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Chapter X
Compactifications

1.  Basic Definitions and Examples

Definition 1.1   Suppose  is a homeomorphism of  into , where  is a compact 2 À \ Ä ] \ ] ] X#

space.  If  is dense in , then the pair  is called a  of .2Ò\Ó ] Ð] ß 2Ñ \compactification

By definition, only Hausdorff spaces  can (possibly) have a compactification.\

If we are just working with a compactification  of , then we can usually just assumesingle ] \
that  and that  is the identity map so that the compactification is just a compact\ © ] 2 
Hausdorff space that contains as a dense subspace.  In fact, if , we will always assume\ \ ª ]
that  is the identity map unless something else is stated.    We made similar assumptions in2
discussing of the completion of a metric space  in Chapter IV.Ð\ß .Ñ

However, we will sometimes want to  different  of  (in a sense to becompare compactifications \
discussed later) and then we may need to know how  is embedded in .  We will see that\ ]
different dense embeddings  of  into the same space  can produce “nonequivalent”2 \ ]
compactifications.  Therefore, strictly speaking, a “compactification of ” is the  .\ Ð] ß 2Ñpair

If, in Definition 1.1,  is already a compact Hausdorff space, then  is closed and dense in \ 2Ò\Ó ]
and therefore .  Therefore, topologically, the only possible compactification of  is 2Ò\Ó œ ] \ \
itself.

The next theorem restates exactly which spaces have compactifications.

Theorem 1.2   A space  has a compactification iff it is a Tychonoff space.\

Proof    See the remarks following Corollary IX.6.3.   ñ

Example 1.3  The circle can be viewed as a compactification of the real line, .  Let be theW 2" ‘
“inverse projection” pictured below:  here North Pole .  We can think of  as a2Ò Ó œ W  Ö × 2Ò Ó‘ ‘"

“bent” topological copy of , and the compactification is created by “tying together” the two‘
ends of  by adding one new “point at infinity” (the North Pole).‘
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Since ,   is called a  of .  (lW  2Ò Ól œ " ÐW ß 2Ñ" "‘ ‘one-point compactification We will see in
Example 4.2 that we can call   one-point compactification of W Þ" the ‘ )

Example 1.4

 1)  is a compact Hausdorff space containing  are a dense subspace, soÒ  "ß "Ó Ð  "ß "Ñ
Ò  "ß "Ó Ð  "ß "Ñ 2 œ 3Ñ is a “two-point” compactification of   (with embedding .

 2) If  is a homeomorphism,  then  gives a “two-2 À Ä Ð  "ß "Ñ 3 ‰ 2 À Ä Ò  "ß "Ó‘ ‘
point” compactification of .   ‘ It is true (but not so easy to prove) that there is no -point8
compactification of   for ‘ =#  8  Þ!

Example 1.5   Suppose is a one-point compactification of .  If  is an open set] œ \ ∪ Ö:× \ S
containing  in , then  and  is compact.  Therefore the open sets containing: ] O œ ] S © \ O
: \ are the complements of compact subsets of .  (Look at open neighborhoods of  the North
Pole  in the one-point compactification of ;  a base for the open neighborhoods of : W :" ‘
consists of complements of the closed (compact!) arcs that do not contain the North Pole.)
  Suppose where  is open in .  B − Y ß Y \ Because  is Hausdorff, we can find]
disjoint open sets  and  in with  and  Since , we have thatZ [ ] B − Z : − [ Þ : Â Z
Z © \ Z ∩\ œ Z \ B − Y ∩ Z and  therefore  is also open in .  Since , we can use the
regularity of  to choose an open set  in  for which cl\ K \ B − K © K © Y ∩ Z © YÞ\

But (a closed set so cl . ThereforeK © Z © ] [ Ñß K © ] [ © \in ] ]

cl cl cl , so cl  is also closed in So cl  is a compact\ ] ] \ \K œ \ ∩ K œ K K ] Þ K
neighborhood of  inside .   This shows that eB Y ach point  has a neighborhood base inB − \
\ consisting of  neighborhoods.compact

The property in the last sentence is important enough to deserve a name: such spaces are called
locally compact.
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2. Local Compactness

Definition 2.1 A Hausdorff space  is called  if each point  has a\ B − \locally compact
neighborhood base consisting of compact neighborhoods Þ

Example 2.2

 1) A discrete space is locally compact.

 2)  is locally compact: at each point , the collection of closed balls centered at  is a‘8 B B
base of compact neighborhoods.  On the other hand, neither   nor   is locally compact. (  Why? Ñ

 3) If is a compact Hausdorff space, then  is regular so there is a base of closed\ \
neighborhoods at each point and each of these neighborhoods is compact.  Therefore  is \
locally compact.

 4) Each ordinal space  is locally compact.  The space  is a (one-point)Ò!ß Ñ Ò!ß Óα α
compactification of   iff  is a limit ordinal.Ò!ß Ñα α

 5 Example 1.5 shows that if a space   a one-point compactification, it must beÑ \ has
locally compact (and, of course, noncompact and Hausdorff).  Therefore neither  nor  has a 
one-point compactification. The following theorem characterizes the spaces with one-point
compactifications.

Theorem 2.3  A space  has a one-point compactification iff  is a noncompact, locally\ \
compact Hausdorff space.  (The one-point compactification of  for which the embedding  is\ 2
the identity is denoted \ Þ‡ )

Proof  Because of Example 1.5, we only need to show that a noncompact, locally compact
Hausdorff space   a one-point compactification.  Choose a point and let\ : Â \has
\ œ \ ∪ Ö:×Þ \ B − \‡ ‡  Put a topology on  by letting each point  have its original
neighborhood base of compact neighborhoods, and by defining basic neighborhoods of  be the:
complements of compact subsets of \ À
 
   and  is compact .U:

‡ ‡œ ÖR © \ À : − R \ R ×

( )Verify that the conditions of the Neighborhood Base Theorem III.5.2 are satisfied.

If  is an open cover of  and , then there exists an with h h U\ : − Y − R − : − R © YÞ‡
:

Since  is compact, we can choose  covering .  Then\ R Y ß ÞÞÞß Y − \ R‡ ‡
" 8 h

ÖY ß Y ß ÞÞÞß Y × \ \" 8
‡ ‡ is a finite subcover of  from .  Therefore  is compact.h

\ + Á , − \ + , \‡ is Hausdorff.  If , then and  can be separated by disjoint open sets in  and
these sets are still open in .  Furthermore, if  is a compact neighborhood of in , then \ O + \ O‡

and  are disjoint neighborhoods of and  in .Ð\ OÑ + : \‡ ‡

Finally, notice that  is not open in or else  and then  would beÖ:× \  Ö:× − F \  Ö:× œ \‡ ‡
:

compact.  Therefore every open set containing  intersects , so  is dense in .: \ \ \‡
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Therefore  is a one-point compactification of .   \ \ ñ‡

What happens if the construction for  in the preceding proof is carried out starting with a\‡

space  which is already compact?  What happens if  is not locally compact? What happens\ \
if  is not Hausdorff ?\

Corollary 2.4  A locally compact Hausdorff space  is Tychonoff.\

Proof   is either compact or  has a one-point compactification   Either way,  is a\ \ \ Þ \‡

subspace of a compact  space which (by Theorem VII.5.9) is Tychonoff.  Therefore  isX \#

Tychonoff.   ñ

The following theorem about locally compact spaces is often useful.

Theorem 2.5  Suppose , where is Hausdorff.E © \ \

 a) If  is locally compact and  where  is closed and is open in , then \ E œ J ∩ K J E \ E
is locally compact.  In particular, an open (or, a closed) subset of a locally compact space  is\
locally compact.

 b)  If  is a locally compact and is Hausdorff, then is open in cl .E \ E E\

 c) If  is a locally compact subspace of a Hausdorff space , then  where E \ E œ J ∩ K J
is closed and is open in .E \
 
Proof   a) It is easy to check that if  is closed and  is open in a locally compact space , thenJ K \
J K J ∩ Kand  are locally compact.  It then follows easily that  is also locally compact.  ( Note:
Part a) does not require that  be Hausdorff.\ )

 b) Let  and let  be a compact neighborhood of  in .  Then int .+ − E O + E + − O œ YE

Since  is Hausdorff,  is closed and therefore cl , so cl  is compact.E O Y © Y © O YE E

Because is open in there is an open set in  with  and we have:Y Eß Z \ E ∩ Z œ Y

  cl ( cl cl\ \ EE ∩ Z Ñ ∩ E œ Ð YÑ ∩ E œ Y © E

so cl ( )  is compact and therefore closed in  (since  is Hausdorff).Ð E ∩ Z Ñ ∩ E \ \\

Since cl ( )  we have cl cl clE ∩ Z © Ð E ∩ Z Ñ ∩ Eß ÐE ∩ Z Ñ © Ð YÑ ∩ E œ Y © EÞ\ \ \ E

Moreover, since  is open, then cl cl  ( ).Z Z ∩ E © ÐZ ∩ EÑ\ \ this is true in  space : why?any \

So cl cl cl cl[ œ Z ∩ E © ÐE ∩ Z Ñ © Ð YÑ ∩ E œ Y © EÞ\ \ \ E

Then  and  is open in cl  so int cl .  Therefore  is open in cl+ − [ © E [ E + − E E EÞ\ \ \
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 c) Since  is locally compact, part b) gives that  is open in cl , so cl  forE E E E œ E ∩K\ \

some open set  in .  Let cl    K \ J œ EÞ ñ\

Corollary 2.6  A dense locally compact subspace of a Hausdorff space is open in \ \Þ

Proof   This follows immediately from part b) of the theorem   ñ

Corollary 2.7  If  is a locally compact, noncompact Hausdorff space, then is open in \ \ any
compactification  that contains .] \

Proof   This follows immediately from Corollary 2.6.     ñ

Corollary 2.8  A locally compact metric space  is completely metrizable.Ð\ß .Ñ

Proof  Let  be the completion of    is locally compact and dense in soÐ\ ß . Ñ Ð\ß .ÑÞ \ \
µ µµ

\ \ \ K \ \
µ µ

 is open in .  Therefore  is a -set in so it follows from Theorem IV.7.5 that  is$

completely metrizable.  ñ

Theorem 2.9  Suppose  is Hausdorff.  Then  is locally compact iff\ œ \ Á g \
α α−E

 i)  each  is locally compact\α

 ii) is compact for all but at most finitely many \ − EÞα α

Proof   Assume  is locally compact.  Suppose  is open in  and .  Pick a point\ Y \ B − Yα α α α

D − ÒY Ó D œ B D O \1α α α α
" with  Then  has a compact neighborhood  in  for which.

D − O © ÒY Ó ÒOÓ B1 1 1α α α α α
" .  Since  is an open continuous map,  is a compact neighborhood of 

with   Therefore  is locally compact, so i) is true.B − ÒOÓ © Y Þ \α α α α1

To prove ii), pick a point  and let  be a compact neighborhood of .  ThenB − \ O B
B − Y œ  Y ß ÞÞÞß Y  © O Y Á ßα α" 8  for some basic open set . If ,..., we haveα α α" 8

1 1 α α αα α α αÒOÓ ª ÒY Ó œ \ \ Á Þ.  Therefore  is compact if ,...," 8

 Conversely, assume i) and ii) hold.  If , where  is open, then we can chooseB − Y © \ Y
a basic open set so that .  Without loss of generality, we canZ œ  Z ß ÞÞÞß Z  B − Z © Yα α" 8

assume that  is compact for ,...,  ( ).   For each  we can choose a compact\ Á 3α α α α" 8 why?
neighborhood  of  so that  Then   O B B − O © Z © \  O ß ÞÞÞßO α α α α α α α α3 3 3 3 3 3 " 8Þ

œ O ‚ ÞÞÞ ‚ O ‚ \ \ Bα α αα α α" 8 " 8


Á ßÞÞÞ  is a compact neighborhood of  and
B −  O ß ÞÞÞßO  ©  Z ß ÞÞÞß Z  © Y \ ñα α α α" 8 " 8

.   So  is locally compact.   
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3. The Size of Compactifications

Suppose  is a Tychonoff space, that , and that  is a compactification of .  How large\ \ © ] ] \
can  be?  In all the specific example so far, we have had  or l]  \l l]  \l œ " l]  \l œ #Þ

Example 3.1  This example illustrates a compactification of a discrete space created by adding  -
points.

Let  and , two disjoint “copies” of LetM œ ÖÐBß !Ñ À B − Ò!ß "Ó× M œ ÖÐBß "Ñ À B − Ò!ß "Ó× Ò!ß "ÓÞ! "

Define a topology on   by using the following neighborhood bases:] œ M ∪ M! "

 i)  points in  are isolated:  for a neighborhood base at  is M : − M ß : œ ÖÖ:××" " :U

 ii) if :  a basic neighborhood of  is any set of form: œ ÐBß !Ñ − M :!

 ,  where  is an open neighborhoodZ ∪ ÖÐDß "Ñ À ÐDß !Ñ − Z ß D Á B× Z
 of  in   : Ò!ß "Ó
  
 (Check that the conditions in the Neighborhood Base Theorem III.5.2 are
 satisfied.)

] Ò!ß "Ó œ M Þ is called the “double” of the space !

Clearly,  is Hausdorff, and we claim that  is compact.  It is sufficient to check that any] ]
covering  of  by basic open neighborhoods has a finite subcover.h ]

Let     covers  and each  has formj h j jœ Ö[ − À [ ∩ M Á g×Þ M [ −! !

Z ∪ ÖÐDß "Ñ À ÐDß !Ñ − Z ß D Á B× Z M Z, where  is open in .  Clearly, the open  “ -parts” of the sets!

in  cover the compact space , so we finitely many  cover .  These sets alsoj jM [ ß ÞÞÞß[ − M! " 8 !

cover ,  for possibly finitely many points .  For each such point  choose aM : ß ÞÞÞß : − M :" " 5 " 3except
set  containing .  Then  is a finite subcover from ..Y − : Ö[ ß ÞÞÞß[ ß Y ß ÞÞÞß Y ×3 3 " 8 " 5h h

Every neighborhood of a point in  intersects , so cl .  Therefore  is aM M M œ ] ]! " "

compactification of the discrete space  and M l]  M l œ -Þ" "

Since  is locally compact,  also has another quite different compactification  for whichM M M" " "
‡

lM  M l œ "Þ \Ñ"
‡

"    In fact, it is true (depending on  that can be many different compactifications
] l]  \l, each with a different size for .

But, for a given space  and a compactification , there  an upper bound for how large\ ] is
l]  \l can be.  We can find it using the following two lemmas.

Recall that the weight of a space  is defined by min  is a baseAÐ] Ñ Ð] ß Ñ AÐ] Ñ œ i  Öl l Àg U U!

for   ( )g ×Þ Example VI.4.6

Lemma 3.2   If  is a  space, then ] X l] l Ÿ # Þ!
AÐ] Ñ

Proof   Let  be  base for , and for each point let   Since U U Uany ] C − ] ß œ ÖY − À C − Y×Þ ]C

is , we have   if . Therefore the map  is one-to-one, soX Á C Á C C Ä ©! C C C
wU U U Uw



424

l] l Ÿ l Ð Ñl œ #c U Ul lU .   In particular, if we pick  to be a base with the least possible cardinality,
minimal cardinality, then 2   l] l Ÿ # Ÿ Þ ñ| |U AÐ] Ñ

Lemma 3.3  Suppose  is an infinite  space and that  is a dense subspace of .] X \ ]$

Then AÐ] Ñ Ÿ # Ÿ # Þl\l l] l

Proof   A  space with a finite base must be finite, so  base for  must be infinite.  LetX ]$ every
U αœ ÖY À − E× ] Y Y © Y © Yα α α α α be a base for .  Each is open so we have i)  int cl cl ,  and
ii) because  is dense in , cl cl   \ ] Y œ ÐY ∩ \Ñ Ð Þα α see Lemma IV.6.4Ñ

For each , define int cl , so that int cl int clα Z œ ÐY ∩ \Ñ Y © Y œ ÐY ∩ \Ñ œ Z Þα α α α α α

Then  is also a base for :  to see this, suppose  where  is open.U αw œ ÖZ À − E× ] C − S © ] Sα

By regularity, there is a  such that  int cl cl .Y C − Y © Y œ Z © Y © Sα α α α α

Since each , there are no more distinct 's than there are subsets of , that isY ∩\ © \ Z \α α

l l Ÿ l Ð\Ñl AÐ] Ñ Ÿ l l Ÿ l Ð\Ñl œ # Ÿ # Þ ñU c U U cw w w l\l l] l.  Since  must be infinite,  we have 

Theorem 3.4  If   is a compactification of  and  is dense in , then ] \ H \ l] l Ÿ # Þ#lHl

Proof    is Tychonoff.  If  is finite, then  so .  Therefore we can] ] H œ \ œ ] l] l Ÿ # œ ## #l] l lHl

assume  is infinite.  Since  is dense in ,   (by Lemma 3.3), and therefore] H ] AÐ] Ñ Ÿ #lHl

so   (by Lemma 3.2)l] l Ÿ # Ÿ # ñAÐ] Ñ #lHl

 

Example 3.5  An upper bound on the size of a compactification of  is  .  More # œ ## -i!

generally, a compactification of any separable Tychonoff space such as ,  or can ß    ‘
have no more than  points.#-

We will see in Section 6 that Theorem 3.4 is “best possible” upper bound.  For example, there
actually exists a compactification of , called , with cardinality (It is difficult to " # œ # x# -i!

imagine how the “tiny” discrete set  can be dense in a such a large compactification . "

Assume such a compactification  exists.  Since  is dense, each point  in  is"  5 " 
the limit of a net in , and this net has a universal subnet which converges to . 5

Since  is Hausdorff, a universal net in  has at most one limit in , so there are"  " 
at least as many universal nets in  as there are points in , namely .  None of "  #-

these universal nets can be trivial (that is, eventually constant).  Therefore each of these
universal nets is associated with a free ( nontrivial) ultrafilter in .  So there must beœ 
#- free ultrafilters in .
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4. Comparing Compactifications

We want to compare compactifications of a Tychonoff space .  We begin by defining an\
equivalence relation  between compactifications of .  Then we define a relation .  It will¶ \  
turn out that  can also be used to compare equivalence classes of compactifications of   \Þ
When applied in a set equivalence classes of compactifications of ,  will turn out to be a\  
partial ordering.

The definition of  requires that we use the formal definition of a compactification as a pair.¶

Definition 4.1  Two compactifications and  of  are called , writtenÐ] ß 2 Ñ Ð] ß 2 Ñ \" " # # equivalent
Ð] ß 2 Ñ ¶ Ð] ß 2 Ñ 0 ] ] 0 ‰ 2 œ 2 Þ" " # # " # " #, if there is a homeomorphism  of onto  such that  

  
In the  where , , and the identity map on , then thespecial case \ © ] \ © ] 2 œ 2 œ \" # " #

condition  simply states that for that is, points in  are fixed0 œ 0 ‰ 2 œ 2 0ÐBÑ œ B B − \  \" #

under the homeomorphism .0

It is obvious that  and that is a transitive relation among compactificationsÐ] ß 2 Ñ ¶ Ð] ß 2 Ñ ¶" " " "

of .  Also, if , then  is a homeomorphism and\ Ð] ß 2 Ñ ¶ Ð] ß 2 Ñ 0 À ] Ä ]" " # # # "
"

0 ‰ 2 œ 0 Ð0 ‰ 2 Ñ œ 2 Ð] ß 2 Ñ ¶ Ð] ß 2 Ñ ¶" "
# " " # # " " so that .  Therefore  is a symmetric relation,

so  is an  on any set of compactifications of .¶ \equivalence relation

Example 4.2  Suppose  is a locally compact, noncompact Hausdorff space.  We claim that all\
one-point compactifications of  are equivalent. Because  is transitive, it is sufficient to show\ ¶
that each one-point compactification  is equivalent to the one-point compactificationÐ] ß 2 Ñ" "

Ð] ß 3Ñ‡ constructed in Theorem 2.3.

Let  and Define  by] œ \ ∪ Ö:× ]  2 Ò\Ó œ Ö: ×Þ 0 À ] Ä ]‡ ‡
" " " "

   
if 
if 

0ÐCÑ œ
2 ÐCÑ C − \
: C œ : "

"
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0 0 ‰ 3 œ 2 Þ 0 is clearly a bijection and   We claim  is continuous."

 If Let  be an open set in  with Then C − \ À Z ] 0ÐCÑ œ 2 ÐCÑ − Z Þ Z œ Z  Ö: ×" " "
w

 is also open in   Since is a homeomorphism,  is open2 Ò\ÓÞ 2 À \ Ä 2 Ò\Ó Y œ 2 ÒZ Ó" " " ""
"

 in  and is open in .   Then ,  is open in  and \ \ ] C − Y Y ] 0ÒY Ó œ 2 ÒY Ó œ Z © Z Þ‡ ‡ w
"

 Therefore  is continuous at .0 C

 If  Let  be an open set in with Then  is aC œ : À Z ] 0Ð:Ñ œ : − Z Þ ]  Z œ O" " " "

 compact in , so  is a compact (therefore closed) set in   Then2 Ò\Ó 2 ÒO Ó œ O ] Þ" ""
" ‡

  is a neighborhood of  and Therefore  is continuous at .Y œ ] O : 0ÒY Ó © Z Þ 0 :‡

Since  is a continuous bijection from a compact space to a  space,  is closed and therefore 0 X 0 0#

is a homeomorphism.

Therefore (up to equivalence) we can talk about  one-point compactification of a noncompact,the
locally compact Hausdorff space .   Topologically, it makes no difference whether we think of\
the one-point compactification of  geometrically as , with the North Pole   as the “point at‘ W :"

infinity,” or whether we think of it more abstractly as the result of the construction in Theorem
2.3.

Question: Are all two point compactifications of  equivalent to ?Ð  "ß "Ñ Ò  "ß "Ó

Example 4.3  Suppose   is a compactification of Then  is equivalent to aÐ] ß 2 Ñ \Þ Ð] ß 2 Ñ" " " "

compactification  where  and  is the identity map.  We simply defineÐ] ß 3Ñ \ © ] 3
] œ Ð]  2 Ò\ÓÑ ∪ \ " " , topologized in the obvious way in effect, we are simply giving each
point  in  a new “name” .  We can then define  by2 ÐBÑ ] B 0 À ] Ä ]" " "

   
if 
if 

0ÐDÑ œ
D D − ]  2 Ò\Ó

3 ‰ 2 ÐDÑ œ 2 ÐDÑ D − 2 Ò\Ó " "

" "
" "

"

Clearly, , so .0 ‰ 2 œ 3 Ð] ß 2 Ñ ¶ Ð] ß 3Ñ" " "

Example 4.3 shows means that whenever we work with only one compactification of , or are\
discussing properties that are shared by all equivalent compactifications of , we might as well\
(for simplicity) replace  with an equivalent compactification  where contains  as aÐ] ß 2 Ñ ] ] \" "

dense subspace.

Example 4.4  Homeomorphic compactifications are not necessarily equivalent.  In this example
we see two dense embeddings of into the same compact Hausdorff space  that produce2 ß 2 ]" # 
nonequivalent compactifications.

Let  and .] œ ÖÐ ß 3Ñ À 3 œ "ß # 8 − × ∪ ÖÐ!ß "Ñß Ð!ß #Ñ× ©"
8

# ‘

Let  by  .   is a 2-point compactification of  .2 À Ä ] Ð] ß 2 Ñ
2 Ð#8Ñ œ Ð ß "Ñ

2 Ð#8  "Ñ œ Ð ß #Ñ
" "

"
"
8

"
"
8

 



427

Let   by  
if  is the element of 

if  is the  element of 
2 À Ä ]

2 Ð8Ñ œ Ð ß "Ñ 8 4 Ö"ß #ß %ß &ß (ß )ß "!ß ""ß ÞÞÞ×

2 Ð8Ñ œ Ð ß #Ñ 8 4 Ö$ß 'ß *ß "#ß Þ
#

#
"
4

#
"
4

 
th

th ÞÞ×

For example,  and  is also a two-point compactification2 Ð(Ñ œ Ð ß "Ñ 2 Ð*Ñ œ Ð ß #ÑÞ Ð] ß 2 Ñ# # #
" "
& $

of .

Topologically, each compactification is the same space , but  and  are ] Ð] ß 2 Ñ Ð] ß 2 Ñ" # not
equivalent compactifications of :

 Suppose  is any (onto) homeomorphism.0 À ] Ä ]

 , so , and   Ð2 Ð#8ÑÑ Ä Ð!ß "Ñ 0Ð2 Ð#8ÑÑ Ä 0ÐÐ!ß "ÑÑ 0ÐÐ!ß "ÑÑ œ Ð!ß "Ñ" " either or
  .Ð!ß #Ñ Ð Ñwhy?

  But the sequence .Ð2 Ð#8ÑÑ œ ÐÐ ß "Ñß Ð ß "Ñß Ð ß #Ñß Ð ß "Ñß Ð ß "Ñß Ð ß #Ñß ÞÞÞ Ñ#
" " " " " "
# $ # ' ( %

 does  converge to either  or .  Therefore , sonot Ð!ß "Ñ Ð!ß #Ñ 0 ‰ 2 Á 2" #

 Ð] ß 2 Ñ ¶Î Ð] ß 2 Ñ" " # #

By adjusting the definitions of h and , we can create infinitely many nonequivalent" #2
2-point compactifications of  all using different embeddings of  into the same space .  ]
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We now define a relation  between compactifications of a space .  \

Definition 4.5   Suppose  and  are compactifications of .  We say thatÐ] ß 2 Ñ Ð] ß 2 Ñ \# # " "

Ð] ß 2 Ñ   Ð] ß 2 Ñ 0 À ] Ä ] 0 ‰ 2 œ 2 Þ# # " " " # " if there exists a continuous function  such that 2

 
Notice that:

 i)  Such a mapping   :   is compact and therefore closed in ;0 ] 0Ò] Ó ]is necessarily onto " # "

so cl cl cl0Ò] Ó œ 0Ò] Ó ª 0Ò2 Ò\ÓÓ œ 2 Ò\Ó œ ] Þ# # # " "

 ii) If  and the identity map , then the condition \ © ] ß \ © ] 2 œ 2 œ 3 0 ‰ 2 œ 2# " " # # "

simply states that .0l\ œ 3

 iii)  that is, the “points added” to create  are mapped0Ò]  2 Ò\ÓÓ © ]  2 Ò\Ó À ]# # " " #

onto the “points added” to create .  To see this, let   We want to show] D − ]  2 Ò\ÓÞ" # #

0ÐDÑ − ]  2 Ò\ÓÞ 0ÐDÑ œ 2 ÐBÑ − 2 Ò\ÓÞ" " " "  So suppose that 

Since  is dense in , there is a net in   converging to 2 Ò\Ó ] 2 Ò\Ó D À# # #

         Ð2 ÐB ÑÑ Ä D Ð‡Ñ# -

0 2 ÐB Ñ œ 0Ð2 ÐB ÑÑ Ä 0ÐDÑ œ 2 ÐBÑ is continuous, so ." # "- -

But  is a homeomorphism so2 À \ Ä 2 Ò\Ó" "

   ÐB Ñ œ Ð2 2 ÐB ÑÑ Ä 2 2 ÐBÑ œ B − \ß- -" "
" "

" "

and therefore     Ð2 ÐB ÑÑ Ä 2 ÐBÑ − 2 Ò\Ó Ð‡‡Ñ# # #-

A net in  has at most one limit, so  and  give that .  This is impossible since] Ð‡Ñ Ð‡‡Ñ D œ 2 ÐBÑ# #

D Â 2 Ò\ÓÞ#

iv) From iii) we conclude that if , then Ð] ß 2 Ñ   Ð] ß 2 Ñ l]  2 Ò\Ól   l]  2 Ò\Ól# # " " # # " "
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Suppose .  The next theorem tells us that the relation “ ” is unaffected if weÐ] ß 2 Ñ   Ð] ß 2 Ñ  # # " "

replace these compactifications of  with equivalent compactifications so we can actually\ 
compare  of compactifications of  by comparing  of theequivalence classes representatives\
equivalence classes.  The proof is very easy and is omitted.

Theorem 4.6  Suppose  and  are compactifications of  and thatÐ] ß 2 Ñ Ð] ß 2 Ñ \# # " "

Ð] ß 2 Ñ   Ð] ß 2 Ñ Ð] ß 2 Ñ ¶ Ð] ß 2 Ñ Ð] ß 2 Ñ ¶ Ð] ß 2 Ñ Ð] ß 2 Ñ   Ð] ß 2 ÑÞ# # " " # # " "# # " " # # " "
w w w w w w w w.  If   and  ,  then 

The ordering “ ” is well behaved on the equivalence classes of compactifications of   \Þ

Theorem 4.7   Let  be a set of equivalence classes of compactifications of .  Then  is aV V\ Ð ß   Ñ
poset.

Proof   It is clear from the definition that is both reflexive and transitive.  We need to show 
that  is also antisymmetric.  Suppose  and  are equivalence classes of  ÒÐ] ß 3ÑÓ ÒÐ] ß 3ÑÓ" #

compactifications of   (\ By Theorem 4.6, we are free to choose from each equivalence class
representative compactifications with  embeddings the identity map\ © ] +8. 2 œ 3 œ3 ).

If both and  hold, then we have the following maps:Ð] ß 3Ñ   Ð] ß 3Ñ Ð] ß 3Ñ   Ð] ß 3Ñ" # # "

with .  For , , so the maps0 ‰ 3 œ 3 œ 1 ‰ 3 B − \ 1Ð0ÐBÑÑ œ 1Ð0Ð3ÐBÑÑ œ 1Ð3ÐBÑÑ œ 3ÐBÑ œ B
1 ‰ 0 3 À ] Ä ] \ ] and the identity  agree on the  subspace . Since  is Hausdorff,  it" " "dense
follows that  everywhere in  (1 ‰ 0 œ 3 ] Þ" See Theorem 5.12 in Chapter II, and its generalization
in Exercise E9 of Chapter III.)  Similarly and  agree on the dense subspace 0 ‰ 1 3 À ] Ä ] \# #

so  on 0 ‰ 1 œ 3 ] Þ#
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Since  and and  are inverse functions and  is a homeomorphism.0 ‰ 1 œ 3 1 ‰ 0 œ 3ß 0 1 0
Therefore .   So we have shown that if  and ,Ð] ß 3Ñ ¶ Ð] ß 3Ñ ÒÐ] ß 3ÑÓ   ÒÐ] ß 3ÑÓ ÒÐ] ß 3ÑÓ Ÿ ÒÐ] ß 3Ó" # " # " #

then  ÒÐ] ß 3ÑÓ œ ÒÐ] ß 3Ó ñ" #

An equivalence  of compactifications of a space  is “too big” to be a set in ZFC set theory.class \
Ð ÑIt is customary to refer informally to such collections “too big” to be sets in ZFC as “classes.”

However, suppose  represents one of these equivalence classes.  If  has weight , then Ð] ß 3Ñ \ 7 \
contains a dense set  with .  It follows from Lemma 3.3 that  so, byH lHl Ÿ 7 AÐ] Ñ Ÿ #7

Theorem VII.3.17,  can be embedded in the cube .   Therefore  compactification of] Ò!ß "Ó#
7

every
\ Ò!ß "Ó can be  by a subspace of the  fixed cube .represented one #7

Therefore we can form a  consisting of one representative from each equivalence class ofset
compactifications of this set is just a certain set of subspaces of  .  This set is partially\ À Ò!ß "Ó#

7

ordered by . 

In fact, we can even given a bound on the number of different equivalence classes of
compactifications of :  since every compactification of  can be represented as a subspace of\ \
Ò!ß "Ó \#7 ,  the number of equivalence classes of compactifications of  is no more than
| .  In other words, there are no more than differentcÐÒ!ß "Ó Ñl œ # œ # ## Ð- Ñ # #7 # # #7 7 7

compactifications of .\

Example 4.8  Let be a 1-point compactification of .  For every compactification Ð] ß 2 Ñ \ Ð] ß 2Ñ" "

of ,  .  (\ Ð] ß 2Ñ   Ð] ß 2 Ñ" " So, among equivalence classes of compactifications of , the\
equivalence class  is ÒÐ] ß 2 ÑÓ" " smallest.)

By Theorem 4.6, we may assume  and that , are the identity maps; in fact,\ © ] ß \ © ] 2 2" "

we may as well assume the one-point compactification constructed in Theorem 2.3 .] œ \ Ð Ñ"
‡

Since  has a one-point compactification,  is locally compact   By Corollary\ \ Ð ÑÞsee Example 1.5
2.7,  is open in both  and \ ] \ Þ‡

Let  and define\ \ œ Ö:×‡

    by 
if  
if 

0 À ] Ä \ 0ÐCÑ œ
C C − \
: D − ] \

‡ 
To show that  ,  we only need to check that  is continuous each point .Ð] ß 3Ñ   Ð\ ß 3Ñ 0 D − ]‡

 If  and  is an open set containing in , then C − \ Z 0ÐCÑ œ C \ C − Y œ Z  Ö:×‡ 

 which is open in  and therefore also open in .  Clearly,  \ ] 0ÒY Ó œ Y © Z Þ

 If  and is an open neighborhood of  in thenD − ] \ Z 0ÐDÑ œ : \ ß \  Z œ O‡ ‡

 is a compact subset of Therefore  is closed in  so  is an open set\Þ O ] Y œ ] O
 in  containing  and ] D 0ÒY Ó © Z Þ
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5. The Stone-Cech Compactification

Example 4.8 shows that the one-point compactification of a space , , is the\ when it exists
smallest compactification of . Perhaps it is surprising that  Tychonoff space  has a\ \every
largest compactification and, by Theorem 4.7, this compactification is unique up to equivalence.
In other words, a poset which consists of one representative of each equivalence class of
compactifications of  has a largest (  merely maximal!) element.  This largest\ not
compactification of  is called the Stone-Cech  (pronounced “check”) compactification and is\
denoted by ."\

Theorem 5.1 1) Every Tychonoff Space  has a largest compactification, and this\
compactification is unique up to equivalence.  (We may represent the largest compactification by
Ð \ß 3Ñ \ ª \ 3" " where  and  is the identity map. We do this in the remaining parts of theorem.)  

  2) Suppose  is Tychonoff and that  is a compact Hausdorff space.  Every\ ]
continuous has a unique continuous extension .  (  0 À \ Ä ] 0 À \ Ä ]" " The extension  is0"

called the  of .  The property of  in 2) is called the Stone extension Stone Extension0 \"
Property. )

  3) Up to equivalence,  is the only compactification of  with the Stone"\ \
Extension Property.    (In other words, the Stone Extension Property characterizes  among all"\
compactifications of .\ )

Example 5.2 (assuming Theorem 5.1)  Ò!ß "Ó Ð!ß "Ó is a compactification of .  However the
continuous function  given by sin  cannot be continuously0 À Ð!ß "Ó Ä ] œ Ò  "ß "Ó 0ÐBÑ œ Ð Ñ"B
extended to a map .  Therefore .   Is it possible that ?0 À Ò!ß "Ó Ä ] Ò!ß "Ó Á Ð!ß "Ó W œ" " "‘"

 
Proof of Theorem 5.1

1) Since  is Tychonoff,  has at least one compactification.  Let  be a set of\ \ ÖÐ] ß 3 Ñ À − E×α α α
compactifications of , where  is the identity, and is chosen from each\ \ © ] ß 3 À \ Ä ] ]α α α α

equivalence class of compactifications of . (\ As noted in the remarks following Theorem 4.7,
this is a legitimate set since every compactification of  can be represented as subset of one\
fixed cube .Ò!ß "Ó5 )

Define  by .  This “diagonal” map  sends/ À \ Ä ] œ Ö] À − E× /ÐBÑÐ Ñ œ 3ÐBÑ œ B / α α α
each  to the point in the product all of whose coordinates are , and  is the evaluation mapB B /
generated by the collection of maps    is a subspace of and the subspace3 À \ Ä ] Þ \ ] ßα α α

topology is precisely the weak topology induced on  by each   ( ). It\ 3α see Example VI.2.5
follows from Theorem VI.4.4 that  is an embedding of  into the compact space .  If we/ \ ]
define cl , then is a compactification of ."\ œ \] /Ò\Ó Ð \ß /Ñ  "

Every compactification of  is equivalent to one of the .  Therefore, to show  is the\ Ð] ß 3 Ñ \α α "
largest compactification we need only show that  for each .  This,Ð \ß /Ñ   Ð] ß 3 Ñ − E" αα α

however,  is clear:  in the diagram below, simply let 0 œ l \Þα α1 "
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Then  because 0 ‰ / œ 3 0 Ð/ÐBÑÑ œ Ð/ÐBÑÑ œ /ÐBÑÐ Ñ œ 3ÐBÑ œ BÞα α α1 α

Therefore .Ð \ß /Ñ   Ð] ß 3Ñ" α

Note: now that the construction is complete, we can replace  with an equivalent largestÐ \ß /Ñ"
compactification actually containing \ À Ð \ß 3ÑÞ"

Since  is antisymmetric among the compactifications , the largest compactification of  Ð] ß 3 Ñα α

\  is unique (up to equivalence).

2) Suppose  where  is a compact Hausdorff space.  First, we need to produce a0 À \ Ä ] ]
continuous extension 0 À \ Ä ] Þ" "

Define  by   Clearly,  is  and continuous  and  has1 À \ Ä \ ‚ ] 1ÐBÑ œ ÐBß 0ÐBÑÑÞ 1 "  " ß \"
the weak topology generated by the maps and , so  is an embedding.3 À \ Ä \ 0 À \ Ä ] 1
Since  is compact, cl  is a compactification of ."\ ‚ ] Ð 1Ò\Óß 1Ñ \"\‚]

But cl , so we have a continuous map cl   for which Ð \ß 3Ñ   Ð 1Ò\Óß 1Ñ 2 À \ Ä 1Ò\Ó 2 ‰ 3 œ 1" "
 2ÐBÑ œ 1ÐBÑ B − \ that is for   ( )see the following diagram



433

  
For ,  define  Then  is continuous and for  we haveD − \ 0 ÐDÑ œ ‰ 2ÐDÑÞ 0 B − \" 1" "

]

0 ÐBÑ œ Ð2ÐBÑÑ œ Ð2Ð3ÐBÑÑÑ œ Ð1ÐBÑÑ œ ÐBß 0ÐBÑÑ œ 0ÐBÑ 0 l\ œ 0" "1 1 1 1] ] ] ] , so .

If  is continuous and , then  and  agree on the dense set , so 5 À \ Ä ] 5l\ œ 0 5 0 \ 5 œ 0" " "

Therefore the Stone extension  is unique.  0 Ð" See Theorem II.5.12, and its generalization in
exercise E9 of Chapter III..)

3) Suppose  is a compactification of  with the Stone Extension Property.  Then theÐ] ß 3Ñ \
identity map  has an extension  such that , so3 À \ Ä \ 3 À ] Ä \ 3 ‰ 3 œ 3" "‡ ‡

Ð] ß 3Ñ   Ð \ß 3Ñ \ \ Ð] ß 3Ñ ¶ Ð \ß 3Ñ ñ" " ".  Since  is the largest compactification of ,  .   

The Tychonoff Product Theorem is equivalent to the Axiom of Choice AC ( ).see Theorem IX.6.5
Our construction of  used the Tychonoff Product Theorem but only applied to a collection"\ 
of compact  spaces   In fact, as we show below, the existence of  a largestHausdorff Þ
compactification  is  to  “the Tychonoff Product Theorem for compact spaces.”"\ Xequivalent #

The “Tychonoff Product Theorem for compact  spaces” also cannot be proven in ZF, but it isX#

strictly weaker than AC.  (In fact, the “Tychonoff Product Theorem for compact  spaces” isX#

equivalent to a statement called the “Boolean Prime Ideal Theorem.”)

The main point is that the very existence of  involves set-theoretic issues and any method for"\
constructing  must, in some form, use something beyond ZF set theory something quite"\ 
close to the Axiom of Choice.

Theorem 5.3  If every Tychonoff space has of a largest compactification , then any product\ \"
of compact  spaces is compact.Hausdorff
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Proof   Suppose is a collection of compact spaces. Since  isÖ\ À − E× X \α αα α # −E


Tychonoff, it has a compactification  and for each  the projection map can be" α 1Ò \ Ó
α α α−E

extended to 1 "α
"

α α αÀ Ò \ Ó Ä \ Þ
−E

  
For each , define a point with coordinates .B − Ò \ Ó 0ÐBÑ − \ 0ÐBÑÐ Ñ œ ÐBÑ" α 1

α α α
"

−E

  
   0 À Ò \ Ó Ä \"  

α αα α−E −E

0 B − \ is continuous because each coordinate function is continuous.  If 1α
"

α α
−E

© Ò \ Ó 0ÐBÑÐ Ñ œ ÐBÑ œ ÐBÑ œ BÐ Ñ œ B" α 1 1 α α
α α α αα

"
−E , then  for each , so

0ÐBÑ œ BÞ \ Ò \ Ó  Therefore  is a continuous image of the compact space , so 
α αα α−E −E"

α α−E\ ñis compact.     

We want to consider some other ways to recognize .  Since  can be characterized by the" "\ \
Stone Extension Property, the following technical theorem about extending continuous functions
will be useful.

Theorem 5.4 (Taimonov)  Suppose  is a dense subspace of a Tychonoff space  and let  beC \ ]
a compact Hausdorff space. A continuous function  has a continuous extension0 À G Ä ]

0 À \
µ

Ä ] iff

 whenever  and  are disjoint closed sets in ,  cl clE F ] 0 ÒEÓ ∩ 0 ÒFÓ œ gÞ\ \
" "

Proof  Ê 0 E F ] 0 ÒEÓ ∩ 0 ÒFÓ œ g
µ µ µ

: If exists and  and  are disjoint closed sets in , then .
" "

But these sets are closed in , so cl  and cl .  Therefore\ 0 ÒEÓ œ 0 ÒEÓ 0 ÓFÓ œ 0 ÒFÓ
µ µ" "

\ \
" "

cl cl .\ \
" "0 ÒEÓ ∩ 0 ÒFÓ œ g

          :  We must define a function   such that |  and then show that  isÉ 0 À \ 0 G œ 0 0
µ µ µ

Ä ]
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continuous.  For , let  be its neighborhood filter in .  Define a collection of closed setsB − \ \aB

YB  in  by]
   clY aB Bœ Ö 0ÒG ∩ Y Ó À − ×U

Then cl cl  cl ]  (since is dense in ). Therefore0ÒG ∩ Y Ó ∩ 0ÒG ∩ Y Ó ª Á g G \" # 0ÒG ∩ Y ∩ Y" #

Y YB B is a family of closed sets in  with the finite intersection property so  (because  is] Á g ]
compact) .

We claim that  contains only one point:   for some . Y YB B œ ÖC× C − ]

 Suppose .  If , then (since  is ) we can pick open sets  so thatCß D − C Á D ] X YYB $ ,Z
  and and cl cl .  Then cl cl cl cl  so, ofC − Y D − Z Y ∩ Z œ g 0 Ò Y Ó ∩ 0 Ò Z Ó œ g\ \

" "

 course, cl cl .  Taking complements, we get\ \
" "0 ÒY Ó ∩ 0 ÒZ Ó œ g

    cl clÐ\  0 ÒY ÓÑ ∪ Ð\  0 ÒZ ÓÑ œ \\ \
" "

 so  is in one of these open sets: say cl  Since ,B B − [ œ \  0 ÒY ÓÞ [ −\ B
" a

 cl .  We claim cl , from which will follow the0ÒG ∩[ Ó − 0ÒG ∩[ Ó © ]  YYB

 contradiction that .C Â YB

 
  To check this inclusion, simply note that cl .  Therefore,G ∩[ œ G  0 ÒY Ó\

"

  if , we have cl , so , so . Thus,? ? Â 0 ÒY Ó ? Â 0 ÒY Ó 0Ð?Ñ Â Y− G ∩[ \
" "

  C Y U C Y U0Ò ∩ [ Ó  0Ò ∩ [ Ó  Þ© © (a closed set) so cl

Define .  We claim that   works.0 ÐBÑ œ C 0
µ µ

 | : Suppose    is the neighborhood filter of  0 G œ 0 B − GÞ œ ÖG ∩ Y À Y − × B
µ

U aB in
  so in Since  is continuous,  the filter base G U U aÄ B 0 0Ò Ó œ Ö0ÒG ∩ Y Ó À Y − ×  .  G B

  in .   In particular,  is a cluster point of , so clÄ 0 ÐBÑ ] 0ÐBÑ 0Ò Ó 0ÐBÑ − Ð0ÒG ∩ Y ÓÑU 
 = .  So œ Ö0 ÐBÑ× 0ÐBÑ œ 0 ÐBÑÞ

µ µYB

 is continuous:  Let and let  be open in  with   Since0 B − \ Z ] C œ 0 ÐBÑ − Z Þ
µµ

  ,  there exist  such thatYB Bœ ÖC× © Z − R ,...,Y Y" 8

   cl  cl0ÒG Ó ∩ ÞÞÞ ∩∩ Y 0ÒG ∩ Y Ó © Z" 8

 ( If  is an open set in a compact space and  is a family of closed sets withZ Y
 then some finite subfamily of  satisfies Why?Y Y© Z ß J ∩ ÞÞÞ ∩ J © Z" 8 .  )

 Let  .  If , then[ œ Y − D" 8∩ ∩ Y − [... aB

   cl cl ... cl  0 ÐDÑ − 0 ÒG ∩[ Ó © Ó ∩ ∩ ÒG Ó © Z
µ

0ÒG ∩ Y 0 ∩ Y" 8

 so .  Therefore is continuous at .   0 Ò[ Ó © Z 0 B ñ
µ µ

Corollary 5.5   Suppose  and  are compactification of  where the embeddings are the] ] \" #

identity map.  Then  iff :  for every pair of disjoint closed sets in ,Ð] ß 3Ñ ¶ Ð] ß 3Ñ \" #
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   cl cl  cl cl         (*)] ] ] ]" " # #
E ∩ F œ g Í E ∩ F œ gÑ

Proof   If , it is clear that (*) holds.  If (*) holds, then Taimonov's TheoremÐ] ß 3Ñ ¶ Ð] ß 3Ñ" #

guarantees that the identity maps  and  can be extended to maps3 À \ Ä ] 3 À \ Ä ]" " # #

0 À ] Ä ] 0 À ] Ä ] 0 ‰ 0 l\ 0 ‰ 0 l\" # " # " # " # # " and .  It is clear that  and  are the identity maps on
the dense subspace .  Therefore  and are each the identity everywhere so , \ 0 ‰ 0 0 ‰ 0 0 0" # # " " #

are homeomorphisms so .  Ð] ß 3Ñ ¶ Ð] ß 3Ñ ñ" #

For convenience, we repeat here a definition included in the statement of Theorem VII.5.2

Definition 5.6  Suppose  and  are subspaces of .   and  are   ifE F \ E F completely separated
there exists  such that  and   (It is easy to see that  can be replaced0 − GÐ\Ñ 0lE œ ! 0lF œ "Þ !ß "
in the definition by any two real numbers .)+ß ,

Urysohn's Lemma states that disjoint closed sets in a normal space are completely separated.

Using Taimonov's theorem, we can characterize  in several different ways.  In particular,"\
condition 4) in the following theorem states that  is actually characterized by the"\
“extendability” of continuous functions from  into a statement which looks weaker than\ Ò!ß "Ó 
the full Stone Extension Property.

Theorem 5.7  Suppose  is a compactification of , where  and  is the identity.  TheÐ] ß 3Ñ \ ] ª \ 3
following are equivalent:

 1) is   (that is,  is the largest compactification of )] \ ] \"
 2) every continuous , where  is a compact Hausdorff space, can be0 À \ Ä O O

 extended to a continuous map 0
µ

À ] Ä O

 3) every continuous  can be extended to a continuous  0 À \ Ä Ò+ß ,Ó 0
µ

À ] Ä Ò+ß ,Ó

  4) every continuous  can be extended to a continuous  0 À \ Ä Ò!ß "Ó 0
µ

À ] Ä Ò!ß "Ó
 5) completely separated sets in  have disjoint closures in \ ]
 6) disjoint zero sets in  have disjoint closures in \ ]
 7) if  and  are zero sets in , then cl cl cl^ ^ \ Ð^ ∩ ^ Ñ œ ^ ∩ ^ ß" # ] " # ] " ] #

Proof   Theorem 5.1 gives that  1) and 2) are equivalent, and the implications 2) 3) 4) areÊ Ê
trivial.

 4) 5)  If  and  are completely separated in , then there is a continuousÊ E F \
0 À \ Ä Ò!ß "Ó 0 lE œ ! 0lF œ " 0 with  and .  By 4),  extends to a continuous map

0 E © 0 0 F © 0 0
µ µ µ µ µ

À ] Ä Ò!ß "ÓÞ Ð!Ñ œ Ð!Ñ Ð"Ñ œ Ð"Ñ    , Then cl cl and cl cl so] ] ] ]

" " " "

cl cl] ]E ∩ F œ gÞ

 5) 6)  Disjoint zero sets  and  in  are completely separated  (for example,Ê ^Ð0Ñ ^Ð1Ñ \

by the function ) and therefore, by 5),  have disjoint closures in .2 œ ]0
0 1

#

# #

 6 7)  A zero set neighborhood of  is a zero set  with int   It is easy to showÊ \ ^ B − ^Þ
that in a Tychonoff space , the zero set neighborhoods of  form a neighborhood base at \ B B
( ).check this!
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Suppose  and  are zero sets in .  Certainly, cl cl cl , so suppose^ ^ \ Ð^ ∩ ^ Ñ © ^ ∩ ^" # ] " # ] " ] #

B − ^ ∩ ^ Þ Z B B − Ð^ ∩ Z Ñcl cl  If  is a zero set neighborhood of , then cl  and] " ] # ] "

B − Ð^ ∩ Z Ñ ^ ∩ Z ^ ∩ Z \cl ( ).  and  are zero sets in   and] # " #why?
 cl cl  so, by 6). .B − Ð^ ∩ Z Ñ ∩ Ð^ ∩ Z Ñ Ð^ ∩ Z Ñ ∩ Ð^ ∩ Z Ñ œ ^ ∩ ^ ∩ Z Á g] " ] # " # " #

Since every zero set neighborhood  of  intersects , and the zero set neighborhoods of Z B ^ ∩ ^ B" #

are a neighborhood base, we have clB − Ð^ ∩ ^ ÑÞ] " #

 7) 2)  Suppose that is continuous.   is  so if  and are disjointÊ 0 À \ Ä O O X E F%

closed sets in , there is a continuous such that  andO 1 À O Ä Ò!ß "Ó E © ÖB À 1ÐBÑ œ !× œ ^"

F © ÖB À 1ÐBÑ œ "× œ ^#.

Then  and  and  and  are disjoint zero sets in0 ÒEÓ © 0 Ò^ Ó 0 ÒFÓ © 0 Ò^ Ó 0 Ò^ Ó 0 Ò^ Ó" " " " " "
" # " #

\ 0 ÒEÓ ∩ 0 ÒFÓ © 0 Ò^ Ó ∩ 0 Ò^ Ó œ 0 Ò^ ∩ ^ Ó.  By 7),  cl cl cl cl cl] ] " ] # ] " #
" " " " "

]

œ gÞ 0 0 By Taimonov's Theorem 5.4,  has a continuous extension  
µ

À ] Ä OÞ ñ

 
Example 5.8

 1) By Theorem VIII.8.8, every continuous function is “constant on a0 À Ò!ß Ñ Ä Ò!ß "Ó="

tail” so can be continuously extended to .   By Theorem 5.7,0 0 À Ò!ß Ó Ä Ò!ß "Ó
µ

="

Ò!ß Ó œ Ò!ß Ñ= " =" " .

In this case the largest compactification of is the same as the smallestÒ!ß Ñ="

compactification the one-point compactification.  Therefore, up to equivalence,  is the Ò!ß Ó="

only compactification of .Ò!ß Ñ="

A similar example of this phenomenon is , whereX œ Ò!ß Ó ‚ Ò!ß Ó œ X‡
" != = "

X œ X  ÖÐ ß Ñ×‡
" != =   (see the “Tychonoff plank” in Example VIII.8.10 and Exercise VIII.8.11).

 2) The one-point compactification  of  is   because the function  "‡ not

0 À Ä Ö!ß "× 0Ð8Ñ œ
! 8
" 8

 given by   cannot be continuously extended to 
if  is even
if  is odd

0 Ñ
µ

À Ä Ö!ß "× Ö À 8 − × © Þ   ‘‡ "
8.  Why? It might help think of  (topologically) as (

Theorem 5.9   is metrizable iff  is a compact metrizable space (i.e., iff  is metrizable and"\ \ \
\ œ \ÑÞ"

Proof   :  TrivialÉ

 :  is metrizable .
 is metrizable  is 

 is first countable
Ê \ Ê

\ Ê \ X
\

"
" %

If  is not compact, there is a sequence  in  with   Without loss of\ ÐB Ñ \ ÐB Ñ Ä : − \ \Þ8 8 "
generality, we may assume the 's are distinct ( ).B8 why?
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Let  and .  and  are disjoint closed sets inS œ ÖB ß B ß ÞÞÞß B ß ÞÞÞ× I œ ÖB ß B ß ÞÞÞß B ß ÞÞÞ× S I" $ #8" # % #8

\ 0 À \ Ä Ò!ß "Ó 0 lS œ ! 0lI œ " so Urysohn's Lemma gives us a continuous  for which  and .
Let  be the Stone Extension of .  Then 0 À \ Ä Ò!ß "Ó 0 0 Ð:Ñ œ 0 ÐB Ñ" " "" lim

8Ä∞
#8"

œ 0 ÐB Ñ œ ! Á " œ 0ÐB Ñ œ 0 ÐB Ñ œ 0 Ð:Ñß ñlim lim lim
8Ä∞ 8Ä∞ 8Ä∞

#8" #8 #8
" "  which is impossible.   

6.  The space "

The Stone-Cech compactification of  is a strange and curious space.

Example 6.1  "  " is a compact Hausdorff space in which  is a countable dense set.  Since  is
separable,  Theorem 3.4 gives us the upper bound l l Ÿ # œ # Þ" # -i!

On the other hand,  suppose  is a bijection and consider the Stone extension0 À Ä Ò!ß "Ó ∩ 
0 À Ä Ò!ß "ÓÞ 0 Ò Ó Ò!ß "Ó" "" "   Since  is compact, it is a closed set in  and it contains the dense
set .  Therefore   so we have  " "0 Ò Ó œ Ò!ß "Ó - Ÿ l l Ÿ # Þ" -

A similar argument makes things even clearer. By Pondiczerny's Theorem VI.3.5, there is a
countable dense set .  Pick a bijection  and consider the extensionH © Ò!ß "Ó 0 À Ä HÒ!ß"Ó 

0 À Ä Ò!ß "Ó 0 Ò Ó   lÒ!ß "Ó l œ - œ #" "" "Ò!ß"Ó Ò!ß"Ó - -.  Just as before,  must be onto.  Therefore .

Combining this with our earlier upper bound, we conclude that    is quite large butl l œ # Þ" "-

it contains the dense discrete set  that is merely countable.

Every set  is a zero set in  so we can writeE ©  

  cl cl cl ,"  œ œ E ∪ Ð  EÑ" " "

and by Theorem 5.7(6) these sets are disjoint.  Therefore for each  cl  is a clopen setE © ß E "

in .  In particular, each singleton  is open in  (that is,  is isolated in ), so  is" " " E œ Ö8× 8
open in .  Therefore  is compact." " 

At each , there is a neighborhood base consisting of clopen neighborhoods:B − " UB

 i)  if , we can use B − œ ÖÖB×× UB

 ii) if , we can use cl  and clB −  œ Ö E À E © B − E×"  U B " "

  If  is an open set in containing , we can use regularity to choose an openY B"
  set  such that cl .  If ,   then[ B − [ © [ © Y E œ [ ∩" 
  cl cl cl . ( )B − E œ Ð[ ∩ Ñ œ [ © Y" " " Why?

Definition 6.2   Suppose .   is said to be -embedded in  if every  has aE © \ E G \ 0 − G ÐEÑ‡ ‡

continuous extension 0 − G Ð\ÑÞ
µ ‡

To illustrate the terminology:
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 i) Tietze's Theorem states that every closed subspace of a normal space is -embedded.G‡

 ii)  For a Tychonoff space ,   is  compactification (up to equivalence) in which\ \" the
   is -embedded.\ G‡

The following theorem is very useful in working with "\Þ

Theorem 6.3  Suppose , and that  is -embedded in .  Then cl .E © \ © \ E G \ E œ E" "‡
\"

Proof   If  is continuous, then  extends continuously to , and, in0 À E Ä Ò!ß "Ó 0 0 À \ Ä Ò!ß "Ó


turn, extends continuously to .  Then  cl  is a continuous extension of 0 0 À \ Ä Ò!ß "Ó 0 l E 0
 µ µ

" "\

to cl .  Since cl  has the extension property in Theorem 5.7 (4), cl .  " " "\ \ \E E E œ E ñ"

Example 6.4  Since  is discrete, every  is -embedded in  and so, by Theorem 6.3,  E © G‡

cl ."E œ E"

Of course if  is finite, cl .  But if  is infinite, then  is homeomorphic to , soE E œ E œ E E E" " 
cl  is homeomorphic to ."E œ E" "

In particular, if  and  are the sets of even and odd natural numbers, we have so„   „ œ ∪ ß
" „  "œ ∪ cl cl so  is the union of two disjoint, clopen copies of itself.  It is easy to" "

modify this argument to show that, for any natural number ,   5 " can be written as the union of 5
disjoint clopen copies of itself.

If we write , where each 's are pairwise disjoint infinite subsets of , then we œ E E
5œ"
∞

5 5

have cl cl , and these sets cl are pairwise disjoint copies of" œ E ª E E" " " 
5œ" 5œ"
∞ ∞

5 5 5

" " . Moreover, cl  is dense in  since the union contains .  (
5œ"
∞

5"E If  we choose the 'sE5

properly chosen, can we have  ?   Why or why not?" œ 
5œ"
∞

5cl  )"E

Example 6.5   No sequence in  can converge to a point of .  In particular, theÐ8 Ñ 5  " 
sequence  has no convergent subsequence in  so   is not sequentially compact.Ð8Ñ " "

Define  by  .    Consider the Stone extension
if 
otherwise

0 À Ä Ö!ß "× 0ÐBÑ œ
" B œ 8
!

  #5

0 À Ä Ö!ß "× Ð8 Ñ Ä : −  Ð0 Ð8 ÑÑ œ Ð0Ð8 ÑÑ Ä 0 Ð:Ñ − Ö!ß "×" " "" " .  If , then ,5 5 5

so  must be eventually constant which is false.Ð0Ð8 ÑÑ 5

Therefore  is an example showing that “compact sequentially compact.”  (" ÊÎ See the remarks
before and after corollary VIII.8.5.)
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Theorem 6.6  Every infinite closed set  in  contains a copy of  and therefore satisfiesJ " "
lJ l œ # Þ-

Proof  Pick an infinite discrete set .  ( ).  UsingE œ Ö+ À 8 œ "ß #ß ÞÞÞ× © J8 See Exercise III E9
regularity, pick   open sets  in  with .pairwise disjoint Z + − Z8 8 8"

Suppose  (  is continuous since  is discrete).  Define  by1 À E Ä Ò!ß "Ó 1 E K À Ä Ò!ß "Ó

  
for 
for 

KÐ5Ñ œ
1Ð+ Ñ 5 − ∩ Z

! 5 −  Z 8 8

8œ"
∞

8





Extend  to a continuous map K K À Ä Ò!ß "ÓÞ" "

The following diagram gives a very “distorted” image of how the sets in the argument are related.

We have .  Since  is dense in  ( ), we have  soK l ∩ Z œ 1Ð+ Ñ ∩ Z Z K lZ œ 1Ð+ Ñ" " 8 8 8 8 8 8why?
K lE œ 1Þ"

Thus,  has an extension ,  so  is -embedded in .  By1 À E Ä Ò!ß "Ó K À Ä Ò!ß "Ó E G" " "‡

Theorem 6.3,  cl  and since  is a countably infinite discrete space,  is"E œ E E E" "
homeomorphic to ."

Since is closed, cl , so    J E œ E © J lJ l œ # Þ ñ" " -

Theorem 6.6 illustrates a curious property of there is a “gap” in the sizes of closed subsets" À Þ
That is, every closed set in  is either finite or has cardinality no sizes in-between!   This" # -

“gap in the possible sizes of closed subsets” can sometimes occur, however, even in spaces as
nice as metric spaces although not if the Generalized Continuum Hypothesis is assumed.  (See
A.H. Stone, , Mathematika 6 (1959),  pp. 99-107.) Cardinals of Closed Sets
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Example 6.7  " "  "  is separable, but its subspace  is not;   does not even satisfy the 
weaker countable chain condition CCC (see Definition VIII.11.4).  Specifically, we will show
that  contains  pairwise disjoint clopen (in ) subsets, each of which is"  "  - 
homeomorphic to ." 

Let  be a collection of  infinite subsets of  with the property that any two haveÖR À > − Ò!ß "Ó× -> 
finite intersection.  ( )  Let cl cl   EachSee Exercise I.E41. Y œ Ð  Ñ ∩ R œ R R Þ> > > >"  " "

Y Á g Y  > > ( ) and  is a clopen set in  homeomorphic to .why? "  " 

Moreover, the 's are disjoint:Y>

 Suppose .  If , then cl cl . In a  space, deleting> Á > D − Y ∩ Y D − R ∩ R Xw
> > > > "w w" "

 finitely many points from an infinite set  does not change the set cl  ( ), soE EE why?
 cl  and cl .  But  andD − ÐR  ÐR ∩ R ÑÑ D − ÐR  ÐR ∩ R ÑÑ R  ÐR ∩ R Ñ" "> > > > > > > > >w w w w

  are disjoint zero sets in  and must have disjoint closures.R  ÐR ∩ R Ñ> > >w w 

An additional tangential observation:

If we choose points  and let , then  is not normal since aB − Y \ œ ∪ ÖB À > − Ò!ß "Ó× \ > > >
separable normal space cannot have a closed discrete subset  of cardinality .ÖB À > − Ò!ß "Ó× ->

(See the “counting continuous functions” argument in Example VII.5.6.)

The following example shows us that countable compactness and pseudocompactness are not
even finitely productive.

Example 6.8  There is a countably compact space  for which  is not pseudocompact (so\ \ ‚\
\ ‚\ is also not countably compact).

Let  and  and write cl cl„  " „  "„ "œ Ö#ß %ß 'ß ÞÞÞ× œ Ö"ß $ß &ß ÞÞÞ× œ ∪ œ ∪ Þ" "

"„ " " "„ " and  are disjoint clopen copies of .  Choose any homeomorphism 0 À Ä

(n : )  and define  by 
if 
if 

ecessarily,   why?0Ò Ó œ„  1 À Ä 1ÐBÑ œ Þ
0ÐBÑ B −

0 ÐBÑ B −
" "

"„

" "

The map  is a homeomorphism since  and are continuous on the two disjoint clopen sets 1 1 1" "„
and  whose union is .  Clearly, ,   has no fixed points, and  is the" "   1l À Ä 1 1 ‰ 1
identity map.

Let is countably infinite .  .  Let  be the first ordinal withV " V -œ ÖE © À E × l l œ Ð# Ñ œ #- i -!

cardinality  and index  as   For each ,  cl  is an infinite closed set so, by# ÖE À  ×Þ l E l- V α - αα " α

Theorem 6.6,  cl .  Therefore cll E l œ # E  E Á gÞ" α " α α
-

Pick  to be a limit point of  not in .  Proceeding inductively, assume that for all: E E! ! !

α " -  : E E : ß : we have chosen a limit point  of that is not in  and that, for the points α α α α #

Ð   Ñα # " already defined :

  




: Á :

: Á 1Ð: Ñ

: Á 1Ð: Ñ
Ð‡Ñ

α #

α #

# α
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For the “next step”, we want to define . Since we have so far defined fewer than: lÒ!ß Ñl  # ß" " -

# :- points .  Thereforeα

  .lÖ: À  × ∪ Ö1Ð: Ñ À  × ∪ Ö1 Ð: Ñ À  ×l  #α α αα " α " α "" -

But cl , so we can chose a limit point of  with   so that thel E  E l œ # : E : Â E" " " " " " "
-

conditions  continue to hold for Ð‡Ñ    "Þα # "

Therefore, by transfinite recursion, we have defined distinct points  in such a way that: Ð  Ñα α -
for , and α " -Á  1Ð: Ñ Á : 1Ð: Ñ Á : Þα " " α 

Let    By construction,   is countably compact because every infinite set\ œ ∪ Ö: À  ×Þ \ α -α

in  (for that matter, even every infinite set in ) has a limit point in .  But we claim that\ \"
\ ‚\ is not pseudocompact.

To see this, consider  We claim  is clopen in^ œ ÖÐ8ß 1Ð8Ñ À 8 − × © \ ‚\Þ ^
\ ‚\Þ

 Since  is isolated  in is a discrete open subset of Ð8ß 1Ð8ÑÑ \ ‚\ß ^ \ ‚\Þ

 On the other hand, the graph of  is closed in 1 œ ÖÐBß 1ÐBÑÑ À B − × ‚" " "
 so that
 
   is closed in ÖÐBß 1ÐBÑÑ À B − × ∩ Ð\ ‚\Ñ \ ‚\Þ"

 and we claim that ÖÐBß 1ÐBÑ À B − × ∩ Ð\ ‚\Ñ œ ^Þ"

Indeed, it is clear that

 ^ © ÖÐBß 1ÐBÑ À B − × ∩ Ð\ ‚\Ñ"
 
and the complicated construction of the 's was done precisely to guarantee the:α
reverse inclusion:

 If ,  then for otherwise we wouldÐBß 1ÐBÑÑ − \ ‚\ B − 
 have  for some , and then  by construction.B œ : 1ÐBÑ œ 1Ð: Ñ Â \α αα

 Therefore  is closed in ^ \ ‚\Þ

Therefore function  defined by2 À \ ‚\ Ä 

  
if 
if 

2Ð?Ñ œ
8 ? œ Ð8ß 1Ð8ÑÑ − ^
! ? − Ð\ ‚\Ñ  ^

continuous.  But  is unbounded, so  is not pseudocompact.2 \ ‚\
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7.  Alternate Constructions of "\

We constructed  by defining an order between certain compactifications of  and showing"\   \
that there must exist a largest compactification (unique up to equivalence) in this ordering.
Theorem 5.7, however, shows that there are many different characterizations of  and some of"\
these characterizations suggest other ways to construct  . ."\

For example, Theorem 5.7 shows that the zero sets in a Tychonoff space  play a special role in\
" "\ \.   Without going into the details, one can construct  as follows:

 Let  be the collection of zero sets in .  A filter   (also called a ) means am Y m\ in -filterD
 nonempty collection of nonempty  such thatzero sets

  i)  if , then ,  andJ ß J − J ∩ J −" # " #Y Y
  ii) if  and  where  is a , then J − K ª J K K − ÞY Yzero set

 A -ultrafilter in  is a maximal -filter.D \ D

 Define a   is a -ultrafilter in For each ,  the collectionset " h h\ œ Ö À D \×Þ : − \
  is a zero set containing   a (trivial) -ultrafilter, so   Theh h ": :œ Ö^ À ^ :× D − \Þis
 map  is a  map of  into the set .2Ð:Ñ œ "  " \ \h ":

 It turns out that  compact iff every -ultrafilter is of the form  for some \ D : − \Þh:

 Therefore the set  iff  is compact.  Each -ultrafilter   in  that is" h\ \ œ g \ D \
 not of the trivial form  is a point in .h ": \ \

 The details of putting a topology on  to create the largest compactification"\
 of  are a bit tricky and we will not go into them here.\

The situation is simpler in the case .  Since every subset of  is a zero set,\ œ  
a “ -ultrafilter” in  is just an ordinary ultrafilter in .D  

Then, to be a bit more specific,
  
   let  is an ultrafilter in  and for , define" h h  œ Ö À × E ©
   clE œ Ö À E − ×h h

  Give the topology for which cl  is a base for the open sets." Ö E À E © ×
 

 This topology make   into a compact  and we can embed  into  using= X"  "#

 the mapping  ( the trivial ultrafilter “fixed” at ).  This “copy” of 2Ð8Ñ œ œ 8h 8

 is dense in , so  is a compactification of .  It can be shown that “this" " 
 ” is the largest compactification of  (and therefore equivalent to the "  "
 constructed earlier).

 The free ultrafilters in  are the points in .  Since  and there "  " l l œ #-

 are only countably many trivial ultrafilters , we conclude that there are  freeh8
-#

 ultrafilters in 
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It turns out that the -ultrafilters in a Tychonoff space  are associated in a natural D \ "  "
way with the maximal ideals of the ring , so it is also possible to construct  byGÐ\Ñ \"
putting an appropriate topology on the set

   is a maximal ideal in "\ œ ÖQ À Q GÐ\Ñ×

It turns out that if then   is a (trivial) maximal: − \ß Q œ Ö0 − GÐ\Ñ À 0Ð:Ñ œ !×:

ideal and the mapping  gives a natural way to embed  in .   is not2Ð:Ñ œ Q \ \ \: "
compact iff there are maximal ideals in  that are not of the form  (that is,GÐ\Ñ Q:

nontrivial maximal ideals) and these are the points of ."\ \

 More information about these constructions can be found in the beautifully written
 classic   (Gillman & Jerison).Rings of Continuous Functions

In this section, we give one alternate construction of in detail.  It is essentially the"\
construction used by Tychonoff, who was the first to construct  for arbitrary Tychonoff"\
spaces.  In his paper (Math. Annalen 102(1930), Uber die topologische Erweiterung von Raumen ¨ ¨
544-561) Tychonoff also established the notation “ .”  The construction involves a specially"\
chosen embedding of  into a cube.\

Suppose  is a Tychonoff space.  For each , choose a closed interval  such\ 0 − G Ð\Ñ M ©‡
0 ‘

that ran   If  is a family that  separates points from closed sets, thenÐ0Ñ © M Þ © G Ð\Ñ0
‡Y Y

according to Theorem VI.4.10 the evaluation map  given by  is/ À \ Ä M / ÐBÑ œ 0ÐBÑY YY


0− 0

an embedding.  In this way, every such family  generates a compactificationY © G Ð\Ñ‡

Ð / Ò\Óß / Ñ \ \cl  of .  In fact, the following theorem states that  compactification of  canY Y every
be obtained by choosing the correct family .Y © G Ð\Ñ‡

Theorem 7.1  Every compactification of  can be achieved using the construction in the\
preceding paragraph.  More precisely,  if  is a compactification containing  (with embedding] \
3 © G Ð\Ñ), then there exists a family  such that  separates points and closed sets andY Y‡

Ð / Ò\Óß / Ñ ¶ Ð] ß 3Ñcl .Y Y

Proof   Let  can be continuously extended to .  (Y œ Ö0 − G Ð\Ñ À 0 0 À ] Ä M ×
µ‡

0 Note that

0
µ

is unique if it exists since any two extensions would agree on the dense set . \ )

The family  separates points from closed sets:Y

If  is a closed set in  and , then there is a closed set  withJ \ B Â J O © ]
B Â O ∩\ œ JÞ 1 À ] Ä Ò!ß "Ó  By complete regularity there is a continuous function 
such that and   Since  is compact,  must be bounded and therefore1ÐBÑ œ ! 1lO œ "Þ ] 1
0 œ 1l\ − G Ð\Ñ 0 − 1‡ .  Moreover,  (because  is the required extension).  Clearly,Y
0ÐBÑ œ 1ÐBÑ œ ! Â 0ÒJ Ó © 1ÒOÓ œ Ö"×Þcl cl 

Therefore cl  is a compactification of .Ð / Ò\Óß / Ñ \Y Y

Define  by  Then  is continuous and, for 2 À ] Ä M 2Ð:ÑÐ0Ñ œ 0 Ð:ÑÞ 2 B − \ß 2ÐBÑÐ0Ñ
µ

0− 0Y

œ 0 ÐBÑ œ 0ÐBÑ œ / ÐBÑÐ0ÑÞ 2Ò\Ó œ / Ò\Ó 2 ‰ 3 œ / Þ
µ
   Therefore  and Y Y Y
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Clearly,  and  is compact Hausdorff, so cl   On the/ Ò\Ó œ 2Ò\Ó © 2Ò] Ó 2Ò] Ó / Ò\Ó © 2Ò] ÓÞY Y

other hand, by continuity, cl cl cl .  Therefore cl2Ò] Ó œ 2Ò \Ó © 2Ò\Ó œ / Ò\Ó 2Ò] Ó œ / Ò\ÓÞY Y

Since cl  is continuous and onto, cl2 À ] Ä / Ò\Ó Ð] ß 3Ñ   ÐÐ / Ò\Óß / ÑÑÞY Y Y

We claim  is also :2 "  "

If , then there is a continuous map  such that  and: Á ; − ] 1 À ] Ä Ò!ß "Ó 1Ð:Ñ œ !

1Ð;Ñ œ "Þ 0 œ 1l\ − 0 Ð:Ñ œ 1Ð:Ñ Á 1Ð;Ñ œ 0 Ð;ÑÞ
µ µ

Then  and    ThereforeY
2Ð:ÑÐ0Ñ Á 2Ð;ÑÐ0Ñß 2Ð:Ñ Á 2Ð;ÑÞso

Since  is compact and cl  is Hausdorff,  is a homeomorphism and, as mentioned above,] / Ò\Ó 2Y

2 ‰ 3 œ / Ð] ß 3Ñ ¶ ÐÐ / Ò\Óß / ÑÞY Y Y.  Therefore cl
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Theorem 7.2  Suppose  and that both  and  separate points from closedY Y Y Y© © G Ð\Ñw ‡ w

sets.  Then cl cl .Ð / Ò\Óß / Ñ   Ð / Ò\Óß / ÑY Y Y Yw w

  
For cl , define cl  by   : − / Ò\Ó 2Ð:Ñ − / Ò\Ó 2Ð:ÑÐ0Ñ œ :Ð0Ñ œ : Þ ÐY Yw 0 Informally,  is just the2Ð:Ñ
result of deleting from  all the coordinates corresponding to functions in .: Y Yw Ñ  Clearly
/ œ 2 ‰ / Ð / Ò\Óß / Ñ   Ð / Ò\Óß / Ñ ñY Y Y Y Y Yw w wso cl cl .   

Corollary 7.3  A Tychonoff space  has a largest compactification.\

Proof   Combining Theorems 7.1 and 7.2, we see that the largest compactification corresponds to
taking   in the preceding construction.   Y œ G Ð\Ñ ñ‡

Of course we can do the construction (from the paragraph preceding Theorem 7.1) simply using
Y œ G Ð\Ñ‡  in the first place (that is what Tychonoff did) and define the resulting
compactification to be .  We would then need to prove that it has one of the features that make"\
it interesting for example, the Stone Extension Property.  Instead, using Theorems 7.1 and 7.2,
what we did was first to argue that  produces the largest compactification of ; thenY œ G ÐGÑ \‡

Theorem 5.7 told us that the compactification we constructed is the same as our earlier ."\
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Exercises

E1.  Show that the Sorgenfrey line (Example III.5.3) is not locally compact.

E2. Suppose  is a locally compact  space that is separable and not compact. Show\ X#

that the one-point compactification is metrizable.\‡ 

E3. Suppose  and  are disjoint compact subsets in a locally compact Hausdorff spaceG O
\ Y ª G Z ª O Y Z.  Prove that there exist disjoint open sets  and  such that cl  and cl
are compact.

E4. a)  Let  be a compact subspace of a Tychonoff space .  Prove that for each O \ 1 − GÐOÑ
there is an  that that is, every continuous real valued function on  can be0 − GÐ\Ñ 1 œ 0lO  O
extended to .  (\ A subspace of  with this property is said to be -embedded in .  Compare\ G \
Definition 6.2;  for a compact since  is compact, “ -embedded” and “ -embedded” meanO G G‡

the same thing.)

     b) Suppose  is a dense -embedded subspace of a Tychonoff space .  If  andE G \ 0 − GÐ\Ñ
0ÐBÑ œ ! B − \ 0Ð+Ñ œ ! + − EÞ for some , prove that  for some Hint: if |  is never , then0 E !
"
0 − GÐEÑ

    c) Every bounded function  has a continuous extension   In particular,0 À Ä 0 À Ä Þ ‘ " "

the function  can be extended.  If , what is ?  Why does this not0Ð8Ñ œ : −  0 Ð:Ñ"
8 "  "

contradict part b) ?

E5.  Prove that l l œ l l œ # Þ"‘ " -

E6. Prove that a Tychonoff space  is connected iff  is connected.   Is it true that  is\ \ \"
connected iff every compactification of  is connected?\

E7.  a)  Show that  has two components  and ."‘ ‘ E F

       b)   has a limit point in say in the set .   Is  ?Ò!ß∞Ñ F Ò!ß "Ñ œ F" "‘ ‘ ß  

E8. Let  be a free ultrafilter in .h 

 a)  Choose a point  and let cl .  Show that  is a5 "  h  5 h−  œ ÖE © À − E×"

free ultrafilter on .

 b) Using the ultrafilter  from a), construct the space  as in Exercise IX.E8.  Prove thath D
D  5 " is homeomorphic to  with the subspace topology from .∪ Ö ×
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 c) Define an equivalence relation on  by  if  is homeomorphic to"   B µ C ∪ ÖB×
 " ∪ ÖC× B −  ÒBÓ B. For , let  be the equivalence class of .  Prove that each equivalence
class satisfies   (so there must be  different equivalence classes.)lÒBÓl Ÿ - #-

Note: Part c) says that, in some sense, there are 2  topologically different points .- 5 " − 
By part a),  each of these points  is associated with a free ultrafilter  in  that determines the5 h 
topology on .  Therefore there are 2  “essentially different” free ultrafilters  in . 5 h ∪ Ö × -
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Chapter X Review

Explain why each statement is true, or provide a counterexample.

1. Every Tychonoff space has a one-point compactification.

2. If  is Tychonoff and  is first countable, then  .\ \ ± \ ± Ÿ -" "

3.  has a compactification of cardinal .‘ ##
-

4.  has a compactification  where  is infinite and  is metrizable.‘ ‘ ‘] ª ]  ]

5. Suppose that  is a compact Hausdorff space and that each  has a metrizable\ B − \
neighborhood (i.e.,  is ).  Then  is metrizable.\ \locally metrizable

6. Let  be the 1-point compactification of .  Every subset of  is Borel.  ‡ ‡

7.  is dense in ."  "

8. If 0 , then 0 .\ œ Ò ß  Ñ \ œ Ò ß  Ó= = " = =! ! ! !

9. Every point in  is the limit of a sequence from ." 

10.  The one-point compactification of  is completely metrizable.‘

11. If  and  are locally compact Hausdorff spaces with homeomorphic one-point\ ]
compactifications, then  must be homeomorphic to .\ ]

12. Let .  All -point compactifications of the Tychonoff space  are equivalent.8 − 8 \

13. Every subset of  is -embedded in .‘ ‘G‡

14. If  is compact Hausdorff and , then .\ + Ð\  Ö+×Ñ œ \− \ "

15. Every compact Hausdorff space is separable.

16. A metric space  has a metrizable compactification iff  is separable.Ð\ß .Ñ \

17.   for some open  and closed  in . ‘œ Y ∩ J Y J


