Next Article in Journal
Two Distinct Life History Strategies of Atlantic Sturgeon in the Ogeechee River, Georgia
Previous Article in Journal
DNA Barcoding of Moon Jellyfish (Cnidaria, Scyphozoa, Ulmaridae, Aurelia): Two Cryptic Species from the Azores (NE Atlantic, Macaronesia), and Evaluation of the Non-Indigenous Species (NIS)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Diversity of the Pteridoflora of Montane Northwestern Mexico

by
J. Daniel Tejero-Díez
1,
Raúl Contreras-Medina
2,
Alin N. Torres-Díaz
1,
M. Socorro González-Elizondo
3,
Arturo Sánchez-González
4 and
Isolda Luna-Vega
5,*
1
Laboratorio de Botánica Estructural, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla CP 54090, Estado de México, Mexico
2
Laboratorio de Biodiversidad, Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca (UABJO), Oaxaca de Juárez CP 68120, Oaxaca, Mexico
3
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango, Instituto Politécnico Nacional (IPN), Durango CP 34234, Durango, Mexico
4
Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo (UAEH), Ciudad Universitaria, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma CP 42184, Hidalgo, Mexico
5
Laboratorio de Biogeografía y Sistemática, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP 04510, Mexico
*
Author to whom correspondence should be addressed.
Diversity 2023, 15(3), 324; https://doi.org/10.3390/d15030324
Submission received: 16 January 2023 / Revised: 14 February 2023 / Accepted: 16 February 2023 / Published: 22 February 2023
(This article belongs to the Section Plant Diversity)

Abstract

:
This study compiles and updates the checklist of ferns and lycophytes from the Sierra Madre Occidental (SMOc). For this, we revised information on these taxa from regional floristic studies, databases, and herbaria. Our updated list includes 312 species, of which 276 are ferns and 36 are lycophytes integrated into 27 families and 75 genera. The richest families are Pteridaceae (118), Polypodiaceae (31), Selaginellaceae (30), Aspleniaceae (25), and Dryopteridaceae (25). The three most diverse genera were Selaginella (30), Asplenium (25), and Myriopteris (22). The species-rich Mexican states that include the SMOc are Durango (166 species), Chihuahua (149), and Jalisco (146). As in other tropical mountains, species richness in the SMOc is concentrated at the elevation interval of 1500 to 2000 m (236 species). The mid-mountain vegetation forests (Quercus and Pinus-Quercus forests) harbor the most pteridoflora richness (52% of the species). Four species of ferns are listed as threatened in the Mexican Official Norm NOM-059-SEMARNAT-2010, 17 species are listed in the IUCN, and only one tree ferns are in CITES. The SMOc has a Nearctic affinity, and its fern and lycophyte diversity are lower than in other Mexican Transition Zone mountain chains, such as the Sierra Madre del Sur, the Trans-Mexican Volcanic Belt, and the Sierra Madre Oriental. Notwithstanding, its biological composition is unique and distinctive. The species number reported in the SMOc represents 31% of the pteridoflora diversity recorded in Mexico.

1. Introduction

Ferns and lycophytes are seedless vascular plants that are highly diverse worldwide, especially in the montane areas of tropical regions [1,2,3]. For example, the territory of Mexico, where almost 75% of it consists of mountains, represents one of the countries in the Neotropics with a highly diverse pteridoflora diversity [2], with nearly 1043 species [4,5]. This number represents nearly 5% of the total vascular flora of the country (23,314 species sensu Villaseñor [6]), and 20% are endemic [4]. In addition, recently described new species increase this richness [7,8].
The Mexican fern flora has been extensively studied from a taxonomic point of view [9]. In addition, other states and regional floras are available [4,10,11], among others. However, it is necessary to study some regions where information is still scarce or scattered. The review of specimens in herbaria, fieldwork in different regions of the country, and studies of local floras show large areas that are so far little explored [5,12,13,14].
Previous floristic and biogeographic research related to ferns and lycophytes has been carried out in some of the main mountain chains of Mexico, such as the Sierra Madre del Sur [4], the Sierra Madre Oriental [15,16], and the Trans-Mexican Volcanic Belt [17]. In addition, there are general studies of pteridoflora in the Serranías Transístmicas in Chiapas [18] and the Sierra de la Giganta in Baja California Norte [19,20]. Although the Sierra Madre Occidental has not been studied entirely with regard to its pteridoflora, available information on herbaria and previous studies exists. Unfortunately, this mountain chain has no extensive regional inventories of ferns and lycophytes. Nevertheless, the arid–semiarid zone of northwestern Mexico (and the southwestern United States) has been considered an area of endemicity for this group of plants [21,22], which are regions that, in turn, are recognized as highly endemic for flowering plants [23,24].
Tropical mountains have been considered areas of high concentration of biodiversity and have been recognized as biodiversity hotspots [25,26,27]. In the case of ferns and lycophytes, tropical mountains play a central role in their diversity and diversification [1,26]. They are also clearly associated with the main hotspots recognized for these groups of vascular plants [1,3]. Furthermore, the Mexican ferns and lycophytes represent biological lineages that are relatively well-studied [9]; they are diverse (>1000 species) and have been relatively well-sampled in most of the Mexican mountain chains [4,17,28]. For these reasons, the studies and inventories of ferns and lycophytes in the mountain chains of Mexico are imperative and relevant in terms of plant diversity, mainly in areas that are poorly studied, such as the Sierra Madre Occidental.
Detailed studies to obtain information on plant taxonomic groups such as ferns and lycophytes at regional or local scales are essential to understand their evolution and biogeography and to evaluate their conservation status. This study aimed to carry out a floristic inventory of ferns and lycophytes in the Sierra Madre Occidental (SMOc) to unify the previous knowledge and update floristic information. We also offer information about the ecology, distribution, and conservation status of ferns and lycophytes inhabiting the SMOc. Also, we compared the species richness of the study area with the other Mexican mountain chains. Finally, we highlight the local endemism and threatened taxa.

2. Materials and Methods

2.1. Study Area

The SMOc is a morphotectonic and biogeographic province located in northwestern Mexico (Figure 1), with extreme coordinates of 30°35′–21°00′ N and 109°10′–102°25′ W. It is the most extensive mountainous complex in the country, covering almost 1200 km [29,30]. This Sierra connects the Rocky Mountains in the United States with the Trans-Mexican Volcanic Belt in the south and runs parallel to the Pacific coast. It has been considered an important biological corridor for both boreal species and tropical mountain elements [23].
The SMOc has the most extensive area with temperate forests in the country, for the confluence in its territory of floras of diverse origins, and for its great variety of vegetation types. The SMOc divides the subhumid Mexican tropical forest on the southwestern side (Jalisco to Sonoran) and desert scrub on the north and east sides (Sonoran-Chihuahuan desert) [31,32]. Therefore, this biogeographic province is crucial and considered part of the Mexican Transition Zone [32,33]. The SMOc mountain chain comprises parts of the following states: Aguascalientes, Chihuahua, Durango, Jalisco, Nayarit, Sinaloa, Sonora, and Zacatecas (Figure 1). This mountain chain has an average elevation of 2500 m, with a median of 1800 m on its eastern side facing the Mexican Plateau and a low elevation limit of 300 m on its western side facing the Pacific slope. In contrast, the highest points, such as Cerro Gordo (3347 m asl), Barajas (3310 m), and Mohinora (3307 m), reach more than 3300 m asl, with the first two located in Durango and the last one in Chihuahua [30]. This mountain chain is composed mainly of ignimbritic rocks (estimated at ca. 289,000 km2 [34]), and the vegetation covers 251,648 km2 [30].
The SMOc is a volcanic arc produced from magmatic and tectonic episodes related to the subduction of the Farallon tectonic plate beneath the North American plate, and it was constructed from north to south during 60 m.a., starting in the late Cretaceous and ending in the middle Miocene [29,35]. In the first stage, effusive volcanism in the SMOc was developed from its origin to near 32 m.a., changing later to explosive volcanism, which contributed to its extension and elevation increase [35]. Thus, this mountain chain is an example of the enormous volcanic activity in the Mexican territory and represents one of the larger silicic igneous areas in the world [29].
In the western part of the SMOc, the section facing the Pacific generally has a monsoon-type climate [36]. That area presents different humidity gradients. The orographic shadow effect causes a drier inner slope in the mountain, which decreases humidity from west to east from the Pacific Ocean Slope to the Mexican Plateau. The intertropical convergence zone sheds rain in the summer in Nayarit, Jalisco, and southeastern Mexico. The northern part is influenced by the subtropical belt of high atmospheric pressure and by the cold oceanic current of California, with increasing humidity from north to south. Although intermittent, the summer–autumn hurricanes originating in the Pacific Ocean run from south to north and leave moisture in northwestern Mexico. The landscape heterogeneity is also related to a wide range of climates: it is dry in the north and eastern slopes, temperate and semi-cold in the highlands, and warm in the lowland zones of the western slopes facing the Pacific Ocean [37]. The SMOc represents the driest Mexican temperate mountain system (seasonal temperate forests), so it does not harbor as great a diversity of ferns and lycophytes as the wetter Mexican mountains. In the SMOc, the understory of the seasonal forest is frequently covered with leaves, thus preventing the establishment of other plants.
Figure 1. Map of northwestern Mexico. (A) Localization of the Sierra Madre Occidental (SMOc) and Sky Islands [33] and (B) vegetation types and land use in the SMOc [38]. AGS = Aguascalientes.
Figure 1. Map of northwestern Mexico. (A) Localization of the Sierra Madre Occidental (SMOc) and Sky Islands [33] and (B) vegetation types and land use in the SMOc [38]. AGS = Aguascalientes.
Diversity 15 00324 g001
There are four general climatic zones in the SMOc: (a) dry and semi-dry climates (type BS) in the foothills to the east, north, and northwest; (b) temperate climates and semi-cold (C and C(E), respectively) in the upper part and middle part, semi-dry towards the eastern slope, and sub-humid towards the western; (c) semi-warm (A(C)) on the western slope; and (d) warm (A) in the lower parts and ravines. The rainy season occurs in summer with a marked climatic seasonality [30].
About 14 vegetation types exist in the SMOc (Figure 1) and change dramatically from slope to slope, as well as among different elevation sites [30,38]. Pines, pine-oak, other conifer forests, and oak forests cover the highlands (57% of the surface). This region harbors the greatest diversity associations of pines, oaks, and Arbutus worldwide [39]. In addition, there are tropical deciduous and semideciduous forests on the western slopes. The northern and eastern slopes of the SMOc, facing the Mexican Plateau, are dominated by semi-arid landscapes with xeric scrublands. The riparian forest and other wetlands constitute azonal vegetation types [30]. Two mega centers of diversity are recognized in the SMOc: one in the northern part and the other in the high basin of the San Pedro Mezquital River. [30,40,41].

2.2. Distributional Data and Analysis

We constructed a database with updated taxonomic and phylogenetic information on ferns and lycophytes from four primary sources: (1) the review of floristic studies carried out in the SMOc [11,42,43,44,45,46,47,48,49,50]; (2) revision of the herbarium specimens in some Mexican botanical collections, including the national herbarium of the Instituto de Biología, UNAM (MEXU), the herbarium of the Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB), the herbarium of the Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango, Instituto Politécnico Nacional (CIIDIR), and the herbarium of the Universidad Autónoma de Aguascalientes (HUAA); (3) revision of the digital databases, e.g., the New York Botanical Garden (NYBG), the Missouri Botanical Garden (https://www.tropicos.org/home, accessed on 3 August 2021), the Pteridophyte Collections Consortium (PCC) (https://www.pteridoportal.org/portal/index.php, accessed on 3 August 2021), and the Red de Herbarios del Noroeste de México (https://herbanwmex.net/portal/, accessed on 3 August 2021); (4) field surveys in some poorly collected areas. Some of these areas are the Sky Islands in the northern part of the SMOc; protection areas of fauna and flora in Campo Verde in Sonora, northern SMOc; protection areas of fauna and flora in Tutuaca, between Chihuahua and Sonora, in the central part of the SMOc; the gorges region in Durango, western SMOc; and the Sierra del Nayar, southern SMOc.
Voucher specimens collected during the fieldwork were deposited at the national herbarium (MEXU) and the herbarium of the Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango (CIIDIR). For each specimen examined, we verified the identity of the species and updated the nomenclature to the latest taxonomic revisionary studies, mainly based on the Phylogeny Pteridophyte Group, or PPG I [51]. In addition, we depurated and updated the taxa names without clear identities, voucher references, and accurate geographic data from the Missouri and New York Botanical Gardens and the Red de Herbarios del Noroeste databases.
We consulted the following monographic, taxonomic, and phylogenetic studies to update the nomenclature of genera and species: Amauropelta [52], Austroblechnum [53], Botrypus [54], Christella [52], Cyclosorus [55], Ephemeropteris [56], Gaga [57], Gastoniella [58], Goniopteris [52], Leptogramma [55], Pelazoneuron [55], Phlegmariurus [59], Pleopeltis [60], Myriopteris [61], Sceptridium [54], and Vandenboschia [62]. The taxonomic study of Mickel and Smith [9] was reviewed for the remaining genera and species.
From all these information sources, we compiled a final checklist of accepted taxa based on the validation of names through referenced phylogenetic studies, the cross reference of databases, and the revised vouchers from herbaria. In the final checklist (Appendix A), the classification follows the PPG I [51].
From these sources, our final database contains information on fern and lycophyte species, including locality (state and geographical coordinates), elevation, and life form. The vegetation types followed the proposal of González-Elizondo et al. [30]. This information was obtained from the herbaria labels and web databases. The SMOc presents a wide elevation range, so we delimited seven elevation intervals of 500 m to represent the tendency of species in a graph. These intervals were used for comparative purposes (e.g., [1,63,64,65]). Finally, the study of Mickel and Smith [9] was used as a general framework to assess the limits of fern and lycophyte species’ geographic distributions and endemism. For this, we determined eight categories related to the geographic distribution of each species as follows: (1) Cosmopolitan—taxa distributed worldwide; (2) American— taxa distributed in the American continent; (3) Nearctic—taxa distributed in Mexico and North America; (4) Neotropical—taxa distributed in Mexico, Central, and South America, including, in some cases, Florida in the United States of America; (5) Mesoamerican—taxa distributed in Mexico and Central America; (6) Endemic to Mexico—taxa whose known distribution is restricted to Mexico; (7) Endemic to the SMOc—taxa whose known distribution is restricted to the limits of the SMOc; (8) Regional endemic to northwestern Mexico—taxa whose known distribution is limited to the SMOc and adjacent states of the United States of America (Arizona, New Mexico, and Texas) and northern Mexico (Coahuila).
In general, the flora richness is expressed as the species number or a biodiversity index that considers the number of species per area in a logarithmic sense. Therefore, using biodiversity indexes is essential for comparing sampled areas with different sizes. In this study, we are comparing the SMOc with other Mexican mountain chains. Therefore, we calculated the floristic richness (taxonomic biodiversity index) following the suggestion of Squeo et al. [66]: R = N/ln A (where: N = species number; lnA = natural logarithm of the area in km). With this formula, we compared the species richness among geographic regions.
We revised the Mexican Official Norm NOM-059-SEMARNAT-2010 [67] to recognize how many fern and lycophyte species of the SMOc are listed and to verify their corresponding risk category. The NOM-059-SEMARNAT-2010 is the official document generated by the Mexican government that encompasses the environmental protection of the wild flora, fauna, and fungi species native to Mexico [67]. This document includes the specifications for including and analyzing those species in some risk categories. For example, the threatened category in the Mexican Official Norm NOM-059-SEMARNAT-2010 is equivalent to the vulnerable category of the IUCN. Meanwhile, the special protection category of the NOM-059-SEMARNAT-2010 includes some minor categories of the IUCN [68]. Finally, we proposed other fern and lycophyte species as candidates based on their restricted distribution, low population density, and rareness. We complemented this information with those species included in the IUCN Red List [69] and CITES [70].

3. Results

3.1. Floristics

Based on herbarium specimens, web databases, specialized literature, and specimens collected during fieldwork, we obtained a final checklist that included 312 species from the SMOc belonging to 27 families and 75 genera (Table 1, Appendix A). Of these species, 276 are ferns and 36 are lycophytes. The most diverse families (10 or more species) are Pteridaceae (118), Polypodiaceae (31), Selaginellaceae (30), Aspleniaceae (25), Dryopteridaceae (25), Anemiaceae (11), and Thelypteridaceae (10). The Pteridaceae is the richest family in the area. The numbers registered in our study show that Pteridaceae is around four times more genera and species-diverse than the next most diverse family (Table 1). The remaining pteridoflora families have nine or fewer species (Table 1). Six families are represented by only one species (Cyatheaceae, Gleicheniaceae, Lygodiaceae, Nephrolepidaceae, Osmundaceae, and Plagiogyriaceae).
Eleven genera have ten or more species (Figure 2). The three most diverse genera are Selaginella (30), Asplenium (25), and Myriopteris (22). The remaining genera inhabiting the SMOc have from nine to one species. From these, 32 genera are represented by only one species; some of them are common in other humid parts of Mexico (i.e., Ctenitis, Cyathea, Goniopteris, Hymenophyllum, Diplazium, Melpomene, Nephrolepis).

3.2. Taxonomic Biodiversity Index

The floristic richness calculated for the surface of the SMOc was 25 species per km2. Notwithstanding that it is the largest mountain chain in Mexico (Table 2), the richness of ferns and lycophytes is low in comparison to the other Mexican wet montane areas due to the absence of appropriate substrates and wide aridity. The other Mexican mountain chains have higher species numbers per km2 because they house more humid temperate forests and proper phorophytes.

3.3. Threatened Species

Only four species that inhabit the SMOc are included in the Mexican Official Norm NOM-059-SEMARNAT-2010 [67]. Two of them in the threatened category: Campyloneurum phyllitides (L.) C. Presl, and Psilotum × complanatum Sw. Two are in danger of extinction: (Cyathea costaricensis (Mett. ex Kuhn) Domin and Selaginella porphyrospora A. Braun). There are 16 species included in the IUCN Red List in the less concern category (LC), and only Psilotum nudum is critically endangered (CR) (Table 3). Only Cyathea costaricensis is included in CITES. Unfortunately, more species need to be analyzed to consider their inclusion in Mexican and international lists.

3.4. Pteridodiverse States of the SMOc

Durango contains the greatest number of species of ferns and lycophytes (166 species), followed by Chihuahua (149), Jalisco (146), Sonora (134), Sinaloa (131), and Nayarit (127). Aguascalientes and Zacatecas have fewer species (55 and 74, respectively) (Appendix A and Figure 3). Sonora includes more endemic species (7 species), followed by Durango, Nayarit, and Sinaloa (6 species). Restricted endemics are present in Chihuahua and Jalisco, with four species each. Some of them are shared between these two states.

3.5. Life Forms

Most species occurring in the SMOc are epipetric (183 species) and terrestrial (168), followed by epiphytes (39) and aquatics (22); there was only one tree fern and a climbing fern (Appendix A). The arborescent habit is represented by Cyatheaceae (Cyathea), and the single climbing species belongs to Lygodiaceae (Lygodium). The epipetric species were recorded mainly in Aspleniaceae (Asplenium), Pteridaceae (in almost all genera), Woodsiaceae (Woodsia), and Selaginellaceae (Selaginella). The epiphytic species belong mainly to Polypodiaceae (in almost all genera). Finally, aquatic plants were found mainly in the families Isoetaceae (Isoetes), Marsileaceae (Marsilea and Pilularia), and Salviniaceae (Azolla) (Appendix A). The annual life form is rare among ferns. However, we found three species with this life form: Anogramma leptophylla (L.) Link, Gastoniella novogaliciana (Mickel) Li Bing Zhang andLiang Zhang, and Selaginella porphyrospora.

3.6. Elevation

Ferns and lycophytes are distributed all over the elevation interval of the SMOc (300 to 3200 m asl). As usually occurs in tropical mountains, the highest diversity in the SMOc was observed at mid-elevations. The highest species concentration occurred between 1500 to 2000 m (236 species) (Figure 4). This diversity decreased toward both high and low elevations.

3.7. Vegetation Types Distribution

The Quercus and mixed PinusQuercus forests stand out for their pteridoflora richness (52% of the species) and cover the largest surface of the SMOc (110,882 km2) [30]. Atmospheric humidity is high in these areas; oak species are well represented and are excellent phorophytes and soil formers [71,72]. On the other hand, conifer forests (including pine forests) contain at least 32% of the pteridophytes and cover a surface of 30,841 km2 [30]. In comparison, the tropical deciduous and semideciduous forests occupy less surface and cover 17,827 km2 and 3950 km2, respectively [30], and contain 35% of the species. The remaining plant communities contain less than 70 species (Appendix A).

3.8. Geographic Distribution

Concerning the geographic distribution of ferns and lycophytes that inhabit the SMOc, the Neotropical and Mesoamerican components are the best represented, with 65 species each. They are followed by the endemic to Mexico component, with 61 species (Figure 5). In northwestern Mexico, our data support that the Nearctic component is more significant than in other parts of the country, being represented by 50 species. Furthermore, the high proportion of Mesoamerican and Neotropical components in the SMOc contributes to enhancing the significance of this montane area in America (Appendix A). The other geographic components have less than 35 species each.
We recorded 13 species that are endemic to the SMOc: Anemia affinis Hook. and Baker, Anemia brandegeei Davenp., Anemia intermedia Copel. ex M.E. Jones, Argyrochosma lumholtzii (Maxon andWeath.) Windham, Asplenium arcanum A. R. Sm., Asplenium modestum Maxon, Asplenium tryonii Correll, Myriopteris yatskievychiana (Mickel) Grusz andWindham, Notholaena aurantiaca D.C. Eaton, Notholaena jaliscana Yatsk. andArbeláez, Polypodium praetermissum Mickel andTejero, Selaginella macrathera Weath., and Woodsia cystopteroides Windham andMickel (Table 1). At least eight other species are closely linked to the SMOc distribution and adjacent regions (Appendix A).

4. Discussion

Our study updated the number of ferns and lycophytes in the SMOc. The recognition of 312 species in the pteridoflora of the SMOc contributes to the knowledge of these groups. Therefore, we can say that this Mexican orographic system has an extraordinary taxonomic biodiversity of ferns and lycophytes, which reflects the current pteridoflora diversity in the driest Mexican mountain chain. Our results represent an increment of 50 species of pteridoflora (18%) compared to the 262 species previously estimated [4]. Recent studies considered 1043 species of ferns and lycophytes occurring in Mexico [4,5]. Therefore, the new number of species reported here in the SMOc represents 31% of the diversity recorded for the country.
The SMOc represents an exciting area harboring one of the world’s most extensive subtropical conifer forests [30,31,32]. Morrone [32] recently suggested that the SMOc is closely related to areas from the Nearctic biogeographical realm, where some fern and lycophyte families and genera are poorly represented. In the SMOc, the tropical humid fern families, such as Cyatheaceae (one species) and Hymenophyllaceae (two species), are underrepresented compared with other Mexican chains located in eastern and southern Mexico, as in the case of the Sierra Madre del Sur, which contains a solid Neotropical component, where the two families mentioned above have 13 and 31 species, respectively [4]. Among the mountainous areas of Mexico, the SMOc has the most significant North American biological influence [73] with regard to fern and lycopod diversity.
The best-represented families in species number are Pteridaceae (118), Polypodiaceae (31), Selaginellaceae (30), Aspleniaceae (25), and Dryopteridaceae (25). Cheilanthoid ferns mainly represent Pteridaceae (Argyrochosma, Astrolepis, Gaga, Myriopteris, Notholaena, Pellaea) and are distributed predominantly on the eastern slope facing the Mexican Plateau, which has xerophytic and seasonal temperate vegetation types.
Selaginella is the most diverse in the SMOc. This genus is included in a monotypic family and represents the largest one, with 700 to 800 species worldwide that inhabit an impressive range of habitats, including rocky deserts and xeric scrublands [74]. Among the species adapted to xeric habitats, Selaginella lepidophylla and other species are commonly named resurrection plants due to their ability to survive extreme and long-term droughts [75]. In the SMOc, Selaginella species are mainly distributed on the eastern slope facing the Mexican Plateau with xerophytic vegetation.
On the other hand, the western slopes of the SMOc have more Nearctic affinity [31] except on the lower zones [30]. In this last area, the Dryopteridaceae, Aspleniaceae, and the non-cheilanthoid genera of Pteridaceae (e.g., Adiantum, Pteris, and Pityrogramma) are well-represented. Finally, Polypodiaceae and Dryopteraceae (Elaphoglossum) are represented by temperate genera and species, mainly in the medium and high montane areas [60]. A Mediterranean or monsoon climate [36,37] allows for the coexistence of several taxonomic groups. Our study supports that the SMOc is a diversity center for Argyrochosma (Pteridaceae). Fourteen species of this genus occur in Mexico and the southwestern United States, which is considered mainly an American genus of about 20 species, with 5 in South America and 1 in China [51], and we recorded eleven species in the SMOc. Apparently, the SMOc represents a diversification center for Argyrochosma, as suggested for other fern and lycophyte genera linked to the Andean region. In this last case, the mountain chain has played a crucial role in the diversification of Phlegmariurus [26] and Polystichum [76].
Pteridaceae is the most diverse family of ferns in the SMOc. The genera and species number included in Pteridaceae are around four times more diverse than the next most diverse family. This family has a cosmopolitan distribution concentrated in wet tropical and arid regions. It differs notably from other fern families by encompassing xeric-adapted species [77]. Among these, cheilanthoids represent uncommon ferns that do not live in the temperate or tropical, moist, shaded habitats of “typical” ferns, because most species grow in exposed rocky habitats with an extended annual dry period [78]. The cheilanthoid ferns comprise several separate lineages distributed in the SMOc, such as Argyrochosma, Bommeria, Cheilanthes, Gaga, Hemionitis, Myriopteris, Notholaena, and Pellaea, which occupy the diverse xeric niches of this mountain chain. This richness of Pteridaceae contrast with the low diversity of other families with a higher diversity in rainfall regions.
Some groups of ferns and lycophytes are poorly represented in the SMOc in comparison with other Mexican mountain chains, such as the Sierra Madre del Sur [4] and the Sierra Madre Oriental [15,16]. This is because many families and genera of the tropical and subtropical groups reach their northern distributional limit before reaching the SMOC, e.g., Cyatheaceae. Other families decrease their species richness towards the north, e.g., Anemiaceae, Gleicheniaceae, and Hymenophyllaceae, with few species recorded in the flora of North America [79].
Tropical and subtropical mountains harbor unequal biodiversity, and ferns and lycophytes are no exception [3]. The southern portion of the SMOc has recently been included in the Mesoamerican hotspot of fern diversity proposed by Suissa et al. [3]. In this sense, a significant decrement in species richness has been detected, from southwest to northeast, in other biological groups of the SMOc [31]. Notwithstanding, this mountain chain is recognized as one of the main biodiversity areas in the country [30,32].
Ferns and lycophytes go along with biological and geographical characteristics, and some species are used as environmental indicators [80]. For example, it is necessary to consider endemic species that inhabit seasonal subhumid conditions. In addition, some locations have been used to feed cattle [81,82], which reduces the fern populations. Therefore, this aspect is an essential characteristic to be considered in Mexican and international risk lists.
We found at least 13 species of ferns that are endemic to the SMOc. Some of these species (e.g., Anemia brandegeei, Anemia intermedia, Asplenium modestum, Asplenium tryonii, Argyrochosma lumholtzii, Myriopteris yatskievychiana, Notholaena jaliscana) meet the criteria (restricted distribution, low-density populations, and habitat sensitive to reduction by the human impact) to be included in the Mexican Official Norm NOM-059-SEMARNAT-2010 [67] and the IUCN [69]. In our study, we are proposing these species as candidates to be included in the NOM-059-SEMARNAT-2010.
Some other species, which were rare in the study area but widespread in other Mexican localities, must be considered candidates to be included in the Mexican Official Norm NOM-059-SEMARNAT-2010 [67] or at least to be treated differently. This is the case for Phlegmariurus (Lycopodiaceae), which in Mexico is represented by 13 species, two of which occur in the SMOc (P. cuernavacensis and P. taxifolius). Phlegmariurus species are distributed in undisturbed areas of mature pine-oak and humid montane forests. Because of this, the populations of Phlegmariurus are highly susceptible to disturbance and were represented by few individuals in each site.
Unfortunately, deforestation and land-use change have reduced the pine-oak and humid montane forests due to agriculture and animal husbandry. Furthermore, these plants are rare or absent in cleared areas because they are vascular epiphytes of mature host canopy trees [83]. This information allows us to conclude that both species of Phlegmariurus may be considered threatened or endangered, as is the case in other areas of Mexico [83]. Therefore, more species must be included in the Mexican Official Norm NOM-059-SEMARNAT-2010 [67] due to their restricted distribution, rarity, and continuous loss and fragmentation of humid montane forests.
The SMOc includes another group of species endemic to Mexico that are rare throughout the country, like those represented in a few localities and collections (e.g., Argyrochosma palmeri (Baker) Windham, Asplenium pringlei Davenp., A. sanchezii A. R. Sm., Gaga pellaeopsis (Mickel) Fay-Wei Li and Windham, Gastoniella novogaliciana, Pleopeltis rzedowskiana (Mickel) A.R. Sm. and Tejero, and Selaginella schaffneri Hieron.). On the other hand, Botrychium tolucaense W. H. Wagner and Mickel, Argyrochosma pilifera (R.M. Tryon) Windham, Selaginella macrathera, and Selaginella carnerosana T. Reeves are only known from type or a few herbaria specimens. These species were collected more than 30 years ago and could be considered extinct.
The proportion of restricted endemics supports the proposals of Tryon [21,22] and Mickel and Smith [9], in the sense that northwestern Mexico (including the southwestern United States) are considered an endemism center for this group of plants, essentially for those inhabiting the seasonal montane forests and semi-arid vegetation types (regions that, in turn, are recognized as highly endemic for flowering plants by Rzedowski [23,24]). On the other hand, the tropical mountains are highly diverse in the elevation interval from 1000–2500 m; despite this, a peak of endemism is located at higher elevations [1].
The Mexican ferns and lycophytes are underrepresented in the Red Lists, where only 3% of them are listed. A good example is the comparison of the pteridoflora of Mexico and Bolivia, with similar sizes (1191 species in Bolivia [2]). In the case of Bolivia, nearly 11% of species are registered in some risk category [84].
The SMOc and other Mexican mountain chains constitute the Mexican Mountain Component [32], which was recently recognized as one of the main fern hotspots and globally named the “Mesoamerican hotspot” [3] and has a higher richness than the neighboring non-hotspot regions. A similar situation occurs in northwestern Mexico at a regional level, because the SMOc holds a higher richness of fern and lycophyte species than the neighboring biogeographic provinces, such as the Chihuahuan Desert and Pacific lowland provinces (see Morrone [32]).
In the SMOc, ferns and lycophytes are mainly concentrated between 1500 to 2000 m asl where mild weather occurs. The same elevation interval was recognized by Hernández-Rojas et al. [85] along eight study transects across Mexico. Similar results have been reported in other countries and areas of the Neotropical region, such as the Andes [63], Costa Rica [1], Colombia [65], Bolivia [85], and Argentina [86]. These studies support that fern and lycophyte diversity show a well-defined, hump-shaped richness pattern on high tropical mountains, with the highest diversity between 1500 to 2000 m and decreasing toward high and low elevations [1,63,87]. The same phenomenon occurs in the central part of the Himalayas in Nepal [88]. Such mid-elevation peaks in fern richness have also been found in other regions, such as Borneo, Costa Rica, and Bolivia, by Kessler [1].
The most extraordinary diversity of ferns and lycophytes is linked to atmospheric humidity, which, in tropical mountains, is concentrated at mid-elevations, where cloud or temperate forest develops [1,85]. The low reactivity of foliar stomata partly explains why the richness of lycophytes and ferns is replaced by seed plants in drier environments [89], and, on the contrary, in humid forests, these groups are better represented [23,90,91,92]. Therefore, it is not a coincidence that the best representativeness of the richness of ferns and lycopods coincides with the mid-mountain area (1500 to 2000 m asl) of the oceanic slope, where semi-warm and temperate climates prosper, and mixed forests develop, mainly those of Quercus and Pinus-Quercus. The facts mentioned above are common in other areas of the Neotropics, in which the richness of pteridophytes reaches a maximum [87]. This also can be explained by the heterogeneity and contrasted elevational levels in mountains that practically constitute the most extended biological corridor parallel to the sea, which is the longest on the planet [93].
The lycophytes and ferns of the SMOc occupy specific and specialized niches. Most species are epipetric, and the understory forest is very poor in species. This fact is caused because the conifer and mixed pine-oak forests, which account for ca. 42.5% of the extension of the SMOc, develop from mid to high elevations, from 1300 to 3300 m asl [30]. Furthermore, the accumulation of needles on the understory inhibits the growth of other species, especially ferns, because the dense leaf litter affects gametophyte growing on the ground [94]. In addition, soils are acidic, and the presence of terpenes promotes recurrent fires; also, the decayed bark of the trees rejects epiphytes [95,96]. Therefore, the high richness of lycophytes and ferns in the temperate zone of the SMOc is due to a large number of rocky microenvironments, such as protected escarpments and, in several cases, in the ravines, where the conifer forest acquires a riparian nature, as is the case for the forests of Cupressus, Pseudotsuga, and Abies.
The SMOc hosts 24 pine species, 54 oaks, 7 Arbutus species, and other tree species [39]. These amounts are high, considering that the greatest diversity of pines, Arbutus, and oak trees are located in Mexico. However, despite its environmental, economic, and scientific importance, the SMOc is still one of Mexico’s most biologically and ecologically poorly known regions, where different communities need to be deeply analyzed.
The epiphytic ferns (39 species, 8%) are poorly represented in the SMOc, in comparison with other Mexican areas, such as the Sierra Madre del Sur (183 species, 30%) [4]. The SMOc has a xeric character where the main phorophytes are different species of oaks; however, in contrast to other Mexican mountain ranges, the highest concentration of ferns and lycophytes occurs in ravines on northern slopes, growing mainly at the base of the trunks, sometimes on the lower sub-horizontal branches. Ferns and lycophytes are more diverse in wet and mild habitats, which are conditions that occur on the Atlantic slope of Mexico. In the Pacific slope, where the SMOc is located, these plants are affected by stressful climatic factors [85].
The SMOc was considered by Villers-Ruiz and Trejo-Vázquez [97] among the temperate forest areas more sensitive to climatic and land-use changes. Unfortunately, deforestation and land-use change have reduced the temperate forests due mainly to agriculture and animal husbandry. The coniferous and oak forests are the more affected vegetation types [98,99]. As a result, the SMOc experienced a significant loss of temperate forest cover during 1986–2012 (about 34%), with an annual forest area loss rate of 1.3%, an amount considered intermediate relative to other parts of Mexico [100]. Notwithstanding, this human impact limits the existence of fern and lycophyte species and has an influence on habitat distribution [88].
Among Mexico’s mountainous areas, the SMOc has the most considerable Nearctic influence [73]. Even though the pteridoflora component is not above average diversity compared to other Mexican mountain ranges, the existence of a large proportion of Nearctic elements in the SMOc is greater than in other Mexican mountains. The SMOc ferns present a mixture of Neotropical and Nearctic affinities, unlike the other mountain ranges with a more significant influence of Neotropical elements. This Sierra lacks the typical association of Neotropical ferns due to its low humidity levels. Deep knowledge and conservation of the biological diversity and ecosystems of the SMOc are urgent for various reasons. This synthesis aims to contribute to the biological studies carried out in this mountain chain and to add to the detailed knowledge of the biological diversity of the SMOc.
Tropical mountains are the global centers of fern and lycophyte diversity [1,3]. Among these areas, the Mexican mountain chains, including the SMOc, were recently considered as part of one of the main hotspots recognized worldwide by Suissa et al. [3] for ferns. The Mesoamerican hotspot constitutes a biologically complex area [101] and contains an exceptional species richness of ferns and lycophytes, where the SMOc contributes to this biodiversity.

Author Contributions

I.L.-V. and J.D.T.-D.: conceptualization, project administration, formal analysis, writing, review, and editing. R.C.-M.: conceptualization, formal analysis, writing, review, revision of herbaria, and editing. M.S.G.-E., A.N.T.-D. and A.S.-G.: databases, writing, and revision of herbaria. All authors have read and agreed to the published version of the manuscript.

Funding

Project PAPIIT IN220621 partially financed this project.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

The data presented in this study are available in Appendix A.

Acknowledgments

We acknowledge Perla Rodríguez Sánchez and Othón Alcántara Ayala for their assistance with the maps, tables, and figures. Finally, we are indebted to the curators and staff of the herbaria for their courtesy during our review of specimens.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Floristic checklist of ferns and lycophytes from the SMOc.
Table A1. Floristic checklist of ferns and lycophytes from the SMOc.
IDSpeciesLFVTGDSD
LYCOPODIIDAE
ISOETACEAE
1Isoetes mexicana Underw.HyR, SMxC, D
2Isoetes montezumae A. A. EatonHyRMA, J, N, Z
3Isoetes pringlei Underw.HyR, GMxJ
LYCOPODIACEAE
41 Palhinhaea cernua (L.) Franco & Vasc.TM, BC, QCosJ, N
5Phlegmariurus cuernavacensis (Underw. & F. E. Lloyd) B. Øllg.Ep/EC, M, QMI
6Phlegmariurus taxifolia (Sw.) Á. Löve & D. LöveESNtI
SELAGINELLACEAE
7Selaginella arizonica MaxonT/EpR, M, Q, XNaC, O
8Selaginella arsenei Weath.EpR, C, M, BC, TMxO
9Selaginella carnerosana T. ReevesEpX, SSM&adC
10Selaginella delicatissima Linden ex A. BraunTC, QMA, C, D, J, N, I, O
11Selaginella eremophila MaxonT/EpC, BC, XNaO
12Selaginella extensa Underw.Ep/ER, M, BC, QMxJ
13Selaginella hoffmannii Hieron.T/EpBC, Q, TMN, I
14Selaginella landii Greenm. & N. Pfeiff.T/EpC, BCMxJ, N, Z
15Selaginella lepidophylla (Hook. & Grev.) SpringT/EpQNaC, D, J, I, O
16Selaginella lineolata Mickel & BeitelT/EpC, M, BC, T, SMJ, N, I
17Selaginella macrathera Weath.TC, BC, SSM-eO
18Selaginella marginata (Humb. & Bonpl. ex Willd.) SpringTR, Q, TNtN, I
19Selaginella mutica D. C. Eaton ex Underw.T/EpXNaC
20Selaginella notohybrida ValdespinoT/EpTMxC
21Selaginella novoleonensis Hieron.T/EpT, XMxC, O
22Selaginella pallescens (C. Presl) SpringT/EpM, QNtA, C, D, J, N, I, O, Z
23Selaginella parishii Underw.T/EpC, XMxZ
24Selaginella peruviana (Milde) Hieron.T/EpC, BC, Q, T, XAA, C, D, J, O, Z
25Selaginella pilifera A. BraunT/EpX, SNaC, D, O
261Selaginella porphyrospora A. BraunT/EpM, TNtJ, I, O
27Selaginella reflexa Underw.T/EpTMD
28Selaginella rupincola Underw.T/EpC, M, BC, Q, T, XNaA, C, D, J, O
29Selaginella sartorii Hieron.T/EpX, SNtD, J, N, O
30Selaginella schaffneri Hieron.EpSMxD, J, N
31Selaginella sellowii Hieron.T/EpSNtD, J, I, O, Z
32Selaginella sertata SpringTSMN
33Selaginella tarda Mickel & BeitelT/EpR, T, SMxD, I
34Selaginella tenella (P. Beauv.) SpringEpR, TNtI
35Selaginella underwoodii Hieron.EpXNaC, D, O
36Selaginella wrightii Hieron.EpT, X, SNaC, O, Z
POLYPODIIDAE
ANEMIACEAE
37Anemia × recondita MickelTBC, Q, T, SMxJ, N
38Anemia affinis Hook. & BakerTQ, TSM-eD, J, N, I, O, Z
39Anemia brandegeei Davenp.TTSM-eI
40Anemia hirsuta (L.) Sw.TSNtJ, N, I
41Anemia humilis (Cav.) Sw.TSNtI
42Anemia intermedia Copel. ex M.E. JonesTQSM-eN
43Anemia jaliscana MaxonTC, Q, T, SMxD, J, N, I, O
44Anemia karwinskyana (C. Presl) PrantlTT, SMxJ, N
45Anemia multiplex MickelTSMxJ, N, I, Z
46Anemia phyllitidis (L.) Sw.TMNtN
47Anemia tomentosa (Sav.) Sw.TGNtA, C, D, J, I, O, Z
ASPLENIACEAE
48Asplenium adiantum-nigrum L.EpXCosC, D
49Asplenium arcanum A. R. Sm.TR, TSM-eD, I
50Asplenium athyrioides FéeTM, TMI
51Asplenium castaneum Schltdl. & Cham.T/EpCNtD, J
52Asplenium cuspidatum Lam.Ep/EM, TNtI
53Asplenium dalhousiae Hook.EpBCCosC, I, O
54Asplenium eatonii Davenp.Ep/ER, Q, TMxI
55Asplenium exiguum Bedd.T/EpM, XCosA, C, D, O
56Asplenium fibrillosum Pringle & Davenp. ex Davenp.T/EpTMxA, D
571Asplenium formosum Willd.T/EpR, Q, TCosD, J
58Asplenium fragans Sw.Ep/EC, BC, QNtD, N, I
59Asplenium gentryi A. R. Sm.T/EpC, BCMxA, C, D, I, O
60Asplenium hallbergii Mickel & BeitelTXMxA, C, D, J
61Asplenium modestum MaxonEpR, M, TSM-eC, D
621Asplenium monanthes L.TM, QCosA, C, D, J, N, I, O, Z
63Asplenium palmeri MaxonEpC, XAA, C, D, J, I, O, Z
64Asplenium potosinum Hieron.TM, TMN, I
65Asplenium praemorsum Sw.Ep/ECNtA, D, I
66Asplenium pringlei Davenp.EpMMxC, D, J
67Asplenium pumilum Sw.EpR, TNtJ, N, I, O
68Asplenium resiliens KunzeT/EpXAC, O, Z
69Asplenium sanchezii A. R. Sm.EpBC, QMxC, D, I
70Asplenium sessilifolium Desv.T/EpM, Q, TMxC, D, I, O
711Asplenium trichomanes L.EpCCosC
72Asplenium tryonii CorrellTCSM-eC, D
ATHYRIACEAE
73Athyrium arcuatum Liebm.TR, C, BC, TMD
74Athyrium bourgeaui E. Fourn.TR, C, MMC, D, I, O
75Diplazium lonchophyllum KunzeTMNtJ, N
76Ephemeropteris palmensis (Christ) R. C. Moran & SundueTC, MMD, J, N
77Ephemeropteris skinneri (Baker) R.C. Moran & SundueTTNtN, I
BLECHNACEAE
78Austroblechnum stoloniferum (Mett. ex E. Fourn.) Gasper & V.A.O. DittrichTC, M, SMC, D, O
79Blechnum appendiculatum Willd.TC, M, Q, SNtJ, N, O
80Blechnum gracile Kaulf.TR, Q, TNtJ, N
81Blechnum occidentale L.TR, M, TAJ, N
82Blechnum polypodioides RaddiEpC, BCNtN, I, D
83Woodwardia fimbriata Sm.TR, M, TNaO
84Woodwardia spinulosa M. Martens & GaleottiTMMC, D, J, N, I
CYATHEACEAE
851,3Cyathea costaricensis (Mett. ex Kuhn) DominTMMJ, N
CYSTOPTERIDACEAE
86Cystopteris diaphana (Bory) BlasdellTM, QCosA, D, N, I, O, Z
87Cystopteris reevesiana LellingerTM, BCSM&adO
DENNSTAEDTIACEAE
88Dennstaedtia distenta (Kunze) T. MooreTC, Q, TMC, D, J, I, O
89aPteridium aquilinum ssp. feei (W. Schaffn. ex Fée) MaxonTM, QMA, D, J, N, I
89b2Pteridium aquilinum ssp. latiusculum (Desv.) HulténTC, SCosC, D, I, O
90Pteridium caudatum (L.) MaxonTQ, TNtD, J, N, I
91Pteridium esculentum ssp. arachnoideum (Kaulf.) J.A. ThomsonTC, SNtD
DRYOPTERIDACEAE
92Bolbitis portoricensis (Spreng.) HennipmanT/EpR, M, Q, TNtN
93Ctenitis equestris (Kunze) ChingTMMD, N, I
94Dryopteris cinnamomea (Cav.) C. Chr.T/EpM, Q, T, XNaA, C, D, J, O, Z
95Dryopteris karwinskyana (Mett.) KuntzeTR, M, TMN, I
96Dryopteris knoblochii A. R. Sm.TC, QSM&adC, D, I, O
97Dryopteris maxonii Underw. & C. Chr.T/EpCMxD, J, N, I
98Dryopteris rossii C. Chr.TMMxA, C, D, J, N, I, Z
99Dryopteris wallichiana (Spreng.) Hyl.TC, MCosC
100Elaphoglossum glaucum T. MooreT/ECMN
101Elaphoglossum gratum (Fée) T. MooreTMMD
102Elaphoglossum hartwegii (Fée) T. MooreT/EpMNtD, J
103Elaphoglossum monicae MickelT/EpBCMxD, I
104Elaphoglossum muelleri (E. Fourn.) C. Chr.T/EpC, MMJ, N, I
105Elaphoglossum occidentale (Mickel) F.B. MatosTC, MMxI
106Elaphoglossum paleaceum (Hook. & Grev.) SledgeE/EpBCCosN
107Elaphoglossum petiolatum (Sw.) Urb.TM, BCNtD, J, N, I, Z
108Elaphoglossum piloselloides (C. Presl) T. MooreEpC, M, TNtN, I
109Elaphoglossum rzedowskii MickelEpM, QMxA, C, D, J, I, O, Z
110Elaphoglossum sartorii (Liebm.) MickelT/EMMxD, N, I
111Elaphoglossum tenuifolium (Liebm.) T. MooreT/EpM, BC, QMD
112Phanerophlebia auriculata Underw.TM, TNaC, O
113Phanerophlebia nobilis (Schltdl. & Cham.) C. PreslTMMxC, J, I, O
114Phanerophlebia umbonata Underw.TBCNaC, O
115Polystichum hartwegii (Klotzsch) Hieron.TC, M, QNtN, O
116Polystichum rachichlaena FéeTBC, QMN, I
EQUISETACEAE
117Equisetum × ferrissii CluteHyR, SNaC, D
118Equisetum × haukeanum Mickel & A. R. Sm.HyR, SMC, I
1192Equisetum hyemale L.HyR, SCosC, D, J, I, O
120Equisetum laevigatum A. BraunHyR, SNaC, D, O
121Equisetum myriochaetum Schltdl. & Cham.HyR, M, TNtN, I
GLEICHENIACEAE
122Sticherus ferrugineus (Desv.) J. GonzalesTM, BCNtJ
HYMENOPHYLLACEAE
1232Hymenophyllum tunbrigense (L.) Sm.Ep/EM, BC, QCosC
124Vandenboschia radicans (Sw.) CopelEp/EM, BC, Q, SCosC, D
LYGODIACEAE
125Lygodium venustum Sw.TTNtA, N, I
MARSILEACEAE
126Marsilea ancylopoda A. BraunHyRNtD
127Marsilea mollis B. L. Rob. & FernaldHyR, SAA, C, D, J, O, Z
128Marsilea vestita Hook. & Grev.HyR, SAD, J, I, O
129Pilularia americana A. BraunHyR, SAD
NEPHROLEPIDACEAE
1302Nephrolepis undulata (Afzel. ex Sw.) J. Sm.EpM, QCosD, J, N, I
OPHIOGLOSSACEAE
131Botrychium tolucaense W. H. Wagner & MickelTCMxD
132Botrypus virginianum (L.) Michx.TQCosC, D, J, N, I, O
133Ophioglossum crotalophoroides WalterTBC, Q, SNtD, N, I
134Ophioglossum engelmannii PrantlTQ, TAA, C, D, J, N, I, O
1352Ophioglossum nudicaule L.f.TT, SCosA, C, D, J, N, O, Z
136Ophioglossum polyphyllum A. BraunTC, BC, QCosC, O, Z
1372Ophioglossum reticulatum L.TC, Q, TCosJ, N, I
138Sceptridium schaffneri (Underw.) LyonTBC, Q, G, SNtA, C, D, O
OSMUNDACEAE
1392Osmunda regalis L.HyR, C, MCosA, J, N
PLAGIOGYRACEAE
140Plagiogyria pectinata (Liebm.) LellingerTR, MNtC, D, J, O
POLYPODIACEAE
141Campyloneurum angustifolium (Sw.) FéeEp/EM, BCNtD, J, I
142Campyloneurum ensifolium (Willd.) J. Sm.ETMC, D, O
1431Campyloneurum phyllitidis (L.) C. PreslEp/ER, M, BC, TNtJ, N
144Campyloneurum xalapense FéeEp/ER, M, BC, TMN
145Melpomene moniliformis (Lag. Ex Sw.) A.R. Sm.Ep/ER, MNtN
146Pecluma alfredii (Rosenst.) M. G. PriceEp/EC, TMD, J, N, I
147Pecluma ferruginea (M. Martens & Galeotti) M. G. PriceEpC, M, TMD, J, N, I
148Pecluma hartwegiana (Hook.) F. C. Assis & SalinoEp/EMMC, D, N
149Phlebodium pseudoaureum (Cav.) LellingerEp/EM, SNtA, C, D, J, I, O, Z
150Pleopeltis acicularis (Weath.) A. R. Sm. & T. KrömerEp/EC, M, T, XMD, J, N, I, O, Z
151Pleopeltis angusta Humb. & Bonpl. Ex Willd.EM, T, SMD, N
152Pleopeltis astrolepis (Liebm.) E. Fourn.Ep/EC, BCNtN
153Pleopeltis furfuracea (Schltdl. & Cham.) A.R. Sm. & TejeroETNtD, J, N
154Pleopeltis guttata (Maxon) E.G. Andrews & WindhamEpC, BCMxA, C, D, Z
155Pleopeltis madrensis (J. Sm.) A.R. Sm. & TejeroEp/EC, M, TMxA, C, D, J, N, I
156Pleopeltis mexicana (Fée) Mickel & BeitelEp/EMMD, J, N, I
157Pleopeltis polylepis (Roemer ex Kunze) T. MooreEp/EM, Q, XMxA, C, D, J, I, Z
158Pleopeltis polypodioides (L.) E.G. Andrews & WindhamEpC, BC, QAC, J, N, I, O
159Pleopeltis riograndensis (T. Wendt) E.G. Andrews & WindhamEpCSM&adC, O
160Pleopeltis rosei (Maxon) A.R. Sm. & TejeroEp/EM, Q, TMxD, J, N, I, Z
161Pleopeltis rzedowskiana (Mickel) A.R. Sm. & TejeroEp/ETMxI
162Pleopeltis sanctae-rosae (Maxon) A.R. Sm. & TejeroEC, TMN
163Pleopeltis thyssanolepis E.G. Andrews & WindhamEp/EQ, T, XNtA, C, D, J, I, O, Z
164Polypodium arcanum MaxonEM, BCMxD
165Polypodium colpodes KunzeEp/ETNtN, I
166Polypodium fraternum Schltdl. & Cham.EM, TMN
167Polypodium hesperium MaxonEpCNaC
168Polypodium martensii Mett.ESMxC, D, J
169Polypodium plesiosorum KunzeEp/EM, SMJ, N, Z
170Polypodium praetermissum Mickel & TejeroEpR, M, BC, Q, TSM-eD, N, I, O
171Polypodium subpetiolatum Hook.Ep/ETMA, C, D, N, I
PSILOTACEAE
1721Psilotum × complanatum Sw.Ep/EQ, TCosC, J, N, O
1732Psilotum nudum (L.) P. Beauv.Ep/EBC, Q, TCosC, J, O, Z
PTERIDACEAE
174Adiantopsis seemannii (Hook.) MaxonEpR, M, TMI
175Adiantum aleuticum (Rupr.) C. A. ParisEpC, SNaC
176Adiantum amplum C. Presl.TR, TNtN, I
177Adiantum andicola Liebm.TC, MNtC, D, J, I, O
178Adiantum braunii Mett. Ex KuhnTMNtD, J, N, I, O
1792Adiantum capillus-veneris L.EpX, SCosA, C, D, J, O, Z
180Adiantum concinnum Humb. & Bonpl. Ex Willd.T/EpSNtD, J, N, I, O
181Adiantum lunulatum Burm. f.T/HyR, TCosI
182Adiantum patens Willd.TT, SNtD, J, N, I, O
183Adiantum poiretii Wikstr.TSCosA, C, D, J, N, I, O
184Adiantum raddianum C. PreslTMCosI
185Adiantum trapeziforme L.TR, Q, TNtN
186Adiantum tricholepis FéeTR, TMC, D, J, N, I, O
187Aleuritopteris farinosa (Forssk.) FéeT/EpQ, TCosA, C, D, J, I, Z
188Ananthacorus angustifolius (Sw.) Underw. & MaxonEp/ET, SNtJ, N
1892Anogramma leptophylla (L.) LinkTSCosC, D, J, N, I, O
190Argyrochosma delicatula (Maxon & Weath.) WindhamEpQ, XMxC, D
191Argyrochosma fendleri (Kunze) WindhamEpQNaO
192Argyrochosma formosa (Liebm.) WindhamEpC, TMA
193Argyrochosma incana (C. Presl) WindhamT/EpC, TNaA, C, D, J, N, I, O, Z
194Argyrochosma jonesii (Maxon) WindhamEpR, Q, XNaO
195Argyrochosma limitanea (Maxon) WindhamEpC, QNaC, D, J, I, O
196Argyrochosma lumholtzii (Maxon & Weath.) WindhamEpR, SSM-eO
197Argyrochosma microphylla (Mett. ex Kuhn) WindhamT/EpC, BC, Q, XNaC, O, Z
198Argyrochosma pallens (Weath. ex R. M. Tryon) WindhamEpC, M, BC, QMxA, C, D, J
199Argyrochosma palmeri (Baker) WindhamEpQMxD, J
200Argyrochosma pilifera (R.M. Tryon) WindhamEpC, XMxC
201Aspidotis meifolia (D. C. Eaton) Pic. Serm.EpQMxC, D
202Astrolepis cochisensis (Goodd.) D. M. Benham & WindhamEpC, XNaA, C, D, O, Z
203Astrolepis crassifolia (T. Moore & Houlston) D. M. Benham & WindhamT/EpC, BC, Q, XMC, D
204Astrolepis integerrima (Hook.) D. M. Benham & WindhamEpCNaA, C, D, O, Z
205Astrolepis laevis (M. Martens & Galeotti) MickelEpXMA, C, D, J, Z
206Astrolepis sinuata (Lag. ex Sw.) D. M. Benham & WindhamT/EpC, XAA, C, D, J, N, I, O, Z
207Astrolepis windhamii D.M. BenhamEpC, XSM&adO
208Bommeria ehrenbergiana (Klotzsch) Underw.T/EpC, BC, Q, TMxD
209Bommeria elegans (Davenp.) Ranker & HauflerTC, M, BC, QMxJ, N, Z
210Bommeria hispida (Mett. ex Kuhn) Underw.T/EpBC, Q, TNaA, C, D, J, O, Z
211Bommeria pedata (Sw.) E. Fourn.T/EpM, QMC, D, J, N, I, O, Z
212Bommeria subpalacea MaxonT/EpQ, T, XMxC
213Cheilanthes leucopoda LinkEpC, BC, Q, XNaC, D, O
214Cheilanthes lozanoi (Maxon) R. M. Tryon & A. F. TryonT/EpBCMxC, D, J, N, I, O, Z
215Cheilanthes skinneri (Hook.) R. M. Tryon & A. F. TryonTC, BCNtC, D, J, N, O
216Cheiloplecton rigidum (Sw.) FéeEpTMC, J, N, O, Z
217Gaga angustifolia (Kunth) Fay-Wei Li & WindhamTT, XMA, C, D, J, N, I, O
218Gaga arizonica (Maxon) Fay-Wei Li & WindhamTT, X, SNaC, D, I, O, Z
219Gaga chaerophylla (M. Martens & Galeotti) Fay-Wei Li & WindhamTBCNtD, J, I, O
220Gaga cuneata (Kaulf. ex Link) Fay-Wei Li & WindhamEpC, M, QMxD, J
221Gaga decomposita (M. Martens & Galeotti) Fay-Wei Li & WindhamT/HySMxD, J, N, I, Z
222Gaga hirsuta (Link) Fay-Wei Li & WindhamT/EpC, TMA, C, D, J, N, I, O, Z
223Gaga kaulfussii (Kunze) Fay-Wei Li & WindhamT/EpC, M, QAA, C, D, J, N, I, O, Z
224Gaga lerstenii (Mickel & Beitel) Fay-Wei Li & WindhamTC, BCMxJ
225Gaga marginata (Kunth) Fay-Wei Li & WindhamEpMNtA, N
226Gaga pellaeopsis (Mickel) Fay-Wei Li & WindhamT/EpC, BCMxJ
227Gastoniella novogaliciana (Mickel) Li Bing Zhang & Liang ZhangEpR, BC, TMxJ
228xHemionanthes gryphus (Mickel) MickelT/EpR, TMxN
229Hemionitis palmata L.TR, TNtI
230Hemionitis subcordata (D.C. Eaton ex Davenp.) MickelT/EpR, Q, TMD, J, N, I
231Llavea cordifolia Lag.T/EpC, BC, Q, TMD
232Mildella fallax (M. Martens & Galeotti) NesomEpC, TMC, J, I, O
233Mildella intramarginalis (Kaulf. ex Link) Trevis.T/EpC, TMI
234Myriopteris aemula (Maxon) Grusz & WindhamEpT, XNaC
235Myriopteris alabamensis (Buckley) Grusz & WindhamEpQ, XNaC, O
236Myriopteris allosuroides (Mett.) Grusz & WindhamEpXMxA, C, D, J, N, I, O, Z
237Myriopteris aurea (Poir.) Grusz & WindhamEpM, QNtA, C, D, J, N, I, O, Z
238Myriopteris cucullans (Fée) Grusz & WindhamEpC, MMA, C, D, J, O
239Myriopteris fendleri (Hook.) E. Fourn.EpC, BCNaO
240Myriopteris gracilis FéeTX, GNaC, O
241Myriopteris lendigera (Cav.) FéeEpM, QAC, D, J, I, O, Z
242Myriopteris lindheimeri (Hook.) J. Sm.TC, BC, QNaA, C, D, J, O, Z
243Myriopteris longipila (Baker) Grusz & WindhamEpQ, TMxJ
244Myriopteris mexicana (Davenp.) Grusz & WindhamEpC, BC, Q, X, SMC, D, Z
245Myriopteris microphylla (Sw.) Grusz & WindhamEpT, XNtC, D, O, Z
246Myriopteris myriophylla (Desv.) Grusz & WindhamEpC, Q, SNtA, C, D, J, I, O, Z
247Myriopteris notholaenoides (Desv.) Grusz & WindhamEpC, Q, T, X, GNtC, D, Z
248Myriopteris pringlei (Davenp.) Grusz & WindhamEpC, BC, Q, XNaC, Z
249Myriopteris rufa FéeEpC, XMA, C, D, O, Z
250Myriopteris scabra (C. Chr.) Grusz & WindhamTC, BC, QMxC, D, Z
251Myriopteris tomentosa (Link) FéeEpC, BC, Q, XNaC, O
252Myriopteris windhamii GruszEpXMxC, D, J, O, Z
253Myriopteris wootonii (Maxon) Grusz & WindhamEpC, BC, Q, GNaC, O
254Myriopteris wrightii (Hook.) Grusz & WindhamEpGNaC, D, O
255Myriopteris yatskievychiana (Mickel) Grusz & WindhamEpRSM-eO
256Notholaena aliena MaxonEpXNaC
257Notholaena aschenborniana KlotzschEpX, GNaA, C, D, O, Z
258Notholaena aurantiaca D.C. EatonEpSSM-eJ, N
259Notholaena brachypus (Kunze) KunzeEpXMA, D, J, N, O, Z
260Notholaena californica D.C. EatonEpXNaC, O
261Notholaena candida (M. Martens & Galeotti) Hook.T/EpT, SMA, C, D, J, N, I, O, Z
262Notholaena galeottii FéeEpC, SMD
263Notholaena grayi Davenp.EpR, BC, Q, TNaC, J, I, O, Z
264Notholaena greggii (Mett. ex Kuhn) MaxonT/EpBC, Q, GNaC, D
265Notholaena jaliscana Yatsk. & ArbeláezT/EpCSM-eJ, N
266Notholaena lemmonii D. C. EatonEpC, Q, XNaC, D, J, I, O
267Notholaena neglecta MaxonEpBC, Q, XNaC
268Notholaena ochracea (Hooker) Yatsk. & ArbeláezEpC, BC, Q, TMxD, J, N
269Notholaena schaffneri (E. Fourn.) Underw. ex Davenp.EpBC, QMD, J, Z
270Notholaena standleyi MaxonEpBC, QNaC, D, I, O
271Pellaea atropurpurea (L.) LinkT/EpC, Q, T, XNaC, D, O, Z
272Pellaea cordifolia (Sessé & Moc.) A. R. Sm.T/EpT, XNaA, C, D, J, Z
273Pellaea intermedia Mett. ex KuhnEpC, Q, XNaC, D, O, Z
274Pellaea mucronata (D. C. Eaton) D. C. EatonEpQ, XNaO
275Pellaea oaxacana Mickel & BeitelT/EpBC, TMxJ
276Pellaea ovata (Desv.) Weath.T/EpC, XAA, C, D, J, I, O, Z
277Pellaea pringlei Davenp.EpBC, Q, T, SMxJ, N, I
278Pellaea sagittata (Cav.) LinkT/EpXAC, D, J, O, Z
279Pellaea ternifolia (Cav.) LinkEpBC, Q, T, XAA, C, D, J, N, I, O, Z
280Pellaea truncata Goodd.EpM, BC, QNaO
281Pellaea villosa (Windham) Windham & Yatsk.EpBC, Q, XMxC, D, O
282Pellaea wrightiana Hook.EpC, BC, Q, X, SNaC, O
283Pityrogramma calomelanos (L.) LinkT/EpR, M, T, SNtD, N, I, O
284Pityrogramma dealbata (C. Presl) DominTR, BC, TMJ, N
285Pityrogramma tartarea (Cav.) MaxonTM, SNtD, J, N, I
286Pteris biaurita L.TR, TCosN
2872Pteris cretica L.TC, M, QCosC, D, J, I, O
288Pteris erosa Mickel & BeitelTM, TMJ, N
289Pteris orizabae M. Martens & GaleottiT/HySMD
290Pteris podophylla Sw.T/HyR, MNtJ
291Pteris quadriaurita Retz.TSCosJ, N
SALVINIACEAE
292Azolla filiculoides Lam.HyR, SCosC
2932Azolla cristata Kaulf.HyR, SAA, J, N, I
TECTARIACEAE
294Tectaria heracleifolia (Willd.) Underw.TR, Q, T, SAJ, I
295Tectaria mexicana (Fée) C.V. MortonTR, Q, TNtN, I
THELYPTERIDACEAE
296Amauropelta cheilanthoides (Kunze) Á. Löve & D. LöveTC, M, SNtJ
297Amauropelta oligocarpa (Humb. & Bonpl. ex Willd.) Pic. Serm.TM, Q, TNtN
298Amauropelta resinifera (Desv.) Pic. Serm.TSMxC, J, N, I
299Amauropelta rudis (Kunze) Pic. Serm.TSNtC, D, J, N, I
300Christella hispidula (Decne.) HolttumTT, SCosJ, N, I, O
3012Cyclosorus interruptus (Willd.) H. ItôHyR, T, SCosJ, N
302Goniopteris imbricata (Liebm.) A. & D. LöveT/HyR, TMN
303Leptogramma pilosa (M. Martens & Galeotti) Underw.EpQMC, D, J, N, O
304Pelazoneuron ovatum (R.P. St. John) A.R.Sm. & S.E.Fawc.HyR, SMO
305Pelazoneuron puberulum (Baker) A.R.Sm. & S.E.Fawc.TC, M, SMA, C, D, J, N, I, O, Z
WOODSIACEAE
306Woodsia cochisensis WindhamEpC, BC, X, GSM&adC, D, I, O
307Woodsia cystopteroides Windham & MickelEpC, BCSM-eD, I, O
308Woodsia mexicana FéeT/EpC, X, SMxC, Z
309Woodsia mollis (Kaulf.) J. Sm.T/EpXMA, C, D, J, N, I, O, Z
310Woodsia neomexicana WindhamEpC, BCNaZ
311Woodsia phillipsii WindhamT/EpBCSM&adC, D, O, Z
312Woodsia plummerae LemmonEpBCSM&adC, O
Life-form (LF): epiphytic (E), hydrophyte (Hy), epipetric (Ep), terrestrial (T). Vegetation types (VT): Riparian forest (R), Conifer forest (C), Mixed Pinus-Quercus forest (M), Montane cloud forest (BC), Quercus forest (Q), Tropical deciduous and semideciduous forests (T), Xeric shrubland (X), Grassland (G), Secondary vegetation (S). Geographic distribution (GD): Cosmopolitan (Cos), American (A), Nearctic (Na), Neotropical (Nt), Mesoamerican (M), Endemic to Mexico (Mx), Endemic to the Sierra Madre Occidental (SM-e), Sierra Madre Occidental and adjacent regions (SM&ad). State distribution (SD): Aguascalientes (A), Chihuahua (C), Durango (D), Jalisco (J), Nayarit (N), Sinaloa (I), Sonora (O), Zacatecas (Z). Risk category (RC): NOM-059-SEMARNAT-2010 (1); IUCN (2); CITES (3).

References

  1. Kessler, M. Biogeography of ferns. In Fern Ecology; Mehltreter, K., Walker, L.R., Sharpe, J.M., Eds.; Cambridge University Press: New York, NY, USA, 2010; pp. 22–60. [Google Scholar]
  2. Almeida, T.E.; Salino, A. State of the art and perspectives on Neotropical fern and lycophyte systematics. J. Syst. Evol. 2016, 54, 679–690. [Google Scholar] [CrossRef] [Green Version]
  3. Suissa, J.S.; Sundue, M.A.; Testo, W.L. Mountains, climate and niche heterogeneity explain global patterns of fern diversity. J. Biogeogr. 2021, 48, 1296–1308. [Google Scholar] [CrossRef]
  4. Tejero-Díez, J.D.; Torres-Díaz, A.N.; Sánchez-González, A. Helechos de la Sierra Madre del Sur. In Biodiversidad de la Sierra Madre del Sur: Una Síntesis Preliminar; Luna-Vega, I., Espinosa, D., Contreras-Medina, R., Eds.; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2016; pp. 121–155. [Google Scholar]
  5. Contreras-Medina, R.; García-Martínez, A.I.; Ramírez-Martínez, J.C.; Espinosa, D.; Balam-Narváez, R.; Luna-Vega, I. Biogeographic analysis of ferns and lycophytes in Oaxaca: A Mexican beta-diverse area. Bot. Sci. 2022, 100, 204–222. [Google Scholar] [CrossRef]
  6. Villaseñor, J.L. Checklist of the native vascular plants of Mexico. Rev. Mex. Biodivers. 2016, 87, 559–902. [Google Scholar] [CrossRef] [Green Version]
  7. Rojas-Alvarado, A.F.; Tejero-Díez, J.D. Novelties and notes in Lindsaea (Lindsaeaceae) from Mexico and Central America. Phytotaxa 2017, 296, 147–160. [Google Scholar] [CrossRef] [Green Version]
  8. Sundue, M.A. Three new species of grammitid ferns (Polypodiaceae) from the fern hunter’s paradise: Sierra Juárez, Oaxaca, Mexico. Syst. Bot. 2017, 42, 160–168. [Google Scholar] [CrossRef]
  9. Mickel, J.T.; Smith, A.R. The pteridophytes of Mexico. Mem. NY Bot. Gard. 2004, 88, 1–1054. [Google Scholar]
  10. Mickel, J.T.; Beitel, J.M. Pteridophyte Flora of Oaxaca, Mexico; The New York Botanical Garden: New York, NY, USA, 1988. [Google Scholar]
  11. Mickel, J.T. Pteridophytes. In Flora Novo-Galiciana: A Descriptive Account of the Vascular Plants of Western Mexico; McVaugh, R., Ed.; The University of Michigan Herbarium: Ann Arbor, MI, USA, 1992; pp. 120–431. [Google Scholar]
  12. Krömer, T.; Carvajal-Hernández, C.I.; Acebey, A.R.; Smith, A.R. A decade of new pteridophyte records for the state of Veracruz, Mexico. Am. Fern J. 2015, 105, 162–175. [Google Scholar] [CrossRef]
  13. Carvajal-Hernández, C.I.; Silva-Mijangos, L.; Kessler, M.; Lehnert, M. Adiciones a la pteridoflora de Tabasco, México: La importancia del bosque mesófilo de montaña. Acta Bot. Mex. 2018, 124, 7–18. [Google Scholar] [CrossRef] [Green Version]
  14. Pacheco, L.; Escareño-Mendoza, I.S.; Guzmán-Cornejo, L.; Márquez-Bautista, S.; Camargo, S.L.; Sánchez-Morales, A. New fern and lycophyte records from the states of Oaxaca, Zacatecas, Puebla, and San Luis Potosí, Mexico. Am. Fern J. 2021, 111, 46–50. [Google Scholar] [CrossRef]
  15. Sanginés-Franco, C.; Luna-Vega, I.; Alcántara-Ayala, O.; Contreras-Medina, R. Distributional patterns and biogeographic analysis of ferns in the Sierra Madre Oriental, Mexico. Am. Fern J. 2011, 101, 81–104. [Google Scholar] [CrossRef]
  16. Salinas-Rodríguez, M.M.; Hernández-Sandoval, L.; Carrillo-Reyes, P.; Castillo-Gómez, H.A.; Castro-Castro, A.; Estrada-Castillón, E.; Figueroa-Martínez, D.S.; Gómez-Escamilla, I.N.; González-Elizondo, S.; Gutiérrez-Ortega, J.S.; et al. Diversidad de plantas vasculares de la provincia fisiográfica de la Sierra Madre Oriental, México. Bot. Sci. 2022, 100, 469–492. [Google Scholar] [CrossRef]
  17. Hernández-Cárdenas, R.A.; Mendoza-Ruiz, A.; Arredondo-Amezcua, L.; Steinmann, V.W. The alpine ferns of the Trans-Mexican Volcanic Belt. Am. Fern J. 2019, 109, 11–25. [Google Scholar] [CrossRef]
  18. Smith, A.R. Pteridophytes. In Flora of Chiapas; Breedlove, D.E., Ed.; Academic of Sciences: San Francisco, CA, USA, 1981; pp. 1–370. [Google Scholar]
  19. Wiggins, I.L. Flora of Baja California; Stanford University Press: Stanford, CA, USA, 1980. [Google Scholar]
  20. León de la Luz, J.L.; Rebman, J.; Domínguez-León, M.; Domínguez-Cadena, R. The vascular flora and floristic relationships of the Sierra de La Giganta in Baja California Sur, Mexico. Rev. Mex. Biodivers. 2008, 79, 29–65. [Google Scholar]
  21. Tryon, R.M. Endemic areas and geographic speciation in tropical American ferns. Biotropica 1972, 4, 121–131. [Google Scholar] [CrossRef]
  22. Tryon, R.M. The biogeography of species, with special reference to ferns. Bot. Rev. 1986, 52, 117–156. [Google Scholar] [CrossRef]
  23. Rzedowski, J. Vegetación de México; Limusa: Mexico City, Mexico, 1978. [Google Scholar]
  24. Rzedowski, J. Diversidad y orígenes de la flora fanerogámica de México. Acta Bot. Mex. 1991, 14, 3–21. [Google Scholar] [CrossRef] [Green Version]
  25. Rahbek, C.; Borregaard, M.K.; Antonelli, A.; Colwell, R.K.; Holt, B.G.; Nogués-Bravo, D.; Rasmussen, C.M.Ø.; Richardson, K.; Rosing, M.T.; Whittaker, R.J.; et al. Building mountain biodiversity: Geological and evolutionary processes. Science 2019, 365, 1114–1119. [Google Scholar] [CrossRef]
  26. Testo, W.L.; Sessa, E.; Barrington, D.S. The rise of the Andes promoted rapid diversification in Neotropical Phlegmariurus (Lycopodiaceae). New Phytol. 2019, 222, 604–613. [Google Scholar] [CrossRef]
  27. Perrigo, A.; Hoorn, C.; Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 2020, 47, 315–325. [Google Scholar] [CrossRef] [Green Version]
  28. Sanginés-Franco, C.; Luna-Vega, I.; Contreras-Medina, R.; Espinosa, D.; Tejero-Díez, J.D.; Rivas, G. Diversity, endemism and conservation of ferns (Polypodiales) in the Mexican Mountain Component. J. Mt. Sci. 2015, 12, 891–904. [Google Scholar] [CrossRef]
  29. Ferrari, L.; Valencia-Moreno, M.; Bryan, S. Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. Geol. Soc. Amer. Spec. Pap. 2007, 422, 1–39. [Google Scholar] [CrossRef] [Green Version]
  30. González-Elizondo, S.; González-Elizondo, M.; Tena-Flores, J.A.; Ruacho-González, L.; López-Enríquez, I.L. Vegetación de la Sierra Madre Occidental, México: Una síntesis. Acta Bot. Mex. 2012, 100, 351–403. [Google Scholar] [CrossRef] [Green Version]
  31. Kobelkowsky-Vidrio, T.; Ríos-Muñoz, C.A.; Navarro-Sigüenza, A.G. Biodiversity and biogeography of the avifauna of the Sierra Madre Occidental, Mexico. Biodivers. Conserv. 2014, 23, 2087–2105. [Google Scholar] [CrossRef]
  32. Morrone, J.J. Neotropical Biogeography: Regionalization and Evolution; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
  33. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Provincias Biogeográficas de México; Scale 1:4000000; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 1997. [Google Scholar]
  34. Ferrusquía-Villafranca, I. Geology of Mexico: A Synopsis. In Biological Diversity of Mexico: Origins and Distribution; Ramammoorthy, T.P., Bye, R.A., Lot, A., Fa, J., Eds.; Oxford University Press: New York, NY, USA, 1993; pp. 3–107. [Google Scholar]
  35. Cevallos-Ferriz, S.R.S.; González-Torres, E.A.; Calvillo-Canadell, L. Perspectiva paleobotánica y geológica de la biodiversidad en México. Acta Bot. Mex. 2012, 100, 317–350. [Google Scholar] [CrossRef] [Green Version]
  36. Douglas, M.W.; Maddox, R.A.; Howard, K.; Reyes, S. The Mexican Monsoon. J. Clim. 1993, 6, 1665–1677. [Google Scholar] [CrossRef]
  37. García, E. Modificaciones al Sistema de Clasificación climática de Köppen; Instituto de Geografía, Universidad Nacional Autónoma de México: Mexico City, Mexico, 2004. [Google Scholar]
  38. Instituto Nacional de Estadística y Geografía (INEGI). Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación; Scale 1:250000; Serie VII; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2021. [Google Scholar]
  39. Silva-Flores, R.; Pérez-Verdín, G.; Wehenkel, C. Patterns of tree species diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico. PLoS ONE 2014, 9, e105034. [Google Scholar] [CrossRef]
  40. Felger, R.; Wilson, M.F. Northern Sierra Madre Occidental and its Apachian outliers: A neglected center of biodiversity. In Biodiversity and Management of the Madrean Archipelago: The Sky Islands of Southwestern United States and Northwestern Mexico; DeBano, L.F., Ffolliott, P.F., Ortega-Rubio, A., Gottfried, G.J., Hamre, R.H., Edminster, C.B., Eds.; Department of Agriculture and Forest Service: Tucson, AZ, USA, 1995; pp. 36–59. [Google Scholar]
  41. Macías-Rodríguez, M.A.; Giménez de Azcárate-Cornide, J.; Gopar-Merino, L.F. Sistematización bioclimática de la Sierra Madre Occidental (México) y su relación con los pisos de vegetación. Polibotánica 2017, 43, 125–163. [Google Scholar] [CrossRef]
  42. Knobloch, I.W.; Correll, D.S. (Eds.) Ferns and Fern Allies of Chihuahua, Mexico; Contribution from Texas Research Foundation: Forth Worth, TX, USA, 1962. [Google Scholar]
  43. González-Elizondo, M.; González-Elizondo, S.; Herrera-Arrieta, Y. Listados florísticos de México: Flora de Durango; Instituto de Biología, Universidad Nacional Autónoma de México: Mexico City, Mexico, 1991. [Google Scholar]
  44. Spellenberg, R.; Lebgue, T.; Corral-Díaz, R. A Specimen Based, Annotated Checklist of the Vascular Plants of Parque Nacional Cascada de Basaseachi and Adjacent Areas, Chihuahua, México; Instituto de Biología, Universidad Nacional Autónoma de México: Mexico City, Mexico, 1996. [Google Scholar]
  45. Siqueiros-Delgado, M.E.; González-Adame, G. Checklist of the pteridophytes of Aguascalientes, Mexico. Aliso 2002, 21, 45–53. [Google Scholar] [CrossRef] [Green Version]
  46. Estrada-Castillón, A.E.; Jurado, E.; Návar, J.J.; Jiménez-Pérez, J.; Garza-Ocañas, F. Plant associations of Cumbres de Majalca National Park, Chihuahua, Mexico. Southwest. Nat. 2003, 48, 177–187. [Google Scholar] [CrossRef]
  47. Vázquez-García, J.A.; Cházaro, M.J.; Nieves, G.; Vargas-Rodríguez, Y.L.; Vázquez, M.; Flores, M.A. Flora del norte de Jalisco y etnobotánica huichola; Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara: Guadalajara, Mexico, 2004. [Google Scholar]
  48. Yatskievych, G.; Van Devender, T.R.; Reina-Guerrero, A.L. Pteridofitas. In Diversidad Biológica de Sonora; Molina-Freaner, F.E., Van Devender, T.R., Eds.; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2010; pp. 229–261. [Google Scholar]
  49. McDonald, J.A.; Martínez, J.; Nesom, G.L. Alpine flora of Cerro Mohinora, Chihuahua, Mexico. J. Bot. Res. Inst. Texas 2011, 5, 701–705. [Google Scholar]
  50. Ruacho-González, L.; González-Elizondo, S.; González-Elizondo, M.; López-González, C. Diversidad florística en cimas de la Sierra Madre Occidental, México, y su relación con variables ambientales. Bot. Sci. 2013, 91, 193–205. [Google Scholar] [CrossRef]
  51. Phylogeny Pteridophyte Group (PPG I). A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 2016, 54, 563–603. [Google Scholar] [CrossRef]
  52. Salino, A.; Almeida, T.E.; Smith, A.R. New combinations in Neotropical Thelypteridaceae. PhytoKeys 2015, 57, 11–50. [Google Scholar] [CrossRef] [Green Version]
  53. Gasper, A.L.; Almeida, T.E.; Dittrich, V.A.O.; Smith, A.R.; Salino, A. Molecular phylogeny of the fern family Blechnaceae (Polypodiales) with a revised genus-level treatment. Cladistics 2017, 33, 429–446. [Google Scholar] [CrossRef]
  54. Hauk, W.D.; Parks, C.R.; Chase, M.W. Phylogenetic studies of Ophioglossaceae: Evidence from rbcL and trnL-F plastid D.N.A. sequences and morphology. Mol. Phylogenet. Evol. 2003, 28, 131–151. [Google Scholar] [CrossRef]
  55. Fawcett, S.; Smith, A.R. A Generic Classification of the Thelypteridaceae; Botanical Research Institute of Texas Press: Forth Worth, TX, USA, 2021. [Google Scholar]
  56. Moran, R.C.; Garrison, J.; Sundue, M. Phylogenetic relationships of Neotropical lady ferns (Athyriaceae), with a description of Ephemeropteris, gen. nov. Taxon 2019, 68, 425–441. [Google Scholar] [CrossRef]
  57. Li, F.W.; Pryer, K.M.; Windham, M.D. Gaga, a new fern genus segregated from Cheilanthes (Pteridaceae). Syst. Bot. 2012, 37, 854–860. [Google Scholar] [CrossRef]
  58. Zhang, L.; Zhou, X.M.; Lu, N.T.; Zhang, L.B. Phylogeny of the fern subfamily Pteridoideae (Pteridaceae), with the description of a new genus: Gastoniella. Mol. Phylogenet. Evol. 2017, 109, 59–72. [Google Scholar] [CrossRef]
  59. Testo, W.; Øllgaard, B.; Field, A.; Almeida, T.; Kessler, M.; Barrington, D.S. Phylogenetic systematics, morphological evolution, and natural groups in Neotropical Phlegmariurus (Lycopodiaceae). Mol. Phylogenet. Evol. 2018, 125, 1–13. [Google Scholar] [CrossRef]
  60. Smith, A.R.; Tejero-Díez, J.D. Pleopeltis (Polypodiaceae), a redefinition of the genus and nomenclatural novelties. Bot. Sci. 2014, 92, 43–58. [Google Scholar] [CrossRef] [Green Version]
  61. Grusz, A.L.; Windham, M.D. Toward a monophyletic Cheilanthes: The resurrection and recircumscription of Myriopteris (Pteridaceae). PhytoKeys 2013, 32, 49–64. [Google Scholar] [CrossRef] [Green Version]
  62. Ebihara, A.; Dubuisson, J.Y.; Iwatsuki, K.; Hennequin, S.; Ito, M. A taxonomic revision of Hymenophyllaceae. Blumea 2006, 51, 221–280. [Google Scholar] [CrossRef] [Green Version]
  63. Salazar, L.; Homeier, J.; Kessler, M.; Abrahamczyk, S.; Lehnert, M.; Krömer, T.; Kluge, J. Diversity patterns of ferns along elevational gradients in Andean tropical forests. Plant Ecol. Divers. 2013, 8, 13–24. [Google Scholar] [CrossRef]
  64. Carvajal-Hernández, C.I.; Krömer, T. Riqueza y distribución de helechos y licófitos en el gradiente altitudinal del Cofre de Perote, centro de Veracruz, México. Bot. Sci. 2015, 93, 601–614. [Google Scholar] [CrossRef] [Green Version]
  65. Murillo, J.; Murillo, M.T. Diversidad de los helechos y licófitos de Colombia. Acta Bot. Malacit. 2017, 42, 23–32. [Google Scholar] [CrossRef] [Green Version]
  66. Squeo, F.A.; Cavieres, L.A.; Arancio, G.; Novoa, J.E.; Matthei, O.; Marticorena, C.; Rodríguez, R.; Arroyo, M.T.K.; Muñoz, M. Biodiversidad de la flora vascular en la región de Antofagasta, Chile. Rev. Chil. Hist. Nat. 1998, 71, 571–591. [Google Scholar]
  67. Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Norma Oficial Mexicana NOM-059-SEMARNAT-2010. Protección Ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. D. Of. Fed. México 2010, 30, 1–78. [Google Scholar]
  68. Sánchez-Salas, J.; Muro, G.; Estrada-Castillón, E.; Alba-Ávila, J.A. El MER: Un instrumento para evaluar el riesgo de extinción de especies en México. Rev. Chapingo Ser. Zonas Áridas 2013, 12, 30–35. [Google Scholar] [CrossRef] [Green Version]
  69. IUCN 2021 (International Union for Conservation of Nature). The IUCN Red List of Threatened Species. Version 2021-2. Available online: https://www.iucnredlist.org (accessed on 17 November 2022).
  70. CITES 2021. Convention on Internacional Trade in Endangered Species of wild fauna and flora. Apendix II. Available online: https://www.cites.org (accessed on 17 November 2022).
  71. Ceja-Romero, J.; Mendoza-Ruiz, A.; López-Ferrari, A.R.; Espejo-Serna, A.; Pérez-García, B.; García-Cruz, J. Las epífitas vasculares del estado de Hidalgo, México: Diversidad y distribución. Acta Bot. Mex. 2010, 93, 1–39. [Google Scholar] [CrossRef] [Green Version]
  72. Miguel-Vázquez, M.I.; Espejo-Serna, M.A.; Ceja-Romero, J.; Cerros-Tlatilpa, R. Las angiospermas epífitas de Puebla, México: Riqueza y distribución. Bot. Sci. 2020, 98, 585–596. [Google Scholar] [CrossRef]
  73. Escalante, T.; Rodríguez, G.; Morrone, J.J. Las provincias biogeográficas del Componente Mexicano de Montaña desde la perspectiva de los mamíferos continentales. Rev. Mex. Biodivers. 2005, 76, 207–252. [Google Scholar] [CrossRef]
  74. Zhou, X.; Rothfels, C.J.; Zhang, L.; He, Z.R.; Le Pechón, T.; He, H.; Lu, N.T.; Knapp, R.; Lorence, D.; He, X.J.; et al. A large-scale phylogeny of the lycophyte genus Selaginella (Selaginellaceae: Lycopodiopsida) based on plastid and nuclear loci. Cladistics 2016, 32, 360–389. [Google Scholar] [CrossRef] [PubMed]
  75. Klaus, K.V.; Schulz, C.; Bauer, D.S.; Stützel, T. Historical biogeography of the ancient lycophyte genus Selaginella: Early adaptation to xeric habitats on Pangea. Cladistics 2017, 33, 469–480. [Google Scholar] [CrossRef]
  76. McHenry, M.A.; Barrington, D.S. Phylogeny and biogeography of exindusiate Andean Polystichum. Am. J. Bot. 2014, 101, 365–375. [Google Scholar] [CrossRef]
  77. Schuettpelz, E.; Schneider, H.; Huiet, L.; Windham, M.D.; Pryer, K.M. A molecular phylogeny of the fern family Pteridaceae: Assessing overall relationships and the affinities of previously unsampled genera. Mol. Phylogenet. Evol. 2007, 44, 1172–1185. [Google Scholar] [CrossRef]
  78. Kirkpatrick, R.E. Investigating the monophyly of Pellaea (Pteridaceae) in the context of a phylogenetic analysis of cheilanthoid ferns. Syst. Bot. 2007, 32, 504–518. [Google Scholar] [CrossRef]
  79. Pteridophytes and Gymnosperms. In Flora of North America; Morin, N.R. (Ed.) Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
  80. Mehltreter, K. Fern conservation. In Fern Ecology; Mehltreter, K., Walker, L.R., Sharpe, M.J., Eds.; Cambridge University Press: New York, NY, USA, 2010; pp. 323–359. [Google Scholar]
  81. Guo, Q.; Thompson, D.B.; Valone, T.J.; Brown, J.H. The effect of vertebrate granivores and folivores on plant community structure in the Chihuahuan desert. Oikos 1995, 73, 251–259. [Google Scholar] [CrossRef] [Green Version]
  82. Castellanos-Villegas, A.E.; Bravo, L.C.; Koch, G.W.; Llano, J.; López, D.; Méndez, R.; Rodríguez, J.C.; Romo, R.; Sisk, T.D.; Yanes-Arvayo, G. Impactos ecológicos por el uso del terreno en el funcionamiento de ecosistemas áridos y semiáridos. In Diversidad Biológica de Sonora; Molina-Freaner, F.E., Van Devender, T.R., Eds.; Universidad Nacional Autónoma de México y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2010; pp. 157–186. [Google Scholar]
  83. Armenta-Montero, S.; Carvajal-Hernández, C.I.; Ellis, E.A.; Krömer, T. Distribution and conservation status of Phlegmariurus (Lycopodiaceae) in the state of Veracruz, Mexico. Trop. Conserv. Sci. 2015, 8, 114–137. [Google Scholar] [CrossRef] [Green Version]
  84. Kessler, M.; Betz, L.; Roedde, S. Red List of the Pteridophytes of Bolivia. 2006. Available online: https://www.fernsofbolivia.uni-goettingen.de (accessed on 17 November 2022).
  85. Hernández-Rojas, A.C.; Kluge, J.; Krömer, T.; Carvajal-Hernández, C.; Silva-Mijangos, L.; Miehe, G.; Lehnert, M.; Weigand, A.; Kessler, M. Latitudinal patterns of species richness and range size of ferns along elevational gradients at the transition from tropics to subtropics. J. Biogeogr. 2020, 47, 1383–1397. [Google Scholar] [CrossRef] [Green Version]
  86. Ceballos, S.J. Vascular epiphytes in Argentinian Yungas: Distribution, diversity, and ecology. Bot. Rev. 2022. [Google Scholar] [CrossRef]
  87. Kessler, M.; Kluge, J.; Hemp, A.; Ohlemüller, R. A global comparative analysis of elevational species richness patterns of ferns. Glob. Ecol. Biogeogr. 2011, 20, 868–880. [Google Scholar] [CrossRef]
  88. Bhattarai, K.R.; Vetaas, O.R.; Grytnes, J.A. Fern species richness along a central Himalayan elevational gradient, Nepal. J. Biogeogr. 2004, 31, 389–400. [Google Scholar] [CrossRef]
  89. Brodribb, T.J.; Holbrook, N.M.; Zwieniecki, M.A.; Palma, B. Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima. New Phytol. 2005, 165, 839–846. [Google Scholar] [CrossRef]
  90. Rzedowski, J. Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Bot. Mex. 1996, 35, 25–44. [Google Scholar] [CrossRef] [Green Version]
  91. Ruiz-Jiménez, C.A.; Téllez-Valdés, O.; Luna-Vega, I. Clasificación de los bosques mesófilos de montaña de México: Afinidades de la flora. Rev. Mex. Biodivers. 2012, 83, 1110–1114. [Google Scholar] [CrossRef] [Green Version]
  92. Tejero-Díez, J.D.; Torres-Díaz, A.N.; Gual-Díaz, M. Licopodios y helechos en el bosque mesófilo de montaña en México. In Bosques Mesófilos de Montaña de México: Diversidad, Ecología y Manejo; Gual-Díaz, M., Ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2014; pp. 197–220. [Google Scholar]
  93. Moran, R.C. A Natural History of Ferns; Timber Press: Portland, OR, USA, 2004. [Google Scholar]
  94. Kessler, M.; Kluge, J. Mountain ferns: What determines their elevational ranges and how will they respond to climate change? Am. Fern J. 2022, 112, 285–302. [Google Scholar] [CrossRef]
  95. Callaway, R.M.; Reinhart, K.O.; Moore, G.W.; Moore, D.J.; Pennings, S.C. Epiphyte host preferences and host traits: Mechanisms for species-specific interactions. Oecologia 2002, 132, 221–230. [Google Scholar] [CrossRef]
  96. Van Wesenbeeck, B.K.; Van Mourik, T.; Duivenvoorden, J.F.; Cleef, A.M. Strong effects of a plantation with Pinus patula on Andean subparamo vegetation: A case study from Colombia. Biol. Conserv. 2003, 114, 207–218. [Google Scholar] [CrossRef]
  97. Villers-Ruiz, L.; Trejo-Vázquez, I. Impacto del cambio climático en los bosques y áreas naturales protegidas de México. Interciencia 1998, 23, 10–19. [Google Scholar]
  98. Arriaga, L.; Gómez, L. Efectos del cambio climático en algunos componentes de la biodiversidad. In Cambio climático: Una visión desde México; Martínez, J., Fernández-Bremauntz, A., Eds.; Instituto Nacional de Ecología: Mexico City, Mexico, 2004; pp. 255–265. [Google Scholar]
  99. Villers-Ruiz, L.; Trejo-Vázquez, I. Evaluación de la vulnerabilidad en los sistemas forestales. In Cambio climático: Una visión desde México; Martínez, J., Fernández-Bremauntz, A., Eds.; Instituto Nacional de Ecología: Mexico City, Mexico, 2004; pp. 239–254. [Google Scholar]
  100. Novo-Fernández, A.; Franks, S.; Wehenkel, C.; López-Serrano, P.M.; Molinier, M.; López-Sánchez, C.A. Landsat time series analysis for temperate forest cover change detection in the Sierra Madre Occidental, Durango, Mexico. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 230–244. [Google Scholar] [CrossRef]
  101. Contreras-Medina, R.; Morrone, J.J.; Luna-Vega, I. Biogeographic methods identify gymnosperm biodiversity hotspots. Naturwissenschaften 2001, 88, 427–430. [Google Scholar] [CrossRef]
Figure 2. The richest genera (>10 species) in the SMOc.
Figure 2. The richest genera (>10 species) in the SMOc.
Diversity 15 00324 g002
Figure 3. Species diversity in the Mexican states. The abbreviations are: Ags = Aguascalientes, Chih = Chihuahua, Dgo = Durango, Jal = Jalisco, Nayarit = Nay, Sin = Sinaloa, Son = Sonora, Zac = Zacatecas.
Figure 3. Species diversity in the Mexican states. The abbreviations are: Ags = Aguascalientes, Chih = Chihuahua, Dgo = Durango, Jal = Jalisco, Nayarit = Nay, Sin = Sinaloa, Son = Sonora, Zac = Zacatecas.
Diversity 15 00324 g003
Figure 4. Elevational distribution of the pteridoflora in the SMOc.
Figure 4. Elevational distribution of the pteridoflora in the SMOc.
Diversity 15 00324 g004
Figure 5. Geographic distribution of the pteridoflora of the SMOc. The abbreviations are: (Cos) Cosmopolitan; (A) American; (Na) Nearctic; (Nt) Neotropical; (M) Mesoamerican; (Mx) Endemic to Mexico; (E-SMOc) Endemic to the SMOc; (SMOc&ad) Regional endemic to northwestern Mexico.
Figure 5. Geographic distribution of the pteridoflora of the SMOc. The abbreviations are: (Cos) Cosmopolitan; (A) American; (Na) Nearctic; (Nt) Neotropical; (M) Mesoamerican; (Mx) Endemic to Mexico; (E-SMOc) Endemic to the SMOc; (SMOc&ad) Regional endemic to northwestern Mexico.
Diversity 15 00324 g005
Table 1. Families of ferns and lycophytes represented in the SMOc. We recorded the number of species and genera in each family, the species endemic to the SMOc, and the species included in the Mexican Official Norm NOM-059-SEMARNAT-2010 [67].
Table 1. Families of ferns and lycophytes represented in the SMOc. We recorded the number of species and genera in each family, the species endemic to the SMOc, and the species included in the Mexican Official Norm NOM-059-SEMARNAT-2010 [67].
FamiliesSpeciesGeneraEndemic SpeciesNOM-059
Anemiaceae1113
Aspleniaceae2513
Athyriaceae53
Blechnaceae73
Cyatheaceae11 Cyathea costaricensis
Cystopteridaceae21
Dennstaedtiaceae42
Dryopteridaceae256
Equisetaceae51
Gleicheniaceae11
Hymenophyllaceae22
Isoetaceae31
Lycopodiaceae32
Lygodiaceae11
Marsileaceae42
Nephrolepidaceae11
Ophioglossaceae84
Osmundaceae11
Plagiogyriaceae11
Polypodiaceae316Polypodium 1Campyloneurum phyllitidis
Psilotaceae21 Psilotum × complanatum
P. nudum
Pteridaceae11823Argyrochosma 1, Myriopteris 1, Notholaena 2
Salviniaceae21
Selaginellaceae3011Selaginella porphyrospora
Tectariaceae21
Thelypteridaceae106
Woodsiaceae711
Total 2731275134
Table 2. Taxonomic biodiversity index (TBI) of the study area compared with other areas and mountain chains of Mexico.
Table 2. Taxonomic biodiversity index (TBI) of the study area compared with other areas and mountain chains of Mexico.
Study AreaElevation RangesArea * (km2)Number of Pteridophyte SpeciesTBI (S/InA)
SMOc (present study)300–3500251,64831225.17
SMOr [16]200–3694220,19242434.47
TMVB (Tejero-Díez pers. data)300–5636163,015~41534.58
SMS [4]300–3700±143,44761451.71
ST [18]300–3284±59,161~55050.05
Acronyms: SMOc: Sierra Madre Occidental; SMOr: Sierra Madre Oriental; TMVB: Trans-Mexican Volcanic Belt; SMS: Sierra Madre del Sur; ST: Serranías Transístmicas. * The area size follows the study’s authors; in those cases where the authors did not mention them, we obtained information from different sources (±). ~ Data calculated from the database of the first author or the cited authors.
Table 3. Conservation status of the fern and lycophyte species represented in the SMOc and their risk categories in the Mexican Official Norm NOM-059-SEMARNAT-2010, IUCN, and CITES.
Table 3. Conservation status of the fern and lycophyte species represented in the SMOc and their risk categories in the Mexican Official Norm NOM-059-SEMARNAT-2010, IUCN, and CITES.
FamilySpeciesNOM-059IUCNCITES
AspleniaceaeAsplenium formosum LC
AspleniaceaeAsplenium monanthes LC
AspleniaceaeAsplenium trichomanes LC
CyatheaceaeCyathea costaricensisP Appendix II
DennstaedtiaceaePteridium latiusculum LC
EquisetaceaeEquisetum hyemale LC
HymenophyllaceaeHymenophyllum tunbrigense LC
LycopodiaceaePalhinhaea cernua LC
NephrolepidaceaeNephrolepis undulata LC
OphioglossaceaeOphioglossum nudicaule LC
OphioglossaceaeOphioglossum reticulatum LC
OsmundaceaeOsmunda regalis LC
PolypodiaceaeCampyloneurum phyllitidisA
PsilotaceaePsilotum × complanatumA
PsilotaceaePsilotum nudum CR
PteridaceaeAdiantum capillus-veneris LC
PteridaceaeAnogramma leptophylla LC
PteridaceaePteris cretica LC
SalviniaceaeAzolla microphylla LC
SelaginellaceaeSelaginella porphyrosporaP
ThelypteridaceaeCyclosorus interruptus LC
Total 4171
Abbreviations for NOM-059-SEMARNAT-2010 categories: threatened (A) and in danger of extinction (P). IUCN Red List: Less concern category (LC) and critically endangered (CR).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tejero-Díez, J.D.; Contreras-Medina, R.; Torres-Díaz, A.N.; González-Elizondo, M.S.; Sánchez-González, A.; Luna-Vega, I. Diversity of the Pteridoflora of Montane Northwestern Mexico. Diversity 2023, 15, 324. https://doi.org/10.3390/d15030324

AMA Style

Tejero-Díez JD, Contreras-Medina R, Torres-Díaz AN, González-Elizondo MS, Sánchez-González A, Luna-Vega I. Diversity of the Pteridoflora of Montane Northwestern Mexico. Diversity. 2023; 15(3):324. https://doi.org/10.3390/d15030324

Chicago/Turabian Style

Tejero-Díez, J. Daniel, Raúl Contreras-Medina, Alin N. Torres-Díaz, M. Socorro González-Elizondo, Arturo Sánchez-González, and Isolda Luna-Vega. 2023. "Diversity of the Pteridoflora of Montane Northwestern Mexico" Diversity 15, no. 3: 324. https://doi.org/10.3390/d15030324

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop