M is nonempty because of

the following. Let p0 =
∧
P . Since A |= ε2(p0), there is an a0 ∈ A with a0 < p0, so

a0 is less than every member of P . Also by E1, using repeated applications if needed,

there is an element a1 ∈ A that is above every element of P . Since a0 < a1, from

A |= ε5(a0, a1) there is an element a2 ∈ A with a0 = a1 ∧ a2. This implies that a2 is

incomparable to every element of P . Note that P ′ := P ∪{a0, a1, a2} is a subuniverse

of A, and let P′ be the corresponding semilattice. Let Q′ := Q ∪ {a0, a1, a2}, define

the relations a0 < q < a1, and define a2 ∧ q = a0. Then Q′ is a semilattice that

is a 1-element extension of P′; indeed, Q′ = P ′ ∪ {q}. By realizing the 1-element

extension Q′ of P′ in A one also realizes the 1-element extension Q of P in A. The

subsets K ′, L′,M ′ of P ′ are all nonempty.

So now we assume K,L,M are all nonempty. Then the following hold:

(V1) M is an upper segment of P.

(V2) L is a lower segment of P.

(V3) Every element of L is below every element of M .

(V4) µ0 :=
∧
M is an element of M .
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(V5) For k ∈ K let λk := k ∧ q, and let Lk := {` ∈ L : ` < k}. Then λk ∈ Lk, so Lk

is nonempty, and λk = max(Lk).

(V6) For k ∈ K we have k ∧ µ0 = λk.

We break the proof of Γ into two cases:

(Case 1): Suppose L has a largest element `?. Let k1, . . . , km denote the distinct

elements of K, and for 1 ≤ i ≤ m let `i := λki . (The `i need not be distinct.) Clearly

`i = ki ∧ `?, for 1 ≤ i ≤ m. We will show, by induction on n, that

(ξ): for 1 ≤ n ≤ m, there are elements a1, . . . , an ∈ A such that

`? < an ≤ · · · ≤ a1 < µ0 and for 1 ≤ i ≤ n we have `i = ki ∧ an.

For n = 1 we want to show that there is an a1 ∈ A such that `? < a1 < µ0 and

`1 = k1 ∧ a1.

If `1 = `? , note that from `? < µ0 and A |= ε3(`
?, µ0, µ0) there is an

element σ ∈ A such that `? < σ < µ0. Then

`1 = k1 ∧ `? ≤ k1 ∧ σ ≤ k1 ∧ µ0 = `? = `1,

so `1 = k1 ∧ σ and `? < σ < µ0. Thus we can choose a1 = σ.

If `1 < `? note that from `1 < k1, `1 < `? < µ0, `1 = k1 ∧ `?

and A |= ε6(`1, k1, `
?, µ0, `1), there is an element σ ∈ A such that

`? < σ < µ0 and `1 = k1 ∧ σ. We can let a1 = σ.

For 1 < n ≤ m, assume we have found the desired a1, . . . , an−1. Then we have

`n = kn ∧ `? ≤ kn ∧ an−1. If `n = kn ∧ an−1 then we can choose an = an−1.

Otherwise, after noting that `n < kn, `n < `? < an−1 and (again) `n = kn ∧ `?, from

A |= ε6(`n, kn, `
?, an−1, `n) it follows that there exists an element σ ∈ A such that

`n = kn ∧ σ and `? < σ < an−1. Also, for 1 ≤ i < n we have

`i = ki ∧ `? ≤ ki ∧ σ ≤ ki ∧ an−1 = `i,

so `i = ki ∧ σ. Thus we can choose an = σ.

Having established (ξ), we can choose a := am to show (Γ) holds in Case 1.
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(Case 2): Next we look at the case where L does not have a largest element. For

each k ∈ K we will first show that there is an ak ∈ A with ak < µ0, λk = k ∧ ak, and

every element of L below ak.

So fix an element k ∈ K, and let L = {`1, . . . , `n} with `1 = λk. Since `1 < k,

`1 < µ0, µ0 � k and A |= ε4(`1, k, µ0), there is an element σ1 ∈ A with `1 < σ1 < µ0

and k ∧ σ1 = `1. If n = 1, then we can choose ak = σ1. Otherwise note that for

any ` ∈ L we have, by V5, k ∧ ` ≤ `1, since k ∧ ` ∈ L and k ∧ ` ≤ k. Then from

A |= ε6(`1, k, σ1, µ0, `2) it follows that there is an element σ2 ∈ A with σ1, `2 < σ2 <

µ0 and k ∧ σ2 = `1. Thus `1, `2 < σ2 < µ0 and k ∧ σ2 = `1. If n = 2 the we can

choose ak = σ2. Otherwise we repeat this application of E6 until one has an element

σn ∈ A that is greater than every element of L, that is below µ0, and such that

k ∧ σn = `1 = λk; and then let ak = σn.

Now that we have found an ak for each k ∈ K, let a :=
∧

k∈K ak. Clearly every

member of L is ≤ a, and a < µ0. a cannot belong to L since we have assumed L

has no largest element. Thus every member of L is less than a. Also, for k ∈ K, we

have k ∧ a ≤ k ∧ ak = λk ≤ k ∧ a, so λk = k ∧ a, proving (Γ).

�
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