Next Article in Journal
Fungal Diversity in the Phyllosphere of Pinus heldreichii H. Christ—An Endemic and High-Altitude Pine of the Mediterranean Region
Previous Article in Journal
Loss of Mitochondrial Genetic Diversity in Overexploited Mediterranean Swordfish (Xiphias gladius, 1759) Population
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Two Seas for One Great Diversity: Checklist of the Marine Heterobranchia (Mollusca; Gastropoda) from the Salento Peninsula (South-East Italy)

1
Department of Biological and Environmental Sciences and Technologies—DiSTeBA, University of Salento, I-73100 Lecce, Italy
2
Salento Sommerso Association, I-73100 Lecce, Italy
3
Museum of Natural History of Salento, I-73021 Calimera-Lecce, Italy
4
Cooperativa Hydra, I-73100 Lecce, Italy
5
Department of Science, University of Roma Tre, I-00146 Rome, Italy
*
Author to whom correspondence should be addressed.
Diversity 2020, 12(5), 171; https://doi.org/10.3390/d12050171
Submission received: 18 March 2020 / Revised: 23 April 2020 / Accepted: 24 April 2020 / Published: 26 April 2020
(This article belongs to the Section Marine Diversity)

Abstract

:
The Salento peninsula is a portion of the Italian mainland separating two distinct Mediterranean basins, the Ionian and the Adriatic seas. Several authors have studied the marine Heterobranchia (Mollusca, Gastropoda) fauna composition living in the Ionian Sea, but to date further knowledge regarding this interesting group of mollusks is still needed. Recent studies have corroborated the peculiarity of the Mediterranean Sea showing high levels of endemism and cryptic diversity. On the other hand, marine sea slugs have been revealed to be important indicators of the marine ecosystem’s health, due to their species-specific diet that consist of a vast variety of sessile and benthic invertebrates. A baseline study of the marine Heterobranchia diversity is therefore a necessary step to reveal the hidden diversity and to monitor the possible presence of alien species. The present study shows results from approximately 600 scientific dives carried out during a nine-year period in all of the main submarine habitats of the studied area, while accounting for the marine Heterobranchia from both the Ionian and Adriatic Seas. With this contribution, the list of marine Heterobranchia inhabiting the Salento Peninsula rises to 160. Furthermore, it also reports, for the first time, the presence of one alien species and three new records for Italian waters. Ecological notes and geographical distribution for each added species are provided together with animal iconography, consisting mainly of in situ photographs, for species identification.

Graphical Abstract

1. Introduction

The Salento Peninsula (South-East Italy) in Puglia is a strip of land right on the border of the eastern Mediterranean Sea, made up of a large variety of habitats: rocky formations, open sandy beaches, marine caves, etc. The Salento Peninsula is a physically well-identified region, encompassing the innermost point of the Gulf of Taranto (40°31′17.8′′N 17°06′10.7′′E) and the beach of Torre Santa Sabina di Ostuni (40°45′52.3′′N 17°41′20.1′′E), with a length of 138 kilometers, calculated on the axis between Martina Franca (40°42′17.7′′N 17°20′20.9′′E) and the Cape of Santa Maria di Leuca (39°47′40.4′′N 18°22′05.0′′E). The maximum and minimum width are 54 and 33 kilometers, respectively, and the total coastal length is 365 kilometers [1,2,3,4,5]. This peninsula protrudes between two ecoregions of the Mediterranean Sea [6], the Northern Ionian, and the Southern Adriatic seas, which are conventionally separated by the dividing line passing through Otranto (according to the biogeographical zones described by Bianchi [7], i.e., zones 6 and 7, respectively). These two basins are characterised by peculiar and distinct main currents and submarine morphologies, resulting in very complex and dynamic ecosystems affected by seasonal fluctuations, which influences both the shallow and deep communities [8,9]. Therefore, this marine area could potentially host a high abundance of Heterobranchia species, due to their pelagic larval stage and diversified diet. Knowledge on diversity is a basic requisite to identify targets and to monitor species composition shifts over time, caused by natural or anthropogenic factors. In fact, the change in marine Heterobranchia fauna composition over time is considered a good ecological indicator of potential environmental modifications [10,11,12,13,14] and this peculiarity is particularly interesting in such a heterogeneous area of the Mediterranean. Furthermore, the capability of marine Heterobranchia to host biological compounds that are potentially interesting for biomedical applications, provides additional value to the study of this particular group of mollusks [14]. In fact, many species of marine Heterobranchia display aposematic vivacious warning colors to indicate that they contain defensive secondary metabolites that are sequestered, transformed from dietary sources, or synthesized de novo [15]. These compounds are used, mainly by nudibranchs, as a chemical defense from predation [16,17] and have revealed to be an important source of diverse bioactive products used as effective analgesic, anti-inflammatory, antiviral, and anticancer drugs [18,19]. The Mediterranean marine diversity is therefore revealed to be interesting, mainly due to the presence of cryptic or endemic species. In fact, several species once considered to be widespread across the Atlantic and the Mediterranean were shown to be a complex of cryptic species, many of which are endemic to the Mediterranean (e.g., [20,21,22,23]). This trend is also true for marine Heterobranchia, as demonstrated by recent molecular papers that helped to unravel such cryptic diversity [24,25,26,27,28,29]. In this context, studies focused on the production of species lists from different geographical areas are needed as an essential starting point to unveil this hidden diversity. In the past decade, the key works on marine Heterobranchia in the area under investigation have been published by Perrone [30,31,32,33,34,35,36,37], who mainly provided data regarding the species inhabiting the Ionian side of the Salento peninsula (Gulf of Taranto), and only provided ecological notes on a small number of species. Recently, Onorato and Belmonte [38] reviewed the biodiversity assessment of the marine submerged caves in the Salento peninsula, which includes some heterobranchs, while Micaroni et al. [39] published a check-list of Heterobranchia from the Ionian locality of Tricase, adding 20 species to Perrone’s previous lists [30,31,32,33,34,35,36,37]. Finally, several published papers that did not have proper checklists, added new records of single species sampled from the Salento Peninsula [29,40,41,42,43,44], contributing to the increase of lists of species known from this Apulian area. However, to date, there is no published checklist of marine Heterobranchia fauna from the Adriatic side of the Salento peninsula. During the last ten years, there has been an increasing interest in marine observation by underwater photographers [45,46]. This has allowed the possibility to extend the research on fauna, to detect lesser known species, and to create a collaboration network between scientists and amateurs who are experts in this field. The so-called Citizen Science dedicated to the Heterobranchia is an important support in expanding the body of knowledge on this group of gastropods, by providing field observations on bathymetric distribution, seasonality [47], egg deposition, reproductive behavior and trophic niche, and by making the data immediately available to the scientific community through web-based social networks [48]. In the last decade, due to the combined efforts of professional underwater photographers and acknowledged systematic experts in sea slugs, many new records and ecological observations on the Salento Peninsula marine Heterobranchia have been collected. Taking all of these points into account, the present study had the following aims to: (i) contribute to the Salento Peninsula marine Heterobranchia checklist with new records from the sublittoral waters, considering both sides of this Peninsula, the Ionian and the Adriatic sides, for the first time; (ii) provide ecological notes and local distribution for each new recorded species; (iii) show in situ photographs of the live animals to document species identification.

2. Materials and Methods

The geographical area under investigation was a stretch of more than 270 km of coastline around the Salento Peninsula in Southern Italy (Figure 1). With 600 scuba dives in the past 9 years, different benthic habitats were surveyed, some of which were included in the European legislative context (EU WFD, EU Habitat Directive, EU MSFD): pre-coralligenous and coralligenous assemblages, soft-bottom substrates, Posidonia oceanica (Linnaeus) Delile, 1813 meadows, and algal biocoenosis on rocky substrates. All sampled sites were georeferenced (Table 1) to provide accurate data of the studied locations for future monitoring and comparison. When possible, ecological observation and in situ photographs of the individuals recorded were performed and catalogued for species identification. The Scuba dives (0–40 m depth) took place all year round, almost every week, during daylight and at night, between 2011 and 2019. Specimens between 2 and 5 mm in length were photographed alive in the laboratory, in Petri capsules illuminated by a series of low voltage LED lamps, with 6500 K bulbs. The camera used for filming was a tripod mounted Nikon D7100, with 60 mm micro Nikkor or 105 mm micro Nikkor optics, a series of extension rings and additional lenses. The underwater photographic or videography equipment (F.V.) was a Nikon D7000 body, 60 mm micro Nikkor, or 105 mm micro Nikkor optics, extension rings inside an Isotta housing, as well as additional wet lenses SubSee +10 diopter, two underwater flashes Inon z240, and two LED lamps of great luminous power. Or alternatively, (C.L.) a Canon 600D body in a Nauticam 600D housing, equipped with the following lenses—for macro photography and in some cases for micro subjects, the Canon 60 mm USM Macro, and Canon 100 mm USM Macro were used, in addition to wet lenses SubSee +5 and +10 diopter; for wide angle photography, the Tokina 10–17 mm fisheye lens was used. The light source was provided by a couple of Inon strobes z240 and a single focus light I-Torch Video Pro 3. The systematics and the validity of names were checked with the help of the Word Register of Marine Species [49]. Species identification was obtained by morphological investigation and a subsequent consultation of the existent literature ([29,41,44] and other references cited in the present work), guide books [50,51] and websites [48,52,53]. In the case of Berthellina cf. edwardsii, the shell from an individual (Voucher RM3_1865) was extracted and used to confirm the identification as this anatomical feature is commonly considered to be diagnostic for this species. The shell was removed and dissolved in a 10% NaOH solution, then rinsed in water, dried, and mounted for examination by optical microscopy, following the same protocol described by Furfaro et al. [54]. Voucher numbers were assigned to the collected individuals that were selected for future molecular analyses; samples were preserved in 95% alcohol and stored in the Department of Science at the Roma Tre University (Rome, Italy) (Table 2). Finally, a comparison between species as recorded by previous authors (Perrone [30,31,32,33,34,35,36,37] (A), Onorato and Belmonte [38] (B), Micaroni et al. [39] (C)) and the present study (D) was carried out and reported in Table 2 with new records highlighted in bold letters. An ethical approach in this research was also carried out by complying with the restrictions in term of collected sample size, environmental survey of the collection sites, use of hand-net picking of specimens (harmless and not destructive) as well as complying with local, regional, national, and international rules, and regulations for access to biodiversity, sustainable use, and benefit sharing (Convention on Biological Diversity and its Nagoya Protocol, national regulations).

3. Results

The present checklist reports 160 marine Heterobranchia species from the Salento Peninsula (Table 2) consisting of: 10 Pleurobranchida, 9 Cephalaspidea, 4 Runcinida, 2 Umbraculida, 9 Aplisiida, 24 Sacoglossa, and 102 Nudibranchia (50 Doridina, 52 Cladobranchia). This contribution added 45 species (Table 2 and Table 3) to the marine heterobranchs fauna known from this area, so far, and in particular, 2 species belonging to Pleurobranchida, 6 Cephalaspidea, 1 Runcinida, 9 Sacoglossa, and 27 Nudibranchia (9 Doridina, 18 Cladobranchia). One alien species, Polycera hedgpethi Er. (Marcus, 1964), was reported for the first time in the studied area. This work reported for the first time the presence of Elysia margaritae (Fez, 1962), Haminoea cf. orteai (Talavera, Murillo and Templado, 1987), and Rubramoena amoena (Alder & Hancock, 1845), in Italian waters. Table 3 provides the species list with ecological remarks of all added species. Furthermore, an extensive photographic catalogue mainly consisting of pictures taken in situ is provided in Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9.

4. Discussion

This study reported 160 marine Heterobranchia species from the Salento Peninsula giving the most up to date list of marine heterobranchs inhabiting this area of the Apulian coasts. This was particularly remarkable considering that the total number of registered species belonging to this mollusks group for the whole Mediterranean Sea was approximately 550 [51]. The composition of the main groups of marine heterobranchs living in the Salento Peninsula reported in this work is shown in Figure 10. The groups with the largest numbers of species added were Cladobranchia (18) and Doridina (9), as expected, these nudibranchs belonged to the groups with the richest variety of taxa. Surprisingly, with the present contribution, 6 species of Cephalaspidea were added to the ones reported previously. Another interesting consideration was concerning the superorder Sacoglossa, which almost doubled after this study. Finally, some species were noteworthy because they are currently under studied or because the validity of the species is still in doubt. This was the case for Berthellina cf. edwardsii, Eubranchus cf. exiguus, E. cf. farrani, E. cf. linensis, Facelina fusca, Haminoea cf. orteai, Runcina cf. ferruginea and Trinchesia cf. miniostriata. In particular, in the case of Berthellina cf. edwardsii we depicted (Figure 2B) the internal shell (4.2 mm long), since it fits the standard average length of the shell commonly used as diagnostic for this species, albeit we preferred to keep an uncertainty (cf.) before a further molecular study would allow a clear-cut identification. The studied marine area, deeply influenced by two different seas and characterized by a variety of submarine habitats, hosts a high variety of species, which makes it an important geographical area for this sea slug diversity. In fact, with this work we report that the total number of marine Heterobranchia living in the Salento Peninsula is 160, which is about a third of the total number of currently accepted species reported for the whole Mediterranean Sea. This is quite an important finding, also considering the fact that a high diversity in heterobranchs composition indirectly reflects a high structuring and diversification of the habitats involved, and consequently, of the biodiversity that they contribute to maintain [14]. Studying and monitoring the marine Heterobranchia diversity in the Salento Peninsula is valuable for highlighting the consequences of the global marine changes reported in the last decade [10,11,12,59,60], such as warming and acidification of waters or invasion of alien species. An additional detailed and constantly updated iconography is available on the website of the Salento Sommerso group (http://www.salentosommerso.it/index_opi.php), a non-profit association devoted to the preservation and documentation of the underwater biodiversity of the Salento Peninsula.

5. Conclusions

The study of marine diversity is a fundamental topic especially if focused on areas like Mediterranean Sea, which is characterised by a high rate of endemic and cryptic species. In this study we have investigated the presence of marine Heterobranchia in the Salento Peninsula (Apulia, South-Italy) considering for the first time both Ionian and Adriatic coasts. Results of a nine-year study reports 160 species inhabiting the studied area with new records from the sublittoral waters, ecological notes, local distribution and systematic remarks. This inventory of marine Heterobranchia encountered in the Salento Peninsula adds 45 species to the previously known for this area. For all the added species, we have figured live animals mostly by in situ photographs to document species identification and reported data on ecology, phenotypical variability and abundance. This inventory of marine Heterobranchia provides a baseline for future monitoring of both coastal sides and could serve as a starting point for further molecular studies aiming to unveil Mediterranean cryptic diversity.

Author Contributions

F.V. and C.L. conceived the project and performed most of the SCUBA diving and took in situ pictures. G.F. and P.M. analysed the data and carried out the SCUBA diving. F.V., C.L., G.F., and P.M. wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

Authors sincerely acknowledge the University of Roma Tre for financial support (CAL/2018 and CAL/2019).

Acknowledgments

Special thanks to Genuario Belmonte (University of Salento, Italy), Lucas Cervera Currado (University of Cadiz, Spain), and Egidio Trainito (Sardinia, Italy) for their useful suggestions. The authors wish to thank Elena Mazzone (Rome, Italy) for the revision of the English text. We would also like to thank Paolo D’Ambrosio, Director of the Porto Cesareo AMP, for permission to carry out research in the Marine Protected Area of Porto Cesareo (Lecce). The authors are greatly indebted to Marco Oliverio (Rome, Italy) for the revision of the English text. A very special thanks to our diving companions Marcella D’Elia, Domenico Licchelli, Cesare Bortone, and Pierantonio Cicirillo, with whom we shared many dives. We thank Antonello Perrone for suggestions and criticism. We thank Gianfranco Alemanno, Andrea Astore, Gianni Colucci, Piero Lenoci, Vincenzo Marra, Enrico Pati, and Gianluca Romano, for supporting us with many photographic images, specimens, and for sharing some of their data with us. Thanks to Manuel Ballesteros from the University of Barcelona (Spain), Marta Pola from the University of Madrid (Spain), Enric Madrenas and Miquel Pontes (Spain), Manuel Malaquias of the University of Bergen (Norway), and Jakov Prkić (Croatia) for the many suggestions and constructive exchanges of ideas and experiences. The authors are greatly indebted to the four anonymous reviewers, who provided many valuable comments, and improved the English.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

  1. Dainelli, G. Appunti Geologici sulla Parte Meridionale del Capo di Leuca; Tipografia della Pace di Filippo Cuggiani: Rome, Italy, 1901. [Google Scholar]
  2. De Giorgi, C. La Serie Geologica dei Terreni nella Penisola Salentina; Tipografia della Pace di Filippo Cuggiani: Rome, Italy, 1903. [Google Scholar]
  3. Biasutti, R. Note morfologiche ed idrografiche sulla Terra d’Otranto. Riv. Geogr. It 1911, 18, 508–531. [Google Scholar]
  4. Sacco, F. La geotettonica dell’Appennino meridionale. Boll. Soc. Geol. Ital. 1912, 31, 379–387. [Google Scholar]
  5. Colamonico, C. La Geografia della Puglia: Profilo Monografico Regionale:(Con una Carta Geografica a Colori); Cressati: Bari, Italy, 1926. [Google Scholar]
  6. Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, M.; Halpern, B.S.; Jorge, M.A.; Lombana, A.; Lourie, S.A.; et al. Notes Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 2007, 57, 573–583. [Google Scholar] [CrossRef] [Green Version]
  7. Bianchi, C.N. Proposta di suddivisione dei mari italiani in Settori Biogeografici. Not. Soc. Biol. Mar. 2004, 46, 57–59. [Google Scholar]
  8. Taviani, M.; Angeletti, L.; Beuck, L.; Campiani, E.; Canese, S.; Foglini, F.; Freiwald, A.; Montagna, P.; Trincardi, F. Reprint of ‘On and off the beaten track: Megafaunal sessile life and Adriatic cascading processes’. Mar. Geol. 2016, 375, 146–160. [Google Scholar] [CrossRef]
  9. Savini, A.; Corselli, C. High-resolution bathymetry and acoustic geophysical data from Santa Maria di Leuca Cold Water Coral province (Northern Ionian Sea—Apulian continental slope). Deep Sea Res. Part II Trop. Stud. Oceanogr. 2010, 57, 326–344. [Google Scholar] [CrossRef]
  10. Goddard, J.H.R.; Gosliner, T.M.; Pearse, J.S. Impacts associated with the recent range shift of the aeolid nudibranch Phidiana hiltoni (Mollusca, Opisthobranchia) in California. Mar. Biol. 2011, 158, 1095–1109. [Google Scholar] [CrossRef] [Green Version]
  11. Goddard, J.H.R.; Treneman, N.; Pence, W.E.; Mason, D.E.; Dobry, P.M.; Green, B.; Hoover, C. Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific. Bull. South. Calif. Acad. Sci. 2016, 115, 15–40. [Google Scholar] [CrossRef] [Green Version]
  12. Goddard, J.H.R.; Treneman, N.; Prestholdt, T.; Hoover, C.; Green, B.; Pence, W.E.; Douglas, E.; Mason, D.E.; Dobry, P.L.; Sones, J.L.; et al. Heterobranch Sea Slugs range shifts in the northeast Pacific Ocean associated with the 2015–16 El Niño. Proc. Calif. Acad. Sci. 2018, 4, 107–131. [Google Scholar]
  13. Nimbs, M.J.; Larkin, M.; Davis, T.R.; Harasti, D.; Willan, R.C.; Smith, D.A. Southern range extensions for 661 twelve heterobranch sea slugs (Gastropoda: Heterobranchia) on the eastern coast of Australia. Mar. Biodiv. Rec. 2016, 9, 27. [Google Scholar] [CrossRef] [Green Version]
  14. Eisenbarth, J.H.; Undap, N.; Papu, A.; Schillo, D.; Dialao, J.; Reumschüssel, S.; Kaligis, F.; Bara, R.; Schäberle, T.F.; König, M.G.; et al. Marine Heterobranchia (Gastropoda, Mollusca) in Bunaken National Park, North Sulawesi, Indonesia—A Follow-Up Diversity Study. Diversity 2018, 10, 127. [Google Scholar] [CrossRef] [Green Version]
  15. Cimino, G.; Ghiselin, M.T. Chemical defense and the evolution of opisthobranch gastropods. Proc. Calif. Acad. Sci. 2009, 60, 175–422. [Google Scholar]
  16. Carbone, M.; Gavagnin, M.; Haber, M.; Guo, Y.-W.; Fontana, A.; Manzo, E.; Genta-Jouve, G.; Tsoukatou, G.; Rudman, W.B.; Cimino, G.; et al. Packaging and Delivery of Chemical Weapons: A Defensive Trojan Horse Stratagem in Chromodorid Nudibranchs. PLoS ONE 2013, 8, e62075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. Cheney, K.L.; White, A.; Mudianta, I.W.; Winters, A.E.; Quezada, M.; Capon, R.J.; Mollo, E.; Garson, M.J. Choose your weaponry: Selective storage of a single toxic compound, Latrunculin A, by closely related Nudibranch Molluscs. PLoS ONE 2016, 11, e0145134. [Google Scholar] [CrossRef] [Green Version]
  18. Winters, A.E.; White, A.M.; Dewi, A.S.; Mudianta, W.I.; Wilson, N.G.; Forster, L.C.; Garson, M.J.; Cheney, K.L. Distribution of defensive metabolites in Nudibranch Molluscs. J. Chem. Ecol. 2018, 44, 384–396. [Google Scholar] [CrossRef]
  19. Winters, A.E.; Wilson, N.G.; van den Berg, C.P.; How, M.J.; Endler, J.A.; Marshall, N.J.; White, A.M.; Garson, M.J.; Cheney, K.L. Toxicity and taste: Unequal chemical defences in a mimicry ring. Proc. R. Soc. B 2018, 285, 20180457. [Google Scholar] [CrossRef]
  20. Borsa, P. Allozyme, mitochondrial-DNA, and morphometric variability indicate cryptic species of anchovy (Engraulis encrasicolus). Biol. J. Linnean Soc. 2002, 75, 261–269. [Google Scholar] [CrossRef] [Green Version]
  21. Calvo, M.; Templado, J.; Oliverio, M.; Machordom, A. Hidden Mediterranean biodiversity: Molecular evidence for a cryptic species complex within the reef building vermetid gastropod Dendropoma petraeum (Mollusca: Caenogastropoda). Biol. J. Linnean Soc. 2009, 96, 898–912. [Google Scholar] [CrossRef] [Green Version]
  22. Claremont, M.; Reid, D.G.; Williams, S.T. Evolution of corallivory in the gastropod genus Drupella. Coral Reefs 2011, 30, 977–990. [Google Scholar] [CrossRef]
  23. Barco, A.; Houart, R.; Bonomolo, G.; Crocetta, F.; Oliverio, M. Molecular data reveal cryptic lineages within the northeastern Atlantic and Mediterranean small mussel drills of the Ocinebrina edwardsii complex (Mollusca: Gastropoda: Muricidae). Zool. J. Linnean Soc. 2013, 169, 389–407. [Google Scholar] [CrossRef] [Green Version]
  24. Carmona, L.; Gosliner, T.M.; Pola, M.; Cervera, J.L. A Molecular approach to the Phylogenetic status of the Aeolid genus Babakina Roller, 1973 (Nudibranchia). J. Molluscan Stud. 2011, 77, 417–422. [Google Scholar] [CrossRef]
  25. Furfaro, G.; Mariottini, P.; Modica, M.V.; Trainito, E.; Doneddu, M.; Oliverio, M. Sympatric sibling species: The case of Caloria elegans and Facelina quatrefagesi (Gastropoda: Nudibranchia). Sci. Mar. 2016, 80, 511–520. [Google Scholar] [CrossRef] [Green Version]
  26. Furfaro, G.; Modica, M.V.; Oliverio, M.; Mariottini, P. A DNA-barcoding approach to the phenotypic diversity of Mediterranean species of Felimare Ev. Marcus and Er. Marcus, 1967 (Mollusca: Gastropoda), with a preliminary phylogenetic analysis. Ital. J. Zool. 2016, 83, 195–207. [Google Scholar] [CrossRef] [Green Version]
  27. Furfaro, G.; Salvi, D.; Mancini, E.; Mariottini, P. A multilocus view on Mediterranean aeolid nudibranchs (Mollusca): Systematics and cryptic diversity of Flabellinidae and Piseinotecidae. Mol. Phylogenet. Evol. 2018, 118, 13–22. [Google Scholar] [CrossRef] [PubMed]
  28. Furfaro, G.; Mariottini, P. Less rare than we thought: Two new localities for Piseinotecus soussi Tamsouri, Carmona, Moukrim, Cervera, 2014 along the Tyrrhenian coast. Turk. J. Zool. 2019, 43, 287–289. [Google Scholar] [CrossRef]
  29. Martín-Hervás, M.R.; Carmona, L.; Jensen, K.R.; Licchelli, C.; Vitale, F.; Cervera, J.L. Description of a new pseudocryptic species of Elysia Risso, 1818 (Heterobranchia, Sacoglossa) in the Mediterranean Sea. Bull. Mar. Sci. 2019, 96, 127–144. [Google Scholar] [CrossRef]
  30. Perrone, A.S. Nudibranchi del genere Taringa Marcus, 1955 dal Golfo di Taranto (Heterobranchia: Nudibranchia). Boll. Malacol. 1992, 28, 207–220. [Google Scholar]
  31. Perrone, A.S. Opistobranchi (Aplysiomorpha, Pleurobrancomorpha, Sacoglossa, Nudibranchia) del litorale salentino (Mar Jonio) (Elenco—contributo primo). Thalassia Salentina 1983, 13, 118–144. [Google Scholar]
  32. Perrone, A.S. Opistobranchi (Aplysiomorpha, Pleurobrancomorpha, Sacoglossa, Nudibranchia) del litorale salentino (Mare Jonio) (Elenco—Contributo secondo). Thalassia Salentina 1986, 16, 19–42. [Google Scholar]
  33. Perrone, A.S. Primo rinvenimento di Elysia flava Verrill, 1901 per le coste italiane (Heterobranchia: Sacoglossa). Atti Soc. Ital. Sci. Nat. 1988, 129, 483–488. [Google Scholar]
  34. Perrone, A.S. Una nuova specie di Elysiidae, Elysia hetta nov. sp. dal litorale salentino (Mediterraneo—Golfo di Taranto) (Heterobranchia: Sacoglossa). Atti Soc. Ital. Sci. Nat. 1990, 130, 249–252. [Google Scholar]
  35. Perrone, A.S. Una nuova specie di Nudibranchi dal Golfo di Taranto: Rostanga anthelia nov. sp. (Heterobranchia: Nudibranchia). Boll. Malacol. 1990, 26, 179–188. [Google Scholar]
  36. Perrone, A.S. Una nuova specie di Nudibranchi Doridiani, Peltodoris sordii nov. sp., dalla biocenosi a Anadiomene stellata, Geodia cydonium e Holothuria impatiens. Boll. Malacol. 1989, 25, 295–300. [Google Scholar]
  37. Perrone, A.S. Una specie di Nudibranchi nuova per le coste italiane: Ridescrizione di Geitodoris (Verrilia) bonosi Ortea & Ballesteros, 1981 (Heterobranchia: Nudibranchia). Boll. Malacol. 1992, 28, 27–34. [Google Scholar]
  38. Onorato, M.; Belmonte, G. Submarine caves of the Salento peninsula: Faunal aspects. Thalassia Salentina 2017, 39, 47–72. [Google Scholar]
  39. Micaroni, V.; Strano, F.; Di Franco, D.; Crocetta, F.; Grech, D.; Piraino, S.; Boero, F. Project “Biodiversity MARE Tricase”: A biodiversity inventory of the coastal area of Tricase (Ionian Sea, Italy)—Mollusca: Heterobranchia. Eur. Zool. J. 2018, 85, 180–193. [Google Scholar] [CrossRef]
  40. Colucci, G.; Strafella, R.; Trainito, E.; Doneddu, M. First record of the genus Dermatobranchus van Hasselt, 1824, in the Mediterranean Sea (Nudibranchia: Arminidae). Mediterr. Mar. Sci. 2015, 16, 331–333. [Google Scholar] [CrossRef] [Green Version]
  41. Pola, M.; Paz-Sedano, S.; Macali, A.; Minchin, D.; Marchini, A.; Vitale, F.; Licchelli, C.; Crocetta, F. What is really out there? Review of the genus Okenia Menke, 1830 (Nudibranchia: Goniodorididae) in the Mediterranean Sea with description of two new species. PLoS ONE 2019, 14, e0215037. [Google Scholar] [CrossRef] [Green Version]
  42. Araujo, A.K.; Pola, M.; Malaquias, M.A.E.; Cervera, J.L. To be or not to be? What molecules say about Runcina brenkoae Thompson, 1980 (Gastropoda: Heterobranchia: Runcinida). Sci. Mar. 2019, 83, 223–235. [Google Scholar] [CrossRef] [Green Version]
  43. Golestani, H.; Crocetta, F.; Padula, V.; Camacho-García, Y.; Langeneck, J.; Poursanidis, D.; Pola, M.; Yokeş, M.B.; Cervera, J.L.; Jung, D.W.; et al. The little Aplysia coming of age: From one species to a complex of species complexes in Aplysia parvula (Mollusca: Gastropoda: Heterobranchia). Zool. J. Linnean Soc. 2019, 187, 279–330. [Google Scholar] [CrossRef]
  44. Korshunova, T.; Malmberg, K.; Prkić, J.; Petani, A.; Fletcher, K.; Lundin, K.; Martynov, A. Fine-scale species delimitation: Speciation in process and periodic patterns in nudibranch diversity. ZooKeys 2020, 917, 15–50. [Google Scholar] [CrossRef] [PubMed]
  45. Nimbs, M.J.; Smith, S.D. An illustrated inventory of the sea slugs of New South Wales, Australia (Gastropoda: Heterobranchia). Proc. R. Soc. Vic. 2016, 128, 44–113. [Google Scholar] [CrossRef]
  46. Smith, S.D.; Davis, T.R. Slugging it out for science: Volunteers provide valuable data on the diversity and distribution of heterobranch sea slugs. Molluscan Res. 2019, 39, 214–223. [Google Scholar] [CrossRef]
  47. Smith, S.D.; Nimbs, M.J. Quantifying temporal variation in heterobranch (Mollusca: Gastropoda) sea slug assemblages: Tests of alternate models. Molluscan Res. 2017, 37, 140–147. [Google Scholar] [CrossRef]
  48. iNaturalist. Available online: https://www.inaturalist.org/ (accessed on 19 April 2020).
  49. Word Register of Marine Species. Available online: http://www.marinespecies.org/ (accessed on 21 April 2020).
  50. Cattaneo-Vietti, R.; Chemello, R.; Giannuzzi-Savelli, R. Atlante dei Nudibranchi del Mediterraneo; Editrice La Conchiglia: Rome, Italy, 1990. [Google Scholar]
  51. Trainito, E.; Doneddu, M. Nudibranchi del Mediterraneo; Il Castello: Milan, Italy, 2014. [Google Scholar]
  52. OPK Opistobranquis. Available online: https://opistobranquis.info/en/ (accessed on 19 April 2020).
  53. Sea Slug Forum. Available online: http://www.seaslugforum.net/ (accessed on 19 April 2020).
  54. Furfaro, G.; Picton, B.; Martynov, A.; Mariottini, P. Diaphorodoris alba Portmann & Sandmeier, 1960 is a valid species: Molecular and morphological comparison with D. luteocincta (M. Sars, 1870) (Gastropoda: Nudibranchia). Zootaxa 2016, 4193, 304–316. [Google Scholar]
  55. Mastrototaro, F.; Panetta, P.; D’Onghia, G. Further records of Melibe viridis (Mollusca, Nudibranchia) in the Mediterranean Sea, with observations on the spawning. Vie Milieu 2004, 54, 251–253. [Google Scholar]
  56. Ballesteros, M.; Madrenas, E.; Pontes, M. “Doto Fragaria” in OPK-Opistobranquis (2012–2020). Available online: https://opistobranquis.info/en/hejyE (accessed on 21 April 2020).
  57. Tamsouri, N.; Carmona, L.; Moukrim, A.; Cervera, J.L. Description of a new species of Piseinotecus (Castropoda, Heterobranchia, Piseinotecidae) from the northeastern Atlantic Ocean. Bull. Mar. Sci. 2014, 90, 991–997. [Google Scholar] [CrossRef]
  58. Crocetta, F.; Colamonaco, G. Percnon gibbesi (Crustacea: Decapoda) and Aplysia dactylomela (Mollusca: Gastropoda) in the Taranto Gulf (Italy, Ionian Sea): New populations incoming. Mar. Biodiv. Rec. 2010, 3, e88. [Google Scholar] [CrossRef]
  59. Wernberg, T.; Russell, B.D.; Moore, P.J.; Ling, S.D.; Smale, D.A.; Campbell, A.; Coleman, M.A.; Steinberg, P.D.; Kendrick, G.A.; Connell, S.D. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 2011, 400, 7–16. [Google Scholar] [CrossRef] [Green Version]
  60. Wernberg, T.; Smale, D.A.; Thomsen, M.S. A decade of climate change experiments on marine organisms: Procedures, patterns and problems. Glob. Change Biol. 2012, 18, 1491–1498. [Google Scholar] [CrossRef]
Figure 1. Map of the Salento Peninsula indicating the sampling localities; the box highlights the Salento Peninsula at a higher magnification. Numbers refer to sampling stations reported in Table 1.
Figure 1. Map of the Salento Peninsula indicating the sampling localities; the box highlights the Salento Peninsula at a higher magnification. Numbers refer to sampling stations reported in Table 1.
Diversity 12 00171 g001
Figure 2. (A) Pleurobranchus testudinarius. St. 3 (B) Berthellina cf. edwardsii. St. 11. In the right-low corner, the internal shell (length: 4.2 mm). (C) Berthellina cf. edwardsii. St. 11 (D) Diaphorodoris luteocincta. St. 11 (E) Trapania lineata, mating individuals. St. 11 (F) Trapania maculata. St. 11 (G) Crimora papillata. St. 11 (H) Crimora papillata, with spawn. St. 11.
Figure 2. (A) Pleurobranchus testudinarius. St. 3 (B) Berthellina cf. edwardsii. St. 11. In the right-low corner, the internal shell (length: 4.2 mm). (C) Berthellina cf. edwardsii. St. 11 (D) Diaphorodoris luteocincta. St. 11 (E) Trapania lineata, mating individuals. St. 11 (F) Trapania maculata. St. 11 (G) Crimora papillata. St. 11 (H) Crimora papillata, with spawn. St. 11.
Diversity 12 00171 g002
Figure 3. (A) Polycera elegans. St. 1 (B) Polycera elegans. St. 1 (C) Polycera hedgpethi. St. 1 (D) Polycera hedgpethi. Two individuals after mating. The reproductive openings are clearly visible in the specimen on the upper portion. St. 1 (E) Felimare fontandraui. St. 11 (F) Felimare fontandraui, mating individuals with spawn. St. 11 (G) Felimare orsinii, mating individuals. St. 14 (H) Felimida binza. St. 25.
Figure 3. (A) Polycera elegans. St. 1 (B) Polycera elegans. St. 1 (C) Polycera hedgpethi. St. 1 (D) Polycera hedgpethi. Two individuals after mating. The reproductive openings are clearly visible in the specimen on the upper portion. St. 1 (E) Felimare fontandraui. St. 11 (F) Felimare fontandraui, mating individuals with spawn. St. 11 (G) Felimare orsinii, mating individuals. St. 14 (H) Felimida binza. St. 25.
Diversity 12 00171 g003
Figure 4. (A) Tritonia nilsodhneri. St. 18 (B) Doto cervicenigra. St. 11 (C) Doto floridicola. St. 22 (D) Spawn of Doto floridicola. St. 22 (E) Paraflabellina gabinierei. St. 11 (F) Limenandra nodosa. St. 3 (G) Caloria elegans. St. 11 (H) Dicata odhneri St. 11.
Figure 4. (A) Tritonia nilsodhneri. St. 18 (B) Doto cervicenigra. St. 11 (C) Doto floridicola. St. 22 (D) Spawn of Doto floridicola. St. 22 (E) Paraflabellina gabinierei. St. 11 (F) Limenandra nodosa. St. 3 (G) Caloria elegans. St. 11 (H) Dicata odhneri St. 11.
Diversity 12 00171 g004
Figure 5. (A) Dondice banyulensis. St. 13 (B) Facelina fusca. St. 7 (C) Facelina rubrovittata. St. 11 (D,E) Facelina vicina. St. 11 (F) Eubranchus cf. farrani. St. 11 (G,H) Eubranchus cf. linensis St. 11.
Figure 5. (A) Dondice banyulensis. St. 13 (B) Facelina fusca. St. 7 (C) Facelina rubrovittata. St. 11 (D,E) Facelina vicina. St. 11 (F) Eubranchus cf. farrani. St. 11 (G,H) Eubranchus cf. linensis St. 11.
Diversity 12 00171 g005
Figure 6. (A) Catriona maua. St. 9 (B) Rubramoena amoena. St. 22 (C) Trinchesia genovae. St. 11 (D) Trinchesia genovae. St. 7 (E) Trinchesia cf. miniostriata St. 22 (F) Trinchesia morrowae. St. 11 (G) Runcina cf. ferruginea. St. 22 (H) Philine punctata St. 9.
Figure 6. (A) Catriona maua. St. 9 (B) Rubramoena amoena. St. 22 (C) Trinchesia genovae. St. 11 (D) Trinchesia genovae. St. 7 (E) Trinchesia cf. miniostriata St. 22 (F) Trinchesia morrowae. St. 11 (G) Runcina cf. ferruginea. St. 22 (H) Philine punctata St. 9.
Diversity 12 00171 g006
Figure 7. (A) Philine quadripartita. St. 1 (B) Camachoaglaja africana. St. 7 (C) Camachoaglaja africana. St. 22 (D) Philinopsis depicta. St. 10 (E) Melanochlamys wildpretii. St. 7 (F) Haminoea cf. orteai. St. 22 (G) Elysia gordanae. St. 11 (H) Elysia gordanae. St. 11.
Figure 7. (A) Philine quadripartita. St. 1 (B) Camachoaglaja africana. St. 7 (C) Camachoaglaja africana. St. 22 (D) Philinopsis depicta. St. 10 (E) Melanochlamys wildpretii. St. 7 (F) Haminoea cf. orteai. St. 22 (G) Elysia gordanae. St. 11 (H) Elysia gordanae. St. 11.
Diversity 12 00171 g007
Figure 8. (A) Spawn of Elysia gordanae. St. 22 (B) Elysia margaritae. St. 11 (C) Aplysiopsis elegans. St. 1 (D) Cyerce graeca. St. 11 (E) Hermaea bifida. St. 1 (F) Hermaea paucicirra. St. 7 (G,H) Ercolania coerulea. St. 7.
Figure 8. (A) Spawn of Elysia gordanae. St. 22 (B) Elysia margaritae. St. 11 (C) Aplysiopsis elegans. St. 1 (D) Cyerce graeca. St. 11 (E) Hermaea bifida. St. 1 (F) Hermaea paucicirra. St. 7 (G,H) Ercolania coerulea. St. 7.
Diversity 12 00171 g008
Figure 9. (A) Limapontia capitata. St. 24 (B) Placida cremoniana. St. 1.
Figure 9. (A) Limapontia capitata. St. 24 (B) Placida cremoniana. St. 1.
Diversity 12 00171 g009
Figure 10. Comparison between the main heterobranch groups; the graph shows the comparison between the total species of the Salento Peninsula, clustered into the main groups.
Figure 10. Comparison between the main heterobranch groups; the graph shows the comparison between the total species of the Salento Peninsula, clustered into the main groups.
Diversity 12 00171 g010
Table 1. Number, name, geographic coordinates (latitude and longitude), and the depth range of the sampled stations.
Table 1. Number, name, geographic coordinates (latitude and longitude), and the depth range of the sampled stations.
StationLatitudeLongitudeDepth
1Mar Piccolo, Taranto (Ionian Sea)40°28′53.62′′N17°16′00.91′′E1–10 m
2Capo S. Vito, Taranto (Ionian Sea)40°24′35.85′′N17°12′06.07′′E1–20 m
3Porto Pirrone, Taranto (Ionian Sea)40°21′27.79′′N17°19′40.93′′E4–20 m
4Torre Ovo, Taranto (Ionian Sea)40°17′29.18′′N17°30′11.20′′E1–20 m
5Campomarino, Taranto (Ionian Sea)40°17′34.76′′N17°31′41.48′′E1–20 m
6Porto Cesareo I. Conigli, Lecce (Ionian Sea)40°15′32.15′′N17°52′57.59′′E1–15 m
7Porto Cesareo, Lecce (Ionian Sea)40°14′51.48′′N17°54′33.51′′E0–1 m
8S. Isidoro, Lecce (Ionian Sea)40°13′15.51′′N17°55′29.27′′E1–5 m
9Torre Inserraglio, Lecce (Ionian Sea)40°10′41.44′′N17°55′51.53′′E1–20 m
10Santa Caterina di Nardò, Lecce (Ionian Sea)40°08′05.87′′N17°59′15.53′′E1–15 m
11Santa Maria al Bagno, Lecce (Ionian Sea)40°07′30.58′′N17°59′46.43′′E0–6 m
12O.R. Gallipoli, Lecce (Ionian Sea)40°06′04.68′′N17°58′04.22′′E36 m
13Gallipoli, Lecce (Ionian Sea)40°04′34.70′′N17°59′50.25′′E1–20 m
14Gallipoli - Isola S. Andrea, Lecce (Ionian Sea)40°02′36.77′′N17°57′01.64′′E5–20 m
15Gallipoli Pizzo, Lecce (Ionian Sea)39°59′57.64′′N17°59′27.36′′E1–15 m
16Marina Mancaversa, Lecce (Ionian Sea)39°58′58.04′′N18°00′18.58′′E1–5 m
17Torre Suda, Lecce (Ionian Sea)39°56′27.95′′N18°02′17.36′′E1–5 m
18Ugento, Lecce (Ionian Sea)39°52′36.70′′N18°05′25.14′′E5–30 m
19Santa Maria di Leuca, Lecce (Ionian Sea)39°48′18.38′′N18°22′42.56′′E1–20 m
20Tricase, Lecce (Adriatic Sea)39°55′51.31′′N18°23′47.92′′E1–30 m
21Porto Miggiano, Lecce (Adriatic Sea)40°01′46.72′′N18°27′01.30′′E1–25 m
22Otranto, Lecce (Adriatic Sea)40°08′18.52′′N18°30′47.65′′E1–40 m
23Roca, Lecce (Adriatic Sea)40°17′50.18′′N18°24′49.69′′E1–6 m
24Frigole, Lecce (Adriatic Sea)40°26′20.52′′N18°14′46.56′′E0–1 m
25Brindisi (Adriatic Sea)40°39′54.11′′N17°57′34.81′′E1–8 m
Table 2. List of species of Heterobranchia occurring around the Salento peninsula; localities are numbered according to Figure 1, with new records in column D, highlighted in bold. Column A = Perrone [30,31,32,33,34,35,36,37]; B = Onorato and Belmonte [38]; C = Micaroni et al. [39]; and D = Present study.
Table 2. List of species of Heterobranchia occurring around the Salento peninsula; localities are numbered according to Figure 1, with new records in column D, highlighted in bold. Column A = Perrone [30,31,32,33,34,35,36,37]; B = Onorato and Belmonte [38]; C = Micaroni et al. [39]; and D = Present study.
TaxonomyABCDVouchers
Pleurobranchida
Family Pleurobranchidae Gray, 1827
Pleurobranchus membranaceus (Montagu, 1803)16
Pleurobranchus testudinarius Cantraine, 1835 1,17
Berthellina cf. edwardsii 1,4,6,10,13,15RM3_1865
Berthella aurantiaca (Risso, 1818)8,9,19,23
Berthella elongata (Cantraine, 1836)16
Berthella ocellata (delle Chiaje, 1830)8 5,6
Berthella plumula (Montagu, 1803)16
Berthella stellata (Risso, 1826)9 22
Berthellina citrina (Rüppell & Leuckart, 1828)18
Family Pleurobranchaeidae Pilsbry, 1896
Pleurobranchaea meckeli (Blainville, 1825)16 115,6
Nudibranchia - Doridina
Family Calycidorididae Roginskaya, 1972
Diaphorodoris luteocincta (M. Sars, 1870) 6
Diaphorodoris papillata Portmann & Sandmeier, 1960 115,6,10
Family Onchidorididae Gray, 1927
Adalaria proxima (Alder & Hancock, 1854)21
Knoutsodonta albonigra (Pruvot-Fol, 1951)20,24
Family Goniodorididae H. & A. Adams, 1854
Goniodoris castanea Alder & Hancock, 184520 1
Okenia longiductis Pola M, Paz-Sedano S, Macali A, Minchin D, Marchini A, Vitale F, 2019 [41] 1,4
Okenia mediterranea (von Ihering, 1886) [41] 6
Okenia problematica Pola M, Paz-Sedano S, Macali A, Minchin D, Marchini A, Vitale F, 2019 [41] 7
Trapania lineata Haefelfinger, 1960 4–6,10,13,15RM3_1042, RM3_1048, RM3_1077
Trapania maculata Haefelfinger, 1960 4–6,10,13,15RM3_1076
Family Polyceridae Alder & Hancock, 1845
Crimora papillata Alder & Hancock, 1862 5,6,11
Kaloplocamus ramosus (Cantraine, 1835) 11
Polycera elegans (Bergh, 1894) 1
Polycera hedgpethi Marcus, 1964 1
Polycera quadrilineata (O. F. Müller, 1776)3,16 111,3–6,10,13,15RM3_1065
Thecacera pennigera (Montagu, 1815) 1
Family Aegiridae P. Fischer, 1883
Aegires punctilucens (d’Orbigny, 1837)4
Family Cadlinidae Bergh, 1891
Aldisa banyulensis Pruvot-Fol, 195123,24 6
Family Chromodorididae Bergh, 1891
Felimare fontandraui (Pruvot-Fol, 1951) 6,8RM3_1039, RM3_1040, RM3_1099, RM3_1100
Felimare orsinii (Vérany, 1846) 8,12,13,15
Felimare picta (Philippi, 1836)1913111,4–6,
8,10,12,13,15
RM3_1041, RM3_1052, RM3_1053
Felimare tricolor (Cantraine, 1835)5 111,4–6,
8,10,12,13,15
RM3_1074, RM3_1075
Felimare villafranca (Risso, 1818)16 111,5,6RM3_1231, RM3_1232
Felimida binza (Ev. Marcus & Er. Marcus, 1963) 15
Felimida krohni (Vérany, 1846) 13114–6,13RM3_1061, RM3_1068
Felimida luteorosea (Rapp, 1827)16 111,6
Felimida purpurea (Risso, 1831)4 6
Family Dorididae Rafinesque, 1815
Doris ocelligera (Bergh, 1881) 113
Doris pseudoargus Rapp, 182719
Doris verrucosa Linnaeus, 175819 1
Family Discodorididae Bergh, 1891
Atagema rugosa Pruvot-Fol, 195119
Baptodoris cinnabarina Bergh, 18848,20 22, 6
Discodoris stellifera (Vayssière, 1903)9,19 15
Gargamella perezi (Llera & Ortea, 1982)19,24
Geitodoris bonosi Ortea & Ballesteros, 19813
Geitodoris portmanni (Schmekel, 1972)20
Jorunna tomentosa (Cuvier, 1804)3,10,20 1, 13
Paradoris indecora (Bergh, 1881)3,24
Peltodoris atromaculata Bergh, 18808 11ALLRM3_1054, RM3_1056, RM3_1057
Peltodoris sordii Perrone, 19893
Platydoris argo (Linnaeus, 1767)8 115,6,10,13
Rostanga anthelia Perrone, 19914
Rostanga rubra (Risso, 1818)20,23
Taringa armata Swennen, 196122
Taringa pinoi Perrone, 198520,24
Tayuva lilacina (Gould, 1852)3 1,22
Family Phyllidiidae Rafinesque, 1814
Phyllidia flava Aradas, 184719 114–6,9,10,13RM3_1049, RM3_1055, RM3_1058
Family Dendrodorididae O’Donoghue, 1924
Dendrodoris grandiflora (Rapp, 1827)16 111,3,5,6
Dendrodoris limbata (Cuvier, 1804)1,16,
19
1,3,5,6
Doriopsilla areolata Bergh, 188017,23 3,4,6
Nudibranchia - Cladobranchia
Family Tritoniidae Lamarck, 1809
Marionia blainvillea (Risso, 1818)9 19
Tritonia manicata Deshayes, 18538,16 115,6
Tritonia nilsodhneri Marcus Ev., 1983 9
Tritonia striata Haefelfinger, 196316 5,6
Family Hancockiidae MacFarland, 1923
Hancockia uncinata (Hesse, 1872)16
Family Scyllaeidae Alder & Hancock, 1855
Scyllaea pelagica Linnaeus, 175819
Family Tethydidae Rafinesque, 1815
Melibe viridis Kelaart, 1858 [55] 1,5,6
Tethys fimbria Linnaeus, 176716 6,13
Family Dotidae Gray, 1853
Doto acuta Schmekel & Kress, 1977 11
Doto cervicenigra Ortea & Bouchet, 1989 3,6
Doto floridicola Simroth, 1888 13
Doto fragaria Ortea & Bouchet, 1989 [56] 6
Doto koenneckeri Lemche, 1976 1113
Doto paulinae Trinchese, 1881 116
Doto pygmaea Bergh, 1871 11
Family Proctonotidae Gray, 1853
Antiopella cristata (Delle Chiaje, 1841)9 1,3,5,6
Family Arminidae Iredale & O’Donoghue, 1841
Armina tigrina Rafinesque, 181418 5
Dermatobranchus cf. rubidus (Gould, 1852) [40] 2
Family Coryphellidae Bergh, 1889
Fjordia lineata (Lovén, 1846)16 6,7
Family Flabellinidae Bergh, 1889
Calmella cavolini (Vérany, 1846)8 115,6,13,15RM3_354, RM3_481, RM3_482, RM3_484, RM3_1079, RM3_1080, RM3_1081, RM3_1082, RM3_1083, RM3_1084, RM3_1085, RM3_1086, RM3_1087, RM3_1088, RM3_1089, RM3_1090, RM3_1091, RM3_1092, RM3_1093, RM3_1095
Edmundsella pedata (Montagu, 181)813 ALLRM3_1046, RM3_1047, RM3_1059, RM3_1067
Flabellina affinis (Gmelin, 1791)81311ALLRM3_1050, RM3_1043, RM3_1060, RM3_1063, RM3_1064, RM3_1070, RM3_1071, RM3_1073
Paraflabellina gabinierei (Vicente, 1975) 1,4,5,13
Paraflabellina ischitana (Hirano & T. E. Thompson, 1990) 13 2,4–6,9,10,13,15RM3_345, RM3_346, RM3_532, RM3_533
Family Samlidae Korshunova, Martynov, Bakken, Evertsen, Fletcher, Mudianta, Saito, Lundin, Schrödl & Picton, 2017
Luisella babai (Schmekel, 1972) 131113RM3_1069
Family Piseinotecidae Edmunds, 1970
Piseinotecus soussi Tamsouri, Carmona, Moukrim & Cervera, 2014 [57] 6RM3_862, RM3_863, RM3_1236
Family Aeolidiidae Gray, 1827
Aeolidiella alderi (Cocks, 1852)16,20 1,3
Aeolidiella glauca (Alder & Hancock, 1845)16
Berghia coerulescens (Laurillard, 1832)16 115,6,13,15,18
Berghia verrucicornis (A. Costa, 1867)19 13,6
Limenandra nodosa Haefelfinger & Stamm, 1958 2
Spurilla neapolitana (Delle Chiaje, 1841)16 111,3,4
Family Facelinidae Berg, 1889
Caloria elegans (Alder & Hancock, 1845) 4,5,6RM3_1051
Cratena peregrina (Gmelin, 1791) 11ALLRM3_1038, RM3_1045, RM3_1062, RM3_1066, RM3_1072, RM3_1078, RM3_1094
Dicata odhneri (Schmekel, 1967) 1,4,6
Dondice banyulensis Portmann & Sandmeier, 1960 6,8,13,19
Facelina annulicornis (Chamisso & Eysenhardt, 1821) 115,6,13–15
Facelina fusca Schmekel, 1966 3RM3_1201, RM3_1235
Facelina rubrovittata (A. Costa, 1866) 2,4–6,12,13,15
Facelina vicina (Bergh, 1882) 6RM3_1202
Favorinus branchialis (Rathke, 1806)16,20 1,3,5,6,13,15
Family Eubranchidae Odhner, 1934
Eubranchus andra (Korshunova, Malmberg, Prkić, Petani, Fletcher, Lundin, Martynov, 2020) [44] 1, 3, 6
Eubranchus cf. farrani (Alder & Hancock, 1844) 1,3,10,13,15,21
Eubranchus cf. linensis Garcia-Gomez, Cervera & Garcia, 1990 1,6
Eubranchus cf. exiguus (Alder & Hancock, 1848) 1110,6
Family Fionidae Gray, 1857
Fiona pinnata (Eschscholtz, 1831) 11 RM3_1097, RM3_1098
Family Trinchesiidae F. Nordsieck, 1972
Catriona maua Ev. Marcus & Er. Marcus, 1960 4
Rubramoena amoena (Alder & Hancock, 1845) 13
Trinchesia genovae (O’Donoghue, 1926) 3,5,6,13
Trinchesia morrowae Korshunova, Picton, Furfaro, Mariottini, Pontes, Prkić, Fletcher, Malmberg, Lundin & Martynov, 2019 6
Trinchesia cf. miniostriata Schmekel, 1968 13
Trinchesia ocellata Schmekel, 19665
Umbraculida
Family Tylodinidae Gray, 1847
Tylodina perversa (Gmelin, 1791)4,16 5,6
Family Umbraculidae Dall, 1889
Umbraculum umbraculum (Lightfoot, 1786)1613113,5,6,13,15RM3_1037
Runcinida
Family Runcinidae H. & A. Adams, 1854
Runcina adriatica T. E. Thompson, 1980 [42] 113,5,6,13
Runcina brenkoae T. E. Thompson, 1980 11
Runcina cf. ferruginea Kress, 1977 13
Runcina cf. ornata (Quatrefages, 1844) 11
Cephalaspidea
Family Philinidae Gray, 1850
Philine punctata(J. Adams, 1800) 4
Philine quadripartita Ascanius, 1772 1
Family Aglajidae Pilsbry, 1895
Aglaja tricolorata Renier, 1807 115,6
Camachoaglaja africana (Pruvot-Fol, 1953) 3,5,6,13
Philinopsis depicta (Renier, 1807) 5,6
Melanochlamys wildpretii Ortea, Bacallado & Moro, 2003 3
Family Bullidae Gray, 1827
Bulla striata Bruguière, 1792 111, 4
Family Haminoeidae Pilsbry, 1895
Haminoea cf. orteai Talavera, Murillo & Templado, 1987 3,13
Weinkauffia turgidula (Forbes, 1844) 114
Aplysiida
Family Aplysiidae Lamarck, 1809
Aplysia dactylomela Rang, 1828 [58] 5,6,13
Aplysia depilans Gmelin, 1791161311ALL
Aplysia fasciata Poiret, 178916 11ALL
Aplysia parvula Mörch, 186316 11ALL
Aplysia punctata (Cuvier, 1803)1613 ALL
Bursatella leachii Blainville, 18172,16,19 1
Notarchus punctatus Philippi, 183616
Petalifera petalifera (Rang, 1828)16,23 5,13
Phyllaplysia lafonti (P. Fischer, 1870)19
Sacoglossa
Family Oxynoida Stoliczka, 1868
Lobiger serradifalci (Calcara, 1840)2
Oxynoe olivacea Rafinesque, 18142
Family Plakobranchidae Gray, 1840
Bosellia mimetica Trinchese, 18918,16,19 113,6,10
Elysia flava Verrill, 190119,20 6
Elysia gordanae T. E. Thompson & Jaklin, 1988 3,6,10,13,15
Elysia hetta Perrone, 19909,19 15
Elysia margaritae Fez, 1962 6
Elysia timida (Risso, 1818)16 11ALL
Elysia translucens Pruvot-Fol, 195719
Elysia viridis (Montagu, 1804)16 111,22RM3_1096
Elysia rubeni Martín-Hervás, Carmona, Jensen, Licchelli, Vitale & Cervera, 2019 [29] 5,6,13
Thuridilla hopei (Vérany, 1853)16,19,20 11ALLRM3_1044
Family Hermaeidae H. & A. Adams, 1854
Aplysiopsis elegans Deshayes, 1853 1
Cyerce cristallina (Trinchese, 1881)19 2, 13
Cyerce graeca T. E. Thompson, 1988 6
Hermaea bifida (Montagu, 1816) 1RM3_1165, RM3_1166, RM3_1167
Hermaea paucicirra Pruvot-Fol, 1953 3,6
Hermaea variopicta (A. Costa, 1869)24 6
Family Limapontiidae Gray, 1847
Calliopaea bellula d’Orbigny, 183716,19
Ercolania coerulea Trinchese, 1892 3
Ercolania viridis (A. Costa, 1866) 113,14
Limapontia capitata (O. F. Müller, 1774) 25
Placida cremoniana (Trinchese, 1892) 1,6
Placida dendritica (Alder & Hancock, 1843)9 3
Abbreviation cf. is from the Latin confer/conferatur, both meaning compare.
Table 3. List of the newly recorded Heterobranchia from the Salento peninsula; species names, relative figure numbers, ecological notes, and phenotypical variability for each added species are reported. Abundance is indicated as number of specimens.
Table 3. List of the newly recorded Heterobranchia from the Salento peninsula; species names, relative figure numbers, ecological notes, and phenotypical variability for each added species are reported. Abundance is indicated as number of specimens.
Species NameFigureEcological NotesPhenotypical VariabilityAbundance
1Pleurobranchus testudinarius
Cantraine, 1835
Figure 2AOn soft bottom during diurnal dive.
Depth: 25 m
-1–2
2Berthellina cf. edwardsii (Vayssière, 1897)Figure 2B,CUsually living singularly or in groups under stones, in small shaded crevices or in dark caves.
Depth: 0–15 m
Body color ranging from light creamy-yellow to reddish-orange>100
3Diaphorodoris luteocincta
(M. Sars, 1870)
Figure 2DThis sedentary species usually lives near bryozoan colonies (cf. Nolella stipata Gosse, 1855).
Depth: 0–3 m
The specimens of this species show the red spot on the dorsum which varies in shape and size3–10
4Trapania lineata
Haefelfinger, 1960
Figure 2EOften in clusters, feeding on Entoprocta spp. covering black sponges. Recorded all year long.
Depth: 0–30 m
->100
5Trapania maculata
Haefelfinger, 1960
Figure 2FOften sympatric with the congeneric T. lineata.
Depth: 0–30 m
->100
6Crimora papillata
Alder & Hancock, 1862
Figure 2G,HFound all year long, in shady pre-coralligenous shallow waters or coastal caves. Often in association with encrusting bryozoans on which their egg masses are laid.
Depth: 0–10 m
Color of the notum variable from light yellow to ochre>100
7Polycera elegans
(Bergh, 1894)
Figure 3A,BObserved during the winter months, in shallow waters.
Depth: 5 m
Very typical body color pattern, showing blue spots differing in size and number between individuals11–30
8Polycera hedgpethi
Er. Marcus, 1964
Figure 3C,DObserved during winter season, in shallow waters.
Depth: 5 m
-3–10
9Felimare fontandraui
(Pruvot-Fol, 1951)
Figure 3E,FObserved in large assemblages at the end of spring, associated with the sponge Dysidea avara (Schmidt, 1862).
Depth: 7 m
Even if this species shows a variable phenotype [26], the Salentine specimens have constant body color pattern31–100
10Felimare orsinii
(Vérany, 1846)
Figure 3GIn large groups mating and feeding on black sponges. Found between April and July.
Depth: 0–15 m
-31–100
11Felimida binza
(Ev. Marcus & Er. Marcus, 1963)
Figure 3HOn a rocky substrates. Found during September.
Depth: 5–7 m
-1–2
12Tritonia nilsodhneri
Marcus Ev., 1983
Figure 4AFound on the yellow gorgonian Eunicella cavolinii Koch, 1887.
Depth: 30 m
Very mimetic morphotype that can consistently vary from dark brown to pale yellow or white1–2
13Doto cervicenigra
Ortea & Bouchet, 1989
Figure 4BThis small species (few millimetres) is found from winter to early spring on hydrozoans colonies of Aglaophenia Lamouroux, 1812.
Depth: 0–3 m
-11–30
14Doto floridicola
Simroth, 1888
Figure 4C,DThe average size of specimens observed is ca. 5 mm. Its host hydrozoan colonies belonging to Aglaophenia.
Depth: 8–12 m
-11–30
15Paraflabellina gabinierei
(Vicente, 1975)
Figure 4EOn hard substrates.
Depth: 0–25 m
The body colors vary from white to opaque pinkish3–10
16Limenandra nodosa Haefelfinger & Stamm, 1958Figure 4FFound on Padina pavonica (Linnaeus) Thivy, 1960 in summer.
Depth 6 m
-1–2
17Caloria elegans
(Alder & Hancock, 1845)
Figure 4GUsually observed on hard substrata.
Depth: 0–15 m
Body pattern with cerata brightly colored from white to light orange11–30
18Dicata odhneri
Schmekel, 1967
Figure 4HFound in shallow waters.
Depth: 0–15 m
-11–30
19Dondice banyulensis
Portmann & Sandmeier, 1960
Figure 5AConspicuous in size and brightly coloured.
Depth: 0- to more than 30 m
-11–30
20Facelina fusca
Schmekel, 1966
Figure 5BFound in a tidal pool in association with the green algae Anadyomene stellata (Wulfen) C. Agardh, 1823.
Depth: 0.5 m
-1–2
21Facelina rubrovittata
(A. Costa, 1866)
Figure 5CObserved all year long in shady pre-coralligenous habitats.
Depth: 0–15 m.
-31–100
22Facelina vicina (Bergh, 1882)Figure 5D,EDepth: 0–15 mThe color of the digestive gland visible through cerata vary from light orange/pink to dark violet3–10
23Eubranchus cf. farrani
(Alder & Hancock, 1844)
Figure 5FFound at shallow depth on hydrozoans colonies.
Depth: 0–15 m
This species shows differences in the shape and the number of the dorsal yellow spots11–30
24Eubranchus cf. linensis Garcia-Gomez, Cervera & Garcia, 1990Figure 5G,HDepth: 0–5 m.-11–30
25Catriona maua
Ev. Marcus & Er. Marcus, 1960
Figure 6ARecorded in shallow water on hydrozoans colonies.
Depth: 0.5 m
-1–2
26Rubramoena amoena
(Alder & Hancock, 1845)
Figure 6BFound in April in shallow water. Temperature 15 °C.
Depth: 8 m
-1–2
27Trinchesia genovae
(O’Donoghue, 1926)
Figure 6C,DOccurs in shallow water on algae, bryozoan, and hydrozoans substrates.
Depth: 0–20 m
-11–30
28Trinchesia cf. miniostriata Schmekel, 1968Figure 6EOn rocky substrates.
Depth: 9 m
-1–2
29Trinchesia morrowae
Korshunova, Picton, Furfaro, Mariottini, Pontes, Prkić, Fletcher, Malmberg, Lundin & Martynov, 2019
Figure 6FCommon in March-April and in July when it is possible to observe several specimens living and laying eggs on hydroid of the genus Sertularella Gray, 1848.
Depth: 0–15 m
The typical color of the apical portion of the rhinophores and the oral tentacles varies from orange to yellow or it could completely lack.>100
30Runcina cf. ferruginea
Kress, 1977
Figure 6GVery small species 1.5–2 mm, as expected for Runcina species.
Depth: 8 m.
-3–10
31Philine punctata (J. Adams, 1800)Figure 6HFound only as single and very small specimen, ca. 1 mm, on Posidonia oceanica rhizomes.-1–2
32Philine quadripartita
Ascanius, 1772
Figure 7ARecorded on soft bottoms.
Depth: 8 m
-1–2
33Camachoaglaja africana
(Pruvot-Fol, 1953)
Figure 7B,CRecorded on soft bottoms or on algae.
Depth: 0–20 m
Its body color pattern varies from a dark form to another much lighter and densely covered by whitish tiny dots11–30
34Philinopsis depicta
(Renier, 1807)
Figure 7DFound on soft bottoms or on algae mainly during winter season and in shallow water.
Depth: 0–15 m
-11–30
35Melanochlamys wildpretii
Ortea, Bacallado & Moro, 2003
Figure 7EFound in winter in shallow water.
Depth: 0–3 m
-1–2
36Haminoea cf. orteai
Talavera, Murillo & Templado, 1987
Figure 7FFound on green algae.
Depth: 0–3 m
-31–100
37Elysia gordanae
T. E. Thompson & Jaklin, 1988
Figure 7G,H and Figure 8AVery mimetic species, usually in association with the green alga Flabellia petiolata (Turra) Nizamuddin, 1987.
Depth: 0–15 m
->100
38Elysia margaritae
Fez, 1962
Figure 8BOn Dictyota dichotoma (Hudson) J.V. Lamouroux, 1809.
Depth: 0–2 m
-1–2
39Aplysiopsis elegans
Deshayes, 1853
Figure 8CDepth: 0–12 m-3–10
40Cyerce graeca
T. E. Thompson, 1988
Figure 8DFound on April. 18 °C water temperature.
Depth: 3 m
The body color patter varies from withe to light yellow1–2
41Hermaea bifida(Montagu, 1816)Figure 8EFound mainly in spring and summer on green algae. Depth: 5–6 m-3–10
42Hermaea paucicirra
Pruvot-Fol, 1953
Figure 8FFound on algae in shallow waters. Depth: 0–1 m-1–2
43Ercolania coerulea
Trinchese, 1892
Figure 8G,HFound on algae in shallow waters.
Depth: 0–5 m
-3–10
44Limapontia capitata (O. F. Müller, 1774)Figure 9AFound on algae in shallow waters.
Depth: 0.5 m
-11–30
45Placida cremoniana
(Trinchese, 1892)
Figure 9BDepth: 0–12 m-11–30

Share and Cite

MDPI and ACS Style

Furfaro, G.; Vitale, F.; Licchelli, C.; Mariottini, P. Two Seas for One Great Diversity: Checklist of the Marine Heterobranchia (Mollusca; Gastropoda) from the Salento Peninsula (South-East Italy). Diversity 2020, 12, 171. https://doi.org/10.3390/d12050171

AMA Style

Furfaro G, Vitale F, Licchelli C, Mariottini P. Two Seas for One Great Diversity: Checklist of the Marine Heterobranchia (Mollusca; Gastropoda) from the Salento Peninsula (South-East Italy). Diversity. 2020; 12(5):171. https://doi.org/10.3390/d12050171

Chicago/Turabian Style

Furfaro, Giulia, Fabio Vitale, Cataldo Licchelli, and Paolo Mariottini. 2020. "Two Seas for One Great Diversity: Checklist of the Marine Heterobranchia (Mollusca; Gastropoda) from the Salento Peninsula (South-East Italy)" Diversity 12, no. 5: 171. https://doi.org/10.3390/d12050171

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop