Next Article in Journal
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates
Next Article in Special Issue
New Species of Talaromyces (Trichocomaceae, Eurotiales) from Southwestern China
Previous Article in Journal
Description of Crinitomyces reliqui gen. nov., sp. nov. and Reassignment of Trichosporiella flavificans and Candida ghanaensis to the Genus Crinitomyces
Previous Article in Special Issue
Two New Sexual Talaromyces Species Discovered in Estuary Soil in China
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Species of Aspergillus (Aspergillaceae) from Tropical Islands of China

State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
*
Authors to whom correspondence should be addressed.
J. Fungi 2022, 8(3), 225; https://doi.org/10.3390/jof8030225
Submission received: 8 February 2022 / Revised: 21 February 2022 / Accepted: 22 February 2022 / Published: 24 February 2022

Abstract

:
Aspergillus species are cosmopolitan and ubiquitous, closely related to human daily life. They are also of food, industrial and medical importance. From the examination of cultures isolated from soil samples collected on tropical islands of China, four new species of the genus were discovered based on phylogenetic analyses and morphological comparisons. Aspergillus xishaensis sp. nov. and A. neoterreus sp. nov. belong to sections Flavipedes and Terrei of subgenus Circumdati, and A. hainanicus sp. nov. and A. qilianyuensis sp. nov. are in sections Cavernicolarum and Nidulantes of subgenus Nidulantes. To accommodate A. hainanicus, a new series Hainanici was proposed. Detailed descriptions and illustrations of the new taxa were provided.

1. Introduction

Species of Aspergillus P. Micheli ex Haller are cosmopolitan and ubiquitous. Some of them are closely related to human daily life. Strains of A. niger Tiegh. and A. oryzae (Ahlb.) Cohn were used for the fermentation of food for more than two millennia and the manufacturing of food enzymes for over 50 years [1]. Aspergillus niger is also a workhorse and cell factory for the production of citric acid, an organic acid with high economic importance, which is widely used in beverage, food, detergents, cosmetics and pharmaceutical industries [2]. Aflatoxins, produced by A. flavus Link and other aspergilli, are highly toxic secondary metabolites and severely contaminate food supplies of humans and animals, resulting in health hazards and even death [3]. Some black aspergilli were reported to be postharvest pathogens of economically important crops, e.g., A aculeatus Iizuka, A. japonicus Saito and A. uvarum G. Perrone et al. infecting the fruits of grapes [4]. Aspergillosis infections caused by Aspergillus species are of significant morbidity and mortality. Mostly, they are attributed to A. fumigatus Fresen., followed by A. flavus and A. terreus Thom [5].
The genus was originally introduced in 1729 and has more than one thousand names recorded in the database Index Fungorum. According to a recent monographic study, Aspergillus was divided into six subgenera (namely, Aspergillus, Circumdati, Cremei, Fumigati, Nidulantes and Polypaecilum), 27 sections and 75 series, with 446 species accepted [6]. Recently, more than 20 new species were added, e.g., A. kumbius (Pitt) and A. malvicolor A.D. Hocking in sect. Circumdati, A. agricola Pummi Singh et al. and A. burnettii Pitt in section Flavi, A. alboluteus F. Sklenar et al. and A. okavangoensis Visagie and Nkwe in section Flavipedes, A. nanangensis Pitt in section Janorum, A. hydei Doilom and A. vinaceus Ferranti et al. in section Nigri, and A. barbosae A.C.R. Barros-Correia et al. in section Terrei of subgenus Circumdati; A. arizonensis Jurjević et al. and A. banksianus Pitt in section Fumigati of subgenus Fumigati; A. lannaensis N. Suwannarach et al. in section Sparsi, and A. sigarelli B.D. Sun et al. in section Usti of subgenus Nidulantes; A. limoniformis Z.F. Zhang and L. Cai and A. telluris B.D. Sun et al. in sect. Polypaecilum of subgenus Polypaecilum [7,8,9,10,11,12,13,14,15,16,17,18,19]. The increasing number of species reveals the extremely high biodiversity of Aspergillus.
During the examinations of the cultures isolated from sandy soil collected on tropical islands of China, four new species were discovered based on phylogenetic analyses and morphological comparisons. They belong to sections Flavipedes and Terrei of subgenus Circumdati and sections Cavernicolarum and Nidulantes of subgenus Nidulantes, respectively. The detailed descriptions and illustrations of the new taxa are provided.

2. Materials and Methods

2.1. Fungal Materials

Cultures were isolated from sandy soil collected on tropical islands of China in 2015. Dried cultures were deposited in the Herbarium Mycologicum Academiae Sinicae (HMAS), and living ex-type strains were preserved in the China General Microbiological Culture Collection Center (CGMCC).

2.2. Morphological Observations

Morphological characterization was conducted following standardized methods [20]. Four standard growth media were used: Czapek yeast autolysate agar (CYA, yeast extract Oxoid), malt extract agar (MEA, Amresco), yeast extract agar (YES) and potato dextrose agar (PDA). If sporulation failed on the above media, PDA with 3% sea salts (3% NaCl, Psaitong) and oatmeal agar (OA) were further applied. The methods for inoculation, incubation, microscopic examinations and digital recordings followed our previous studies [21,22,23,24].

2.3. Molecular Experiments

DNA was extracted from the cultures grown on PDA for 7 days using the Plant Genomic DNA Kit (DP305, TIANGEN Biotech, Beijing, China). Polymerase chain reaction (PCR) amplifications of the internal transcribed spacer (ITS), beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene regions were conducted with the routine methods [21,22,23,24]. The products were purified and subject to sequencing on an ABI 3730 DNA Sequencer (Applied Biosystems). Although the ITS region is proposed as the universal DNA barcode for fungi, it is not sufficient to distinguish species of Aspergillus. The ITS sequences provided in this study might be helpful for other researchers in case of need.

2.4. Phylogenetic Analyses

Forward and reverse sequences newly generated in this study were assembled using Seqman v. 7.1.0 (DNASTAR Inc., Madison, WI, USA). The assembled sequences were deposited at GenBank. The sequences used for phylogenetic analyses are listed in Table 1 and Table 2. Sequences of the combined loci (BenA, CaM and RPB2) of each of the two subgenera were aligned using MAFFT v. 7.221 [25] and then manually edited and combined in BioEdit v. 7.1.10 [26] and MEGA v. 6.0.6 [27]. The combined datasets of individual subgenera were analyzed to infer their phylogeny. Maximum likelihood (ML) analyses were conducted using RAxML-HPC2 [28] on XSEDE 8.2.12 on CIPRES Science Gateway v. 3.3 [29] with the default GTRCAT model. Bayesian inference (BI) analyses were performed with MrBayes v. 3.2.5 [30]. Appropriate nucleotide substitution models and parameters were determined by Modeltest v. 3.7 [31]. The consensus trees were viewed in FigTree v. 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 3 June 2015). Aspergillus flavus of subgen. Circumdati sect. Flavi served as an outgroup.

3. Results

3.1. Phylogenetic Analysis

To determine the positions of the isolates, two combined datasets (BenA + CaM + RPB2) of Aspergillus subgenera Nidulantes and Circumdati were compiled and analyzed. The detailed characteristics of the datasets are listed in Table 3. In the phylogeny of Aspergillus subg. Nidulantes (Figure 1), the strains ZC79 and ZC101 were located in sect. Cavernicolarum and Nidulantes, respectively. The strain ZC79 was sister to the species of ser. Cavernicolarum and Egyptiaci, and a new series was proposed as ser. Hainanici to accommodate it. The strain ZC 101 formed a distinct lineage in ser. Versicolores. As shown in the phylogenetic tree of Aspergillus subg. Circumdati (Figure 2), the strain ZC108 was a member of sect. Flavipedes ser. Flavipedes, and clustered with A. micronesiensis and A. neoflavipes. The strain ZC111 was revealed to be affiliated to sect. Terrei ser. Terrei, and shared a close relationship with A. citrinoterreus.

3.2. Taxonomy

Series Hainanici X.C. Wang and W.Y. Zhuang, ser. nov.
Fungal Names: FN570966.
Etymology: Named after Aspergillus hainanicus.
Type: Aspergillus hainanicus X.C. Wang and W.Y. Zhuang.
In Aspergillus subgen. Nidulantes sect. Cavernicolarum.
Diagnosis: Series Hainanici belongs to subgen. Nidulantes sect. Cavernicolarum and is sister to series Cavernicolarum and Egyptiaci (Figure 1). Colonies no growth at 37 °C; conidia en masse greyish black; conidiophores biseriate; stipes short, thick walls, brown; vesicles globose to subglobose; metulae cylindrical to obovate, covering almost a half surface of the vesicle; phialides flask-shaped; conidia large, subglobose, strongly echinulate.
Aspergillus hainanicus X.C. Wang and W.Y. Zhuang, sp. nov. Figure 3.
Fungal Names: FN570967.
Etymology: The specific epithet refers to the type locality.
In Aspergillus subgen. Nidulantes sect. Cavernicolarum ser. Hainanici.
Typification: CHINA. Hainan Province, Sansha City, Xisha District, Xisha Islands, Xuande Islands, Yongxing Island, 16°50′4″ N 112°20′49″ E, in sandy soil (phosphorous lime soil) under unidentified plants, 29 March 2015, Ye-Wei Xia, culture, Kai Chen, ZC79 (holotype HMAS 247855, ex-type strain CGMCC 3.20888).
DNA barcodes: ITS OM414846, BenA OM475626, CaM OM475630, RPB2 OM475634.
Colony diam.: 7 days, 25 °C (unless stated otherwise): CYA 18–20 mm; CYA 37 °C no growth; MEA 16–17 mm; YES 21–22 mm; PDA 16–17 mm.
Colony characteristics: On CYA 25 °C, 7 days: Colonies nearly circular, concave at centers, protuberant at margins, radially sulcate; margins narrow, entire; mycelia white and then buff; texture velutinous; sporulation sparse; conidia en masse greyish black; soluble pigments light brown; exudates tiny, hyaline and clear; reverse yellow to orange, but black at centers and with black sectors. On MEA 25 °C, 7 days: Colonies irregular, protuberant; margins narrow, entire; mycelia white and then cream to light yellow; texture velutinous; sporulation absent; soluble pigments light brown; exudates tiny, hyaline and clear; reverse buff, yellow to orange, but black at centers. On YES 25 °C, 7 days: Colonies nearly circular or irregular, protuberant at centers, radially sulcate; margins narrow, fimbriate; mycelia white; texture velutinous; sporulation sparse; conidia en masse greyish black; soluble pigments greenish-brown; exudates absent; reverse orange to black. On PDA 25 °C, 7 days: Colonies irregular, protuberant; margins narrow, entire; mycelia white and then cream to light yellow; texture velutinous; sporulation absent; soluble pigments yellow; exudates tiny, hyaline and clear; reverse buff, yellow to orange, and with black sectors.
Micromorphology: Conidial heads radiate; stipes short, 55–90 × 4.5–6.0 μm, thick walls, smooth, brown, not septate; vesicles 7.5–13 × 9.0–13 μm, globose to subglobose; biseriate; metulae 5.0–9.0 × 3.0–6.5 μm, cylindrical to obovate, covering almost a half surface of the vesicle; phialides 5.5–8.0 × 3.5–5.0 μm, flask-shaped; conidia 6.0–9.5 μm, subglobose, strongly echinulate.
Note: This species is phylogenetically related to A. californicus, A. cavernicola, A. kassunensis and A. subsessilis of ser. Cavernicolarum and A. egyptiacus of ser. Egyptiaci (Figure 1), but differs from the former four species in its brown stipe and larger, strongly echinulate conidia, and differs from the latter one due to no growth on CYA at 37 °C, slower growth rates on MEA and YES, brown stipe and larger and strongly echinulate conidia (Table 4).
Aspergillus neoterreus X.C. Wang and W.Y. Zhuang, sp. Nov. Figure 4.
Fungal Names: FN570968.
Etymology: The specific epithet refers to the close relationship with A. terreus.
In Aspergillus subgen. Circumdati sect. Terrei ser. Terrei.
Typification: CHINA. Hainan Province, Sansha City, Xisha District, Xisha Islands, Xuande Islands, Qilianyu Islands, Nanshazhou Island, 16°55′46″ N 112°20′55″ E, in sandy soil (phosphorous lime soil) under unidentified plants, 29 March 2015, Ye-Wei Xia, culture, Kai Chen, ZC111 (holotype HMAS 247856, ex-type strain CGMCC 3.20891).
DNA barcodes: ITS OM414849, BenA OM475629, CaM OM475633, RPB2 OM475637.
Colony diam.: 7 days, 25 °C (unless stated otherwise): CYA 26–28 mm; CYA 37 °C 57–58 mm; MEA 21–23 mm; YES 37–40 mm; PDA 20–22 mm.
Colony characteristics: On CYA 25 °C, 7 days: Colonies nearly circular, slightly protuberant at centers, concentrically sulcate; margins narrow, entire; mycelia white; texture velutinous; sporulation moderately dense; conidia en masse wheat, yellow-brown to khaki; soluble pigments absent; exudates absent; reverse light brown. On CYA 37 °C, 7 days: Colonies nearly circular or irregular, plain, radially sulcate; margins moderately wide, irregular; mycelia white; texture velutinous; sporulation dense; conidia en masse wheat, yellow-brown to khaki; soluble pigments absent; exudates absent; reverse yellow-brown to dark brown. On MEA 25 °C, 7 days: Colonies nearly circular, plain, slightly protuberant at centers; margins wide, entire; mycelia white; texture velutinous; sporulation moderately dense; conidia en masse wheat, yellow-brown to khaki; soluble pigments absent; exudates absent; reverse buff to yellow-brown, but light brown at centers. On YES 25 °C, 7 days: Colonies nearly circular, concave at centers, strongly sulcate; margins wide, fimbriate; mycelia white; texture velutinous; sporulation moderately dense; conidia en masse wheat, yellow-brown to khaki; soluble pigments absent; exudates absent; reverse yellow-brown to light brown. On PDA 25 °C, 7 days: Colonies nearly circular, plain, slightly protuberant at centers; margins narrow, irregular; mycelia white; texture velutinous; sporulation dense; conidia en masse wheat, yellow-brown to khaki; soluble pigments absent; exudates absent; reverse pink-brown, but greenish-brown at centers.
Micromorphology: Conidial heads radiate; stipes 150–225 × 2.5–7.5 μm, thick walls, smooth, hyaline or blackish, not septate; vesicles 11–16.5 × 8.5–27 μm, subglobose to ellipsoid; biseriate; metulae 6.0–7.5 × 2.0–3.0 μm, cylindrical, covering a half to two-thirds the surface of the vesicle; phialides 7.0–8.5 × 1.5–2.0 μm, acerose; conidia 2.0–2.5 μm, subglobose to broad ellipsoid, smooth.
Note: This species is phylogenetically related to A. citrinoterreus (Figure 2) but differs in slower growth rate on CYA and smaller conidia (Table 4).
Aspergillus qilianyuensis X.C. Wang and W.Y. Zhuang, sp. Nov. Figure 5.
Fungal Names: FN570969.
Etymology: The specific epithet refers to the type locality.
In Aspergillus subgen. Nidulantes sect. Nidulantes ser. Versicolores.
Typification: CHINA. Hainan Province, Sansha City, Xisha District, Xisha Islands, Xuande Islands, Qilianyu Islands, Nanshazhou Island, 16°55′46″ N 112°20′55″ E, in sandy soil (phosphorous lime soil) under unidentified plants, 29 March 2015, Ye-Wei Xia, culture, Kai Chen, ZC101 (holotype HMAS 247857, ex-type strain CGMCC 3.20889).
DNA barcodes: ITS OM414847, BenA OM475627, CaM OM475631, RPB2 OM475635.
Colony diam.: 7 days, 25 °C (unless stated otherwise): CYA 21–23 mm; CYA 37 °C no growth; MEA 17–20 mm; YES 29–30 mm; PDA 19–20 mm.
Colony characteristics: On CYA 25 °C, 7 days: Colonies nearly circular, protuberant, concentrically and radially sulcate; margins narrow, entire; mycelia white and then pink; texture velutinous; sporulation sparse; conidia en masse light greyish green; soluble pigments absent; exudates absent; reverse buff to pink-brown. On MEA 25 °C, 7 days: Colonies nearly circular, slightly protuberant at central areas; margins wide, entire; mycelia white and becoming yellow; texture velutinous; sporulation moderately dense; conidia en masse greyish green; soluble pigments absent; exudates absent; reverse buff to vivid yellow, but orange-brown at centers. On YES 25 °C, 7 days: Colonies nearly circular, protuberant or concave at centers, concentrically and radially sulcate, deep; margins narrow, entire; mycelia white; texture velutinous; sporulation sparse; conidia en masse light yellow; soluble pigments absent; exudates absent; reverse yellow-brown. On PDA 25 °C, 7 days: Colonies nearly circular, slightly protuberant at central areas; margins wide, entire; mycelia white and then yellow; texture velutinous; sporulation moderately dense; conidia en masse greyish green; soluble pigments absent; exudates absent; reverse buff, yellow-brown to orange-brown.
Micromorphology: Conidial heads radiate; stipes 225–325 × 4.0–8.0 μm, thick walls, smooth, hyaline or blackish, not septate; vesicles 16–20 × 10–18 μm, ellipsoid; biseriate; metulae 5.0–6.0 × 3.0–3.5 μm, cylindrical, covering two-thirds to almost the entire surface of the vesicle; phialides 6.0–8.0 × 2.0–2.5 μm, flask-shaped to acerose; conidia 2.0–3.0 μm, subglobose, smooth.
Note: This species formed a distinct lineage in ser. Versicolores (Figure 1). Morphologically, it differs from the type species of this series, A. versicolor, in slower growth rates on CYA and MEA and smooth and smaller conidia (Table 4).
Aspergillus xishaensis X.C. Wang and W.Y. Zhuang, sp. nov. Figure 6.
Fungal Names: FN570970.
Etymology: The specific epithet refers to the type locality.
In Aspergillus subgen. Circumdati sect. Flavipedes ser. Flavipedes.
Typification: CHINA. Hainan Province, Sansha City, Xisha District, Xisha Islands, Xuande Islands, Qilianyu Islands, Nanshazhou Island, 16°55′46″ N 112°20′55″ E, in sandy soil (phosphorous lime soil) under unidentified plants, 29 March 2015, Ye-Wei Xia, culture, Kai Chen, ZC108 (holotype HMAS 247858, ex-type strain CGMCC 3.20890).
DNA barcodes: ITS OM414848, BenA OM475628, CaM OM475632, RPB2 OM475636.
Colony diam.: 7 days, 25 °C (unless stated otherwise): CYA 19–22 mm; CYA 37 °C 19–21 mm; MEA 16–20 mm; YES 25–29 mm; PDA 18–22 mm; PDA (3% NaCl) 19–20 mm; OA 19–20 mm.
Colony characteristics: On CYA 25 °C, 7 days: Colonies irregular, protuberant, radially sulcate; margins narrow, entire; mycelia white and then light yellow; texture velutinous; sporulation absent; soluble pigments yellow-brown; exudates absent; reverse yellow-brown to light brown. On CYA 37 °C, 7 days: Colonies nearly circular, protuberant at centers, radially sulcate; margins wide, fimbriate; mycelia white and then light yellow; texture velutinous; sporulation absent; soluble pigments yellow-brown; exudates absent; reverse yellow-brown to dark brown. On MEA 25 °C, 7 days: Colonies nearly circular or irregular, protuberant; margins narrow, entire; mycelia white and then cream; texture velutinous; sporulation absent; soluble pigments yellow-brown; exudates absent; reverse light brown, but buff at margins. On YES 25 °C, 7 days: Colonies nearly circular, protuberant at centers, radially sulcate; margins narrow, entire; mycelia white and then light cream; texture velutinous; sporulation absent; soluble pigments yellow-brown; exudates absent; reverse yellow-brown to orange-brown. On PDA 25 °C, 7 days: Colonies nearly circular or irregular, protuberant; margins narrow, entire; mycelia white and then light cream; texture velutinous; sporulation absent; soluble pigments yellow-brown; exudates greenish-yellow, clear; reverse yellow-brown to light brown. On PDA (3% NaCl) 25 °C, 7 days: Colonies oblong, protuberant; margins moderately wide, entire; mycelia cream; texture velutinous; sporulation dense; conidia en masse white to cream; soluble pigments light yellow-brown; exudates absent; reverse yellow-brown to light brown. On OA 25 °C, 7 days: Colonies nearly circular or irregular, protuberant; margins wide, fimbriate; mycelia cream; texture velutinous; sporulation sparse; conidia en masse white to cream; soluble pigments yellow-brown; exudates absent; reverse light yellow, but light brown at centers.
Micromorphology: Conidial heads radiate; stipes long, 700–1400 × 7.5–10 μm, thick walls, smooth, hyaline or blackish, not septate; vesicles 18–35 × 15–35 μm, globose to broad ellipsoid; biseriate; metulae 7.0–11 × 3.5–4.5 μm, cylindrical, covering two thirds to almost the entire surface of the vesicle; phialides 9.0–11.5 × 2.5–3.0 μm, flask-shaped to acerose; conidia 3.0–4.0 μm, globose to subglobose, smooth.
Note: This species is phylogenetically related to A. micronesiensis and A. neoflavipes (Figure 2) but differs from them in slower growth rates on CYA, MEA and YES and larger conidia (Table 4).

4. Discussion

Aspergillus is a large genus with more than 400 accepted species and more than 1000 names. A comprehensive taxonomic treatment of the genus was recently established on the basis of molecular data and morphological characteristics [6]. Six subgenera, twenty-seven sections and seventy-five series were currently accepted, among which five new sections and seventy-three new series were erected. Based on the above treatment, researchers are able to quickly position their materials to specific ranks of series, sections and subgenera. Three of the four new species described in this study were classified into the known series, except for A. hainanicus, for which the new series Hainanici is proposed. Along with future discovery of new taxa, the current classification system may be updated.
In the Flavi, Fumigati, Nigri and Terrei sections of Aspergillus, some species cause the infectious disease aspergillosis, such as the most frequently occurred and well-known pathogen A. fumigatus [36]. In sect. Nidulantes, A. versicolor (Vuill.) Tirab., a close relative of A. qilianyuensis, was isolated from the skin [37] and nails [38] of humans and also invasively infected multiple organs of dogs [39,40]. Aspergillus hongkongensis C.C. Tsang et al. causes onychomycosis [41]. In subgen. Circumdati, A. citrinoterreus J. Guinea et al. and A. suttoniae J.P.Z. Siqueira et al. were isolated from the sputum of humans [35,42], and A. alabamensis Balajee et al. from the wounds of humans [43]. Whether others of these sections are potentially pathogenic requires future investigation.
Tropical islands represent a unique ecosystem. Due to their extremely isolated location and special environmental conditions, some of them are considered as the world’s biodiversity hotspots. Several species of Aspergillus were recorded from similar geographical origins, such as A. griseoaurantiacus Visagie et al. and A. micronesiensis Visagie et al. from Micronesia [33], and A. puulaauensis Jurjević et al. from Hawaii [32]. The four new species were all derived from the soil samples of the Xisha Islands, which seem to exhibit high species diversity. Further explorations on tropical islands are desperately needed, and we certainly expect to find more new fungi there.

Author Contributions

Conceptualization, W.-Y.Z. and X.-C.W.; methodology, X.-C.W.; software, X.-C.W.; validation, X.-C.W. and W.-Y.Z.; formal analysis, X.-C.W.; investigation, X.-C.W.; resources, X.-C.W. and W.-Y.Z.; data curation, X.-C.W.; writing—original draft preparation, X.-C.W.; writing—review and editing, W.-Y.Z. and X.-C.W.; visualization, X.-C.W.; supervision, W.-Y.Z.; project administration, W.-Y.Z.; funding acquisition, W.-Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This project was supported by the National Natural Science Foundation of China (31750001) and Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDY-SSW-SMC029).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The sequences newly generated in this study have been submitted to the GenBank database.

Acknowledgments

The authors would like to thank Tai-Hui Li and Ye-Wei Xia (Guangdong Institute of Microbiology) for providing the soil samples and Kai Chen of this institute for providing cultures for this study.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Frisvad, J.C.; Moller, L.L.H.; Larsen, T.O.; Kumar, R.; Arnau, J. Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 2018, 102, 9481–9515. [Google Scholar] [CrossRef] [Green Version]
  2. Behera, B.C. Citric acid from Aspergillus niger: A comprehensive overview. Crit. Rev. Microbiol. 2020, 46, 727–749. [Google Scholar] [CrossRef]
  3. Kumar, P.; Mahato, D.K.; Kamle, M.; Mohanta, T.K.; Kang, S.G. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol. 2016, 7, 2170. [Google Scholar] [CrossRef] [Green Version]
  4. Solairaj, D.; Legrand, N.N.G.; Yang, Q.Y.; Zhang, H.Y. Isolation of pathogenic fungi causing postharvest decay in table grapes and in vivo biocontrol activity of selected yeasts against them. Physiol. Mol. Plant Pathol. 2020, 110, 101478. [Google Scholar] [CrossRef]
  5. Balajee, S.A.; Houbraken, J.; Verweij, P.E.; Hong, S.B.; Yaghuchi, T.; Varga, J.; Samson, R.A. Aspergillus species identification in the clinical setting. Stud. Mycol. 2007, 59, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Houbraken, J.; Kocsube, S.; Visagie, C.M.; Yilmaz, N.; Wang, X.C.; Meijer, M.; Kraak, B.; Hubka, V.; Bensch, K.; Samson, R.A.; et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 2020, 95, 5–169. [Google Scholar] [CrossRef] [PubMed]
  7. Sklenar, F.; Jurjevic, Z.; Houbraken, J.; Kolarik, M.; Arendrup, M.C.; Jorgensen, K.M.; Siqueira, J.P.Z.; Gene, J.; Yaguchi, T.; Ezekiel, C.N.; et al. Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species. Stud. Mycol. 2021, 99, 100120. [Google Scholar] [CrossRef] [PubMed]
  8. Singh, P.; Callicott, K.A.; Orbach, M.J.; Cotty, P.J. Molecular analysis of S-morphology aflatoxin producers from the United States reveals previously unknown diversity and two new taxa. Front. Microbiol. 2020, 11, 1236. [Google Scholar] [CrossRef]
  9. Crous, P.W.; Wingfield, M.J.; Chooi, Y.H.; Gilchrist, C.L.M.; Lacey, E.; Pitt, J.I.; Roets, F.; Swart, W.J.; Cano-Lira, J.F.; Valenzuela-Lopez, N.; et al. Fungal Planet description sheets: 1042–1111. Persoonia 2020, 44, 301–459. [Google Scholar] [CrossRef]
  10. Correia, A.C.R.B.; Barbosa, R.N.; Frisvad, J.C.; Houbraken, J.; Souza-Motta, C.M. The polyphasic re-identification of a Brazilian Aspergillus section Terrei collection led to the discovery of two new species. Mycol. Prog. 2020, 19, 885–903. [Google Scholar] [CrossRef]
  11. Gilchrist, C.L.M.; Lacey, H.J.; Vuong, D.; Pitt, J.I.; Lange, L.; Lacey, E.; Pilgaard, B.; Chooi, Y.H.; Piggott, A.M. Comprehensive chemotaxonomic and genomic profiling of a biosynthetically talented Australian fungus, Aspergillus burnettii sp. nov. Fungal Genet. Biol. 2020, 143, 103435. [Google Scholar] [CrossRef]
  12. Al-Bedak, O.A.; Moubasher, A.H.; Ismail, M.A.; Mohamed, R.A. Aspergillus curvatus, a new species in section Circumdati isolated from an alkaline water of Lake Khadra in Wadi-El-Natron, Egypt. Asian J. Mycol. 2020, 3, 325–334. [Google Scholar] [CrossRef]
  13. Al-Bedak, O.A.; Moubasher, A.H. Aspergillus gaarensis, a new addition to section Circumdati from soil of Lake El-Gaar in Wadi-El-Natron, Egypt. Stud. Fungi 2020, 5, 59–65. [Google Scholar] [CrossRef]
  14. Boonmee, S.; Wanasinghe, D.N.; Calabon, M.S.; Huanraluek, N.; Chandrasiri, S.K.U.; Jones, G.E.B.; Rossi, W.; Leonardi, M.; Singh, S.K.; Rana, S.; et al. Fungal diversity notes 1387–1511: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2021, 111, 1–335. [Google Scholar] [CrossRef]
  15. Doilom, M.; Guo, J.W.; Phookamsak, R.; Mortimer, P.E.; Karunarathna, S.C.; Dong, W.; Liao, C.F.; Yan, K.; Pem, D.; Suwannarach, N.; et al. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: Four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front. Microbiol. 2020, 11, 585215. [Google Scholar] [CrossRef]
  16. Zhang, Z.F.; Zhou, S.Y.; Eurwilaichitr, L.; Ingsriswang, S.; Raza, M.; Chen, Q.; Zhao, P.; Liu, F.; Cai, L. Culturable mycobiota from Karst caves in China II, with descriptions of 33 new species. Fungal Divers. 2021, 106, 29–136. [Google Scholar] [CrossRef]
  17. Sun, B.D.; Huang, P.P.; Wei, H.L.; Cai, W.J.; Wang, L.; Liu, S.K.; Jiang, X.Z.; Chen, A.J. Aspergillus telluris, a new soil derived species belonging to Aspergillus subgenus Polypaecilum. Phytotaxa 2020, 455, 137–151. [Google Scholar] [CrossRef]
  18. Da Silva, J.J.; Iamanaka, B.T.; Ferranti, L.S.; Massi, F.P.; Taniwaki, M.H.; Puel, O.; Lorber, S.; Frisvad, J.C.; Fungaro, M.H.P. Diversity within Aspergillus niger clade and description of a new species: Aspergillus vinaceus sp. nov. J. Fungi 2020, 6, 371. [Google Scholar] [CrossRef]
  19. Sun, B.D.; Houbraken, J.; Frisvad, J.C.; Jiang, X.Z.; Chen, A.J.; Samson, R.A. New species in Aspergillus section Usti and an overview of Aspergillus section Cavernicolarum. Int. J. Syst. Evol. Microbiol. 2020, 70, 5401–5416. [Google Scholar] [CrossRef]
  20. Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef] [Green Version]
  21. Wang, X.C.; Chen, K.; Xia, Y.W.; Wang, L.; Li, T.H.; Zhuang, W.Y. A new species of Talaromyces (Trichocomaceae) from the Xisha Islands, Hainan, China. Phytotaxa 2016, 267, 187–200. [Google Scholar] [CrossRef]
  22. Wang, X.C.; Chen, K.; Qin, W.T.; Zhuang, W.Y. Talaromyces heiheensis and T. mangshanicus, two new species from China. Mycol. Prog. 2017, 16, 73–81. [Google Scholar] [CrossRef]
  23. Wang, X.C.; Chen, K.; Zeng, Z.Q.; Zhuang, W.Y. Phylogeny and morphological analyses of Penicillium section Sclerotiora (Fungi) lead to the discovery of five new species. Sci. Rep. 2017, 7, 8233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Zhang, Z.K.; Wang, X.C.; Zhuang, W.Y.; Cheng, X.H.; Zhao, P. New species of Talaromyces (Fungi) isolated from soil in southwestern China. Biology 2021, 10, 745. [Google Scholar] [CrossRef]
  25. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
  26. Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
  27. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
  28. Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [PubMed]
  29. Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
  30. Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
  31. Posada, D.; Crandall, K.A. MODELTEST: Testing the model of DNA substitution. Bioinformatics 1998, 14, 817–818. [Google Scholar] [CrossRef] [Green Version]
  32. Jurjevic, Z.; Peterson, S.W.; Horn, B.W. Aspergillus section Versicolores: Nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 2012, 3, 59–79. [Google Scholar] [CrossRef] [PubMed]
  33. Visagie, C.M.; Hirooka, Y.; Tanney, J.B.; Whitfield, E.; Mwange, K.; Meijer, M.; Amend, A.S.; Seifert, K.A.; Samson, R.A. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud. Mycol. 2014, 78, 63–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Hubka, V.; Novakova, A.; Kolarik, M.; Jurjevic, Z.; Peterson, S.W. Revision of Aspergillus section Flavipedes: Seven new species and proposal of section Jani sect. nov. Mycologia 2015, 107, 169–208. [Google Scholar] [CrossRef] [PubMed]
  35. Guinea, J.; Sandoval-Denis, M.; Escribano, P.; Pelaez, T.; Guarro, J.; Bouza, E. Aspergillus citrinoterreus, a new species of section Terrei isolated from samples of patients with nonhematological predisposing conditions. J. Clin. Microbiol. 2015, 53, 611–617. [Google Scholar] [CrossRef] [Green Version]
  36. Latge, J.P.; Chamilos, G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2019, 33, e00140-18. [Google Scholar] [CrossRef]
  37. Steele, A.E. A case of infection with Aspergillus versicolor. Boston Med. Surg. J. 1926, 195, 536–538. [Google Scholar] [CrossRef]
  38. Torres-Rodriguez, J.M.; Madrenys-Brunet, N.; Siddat, M.; Lopez-Jodra, O.; Jimenez, T. Aspergillus versicolor as cause of onychomycosis: Report of 12 cases and susceptibility testing to antifungal drugs. J. Eur. Acad. Dermatol. Venereol. 1998, 11, 25–31. [Google Scholar] [CrossRef]
  39. Zhang, S.; Corapi, W.; Quist, E.; Griffin, S.; Zhang, M. Aspergillus versicolor, a new causative agent of canine disseminated aspergillosis. J. Clin. Microbiol. 2012, 50, 187–191. [Google Scholar] [CrossRef] [Green Version]
  40. Maniam, R.; Selvarajah, G.T.; Mazlan, M.; Lung Than, L.T. Pulmonary papillary adenocarcinoma with Aspergillus versicolor infection in a dog. Med. Mycol. Case Rep. 2018, 19, 25–29. [Google Scholar] [CrossRef]
  41. Tsang, C.C.; Hui, T.W.; Lee, K.C.; Chen, J.H.; Ngan, A.H.; Tam, E.W.; Chan, J.F.; Wu, A.L.; Cheung, M.; Tse, B.P.; et al. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing. Diagn. Microbiol. Infect. Dis. 2016, 84, 125–134. [Google Scholar] [CrossRef]
  42. Siqueira, J.P.Z.; Wiederhold, N.; Gene, J.; Garcia, D.; Almeida, M.T.G.; Guarro, J. Cryptic Aspergillus from clinical samples in the USA and description of a new species in section Flavipedes. Mycoses 2018, 61, 814–825. [Google Scholar] [CrossRef] [PubMed]
  43. Balajee, S.A.; Baddley, J.W.; Peterson, S.W.; Nickle, D.; Varga, J.; Boey, A.; Lass-Florl, C.; Frisvad, J.C.; Samson, R.A.; the ISHAM Working Group on A. terreus. Aspergillus alabamensis, a new clinically relevant species in the section Terrei. Eukaryot. Cell 2009, 8, 713–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Figure 1. ML phylogeny of Aspergillus subgen. Nidulantes inferred from combined BenA, CaM and RPB2 dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. *Asterisk denotes 100% bootstrap or 1.00 posterior probability.
Figure 1. ML phylogeny of Aspergillus subgen. Nidulantes inferred from combined BenA, CaM and RPB2 dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. *Asterisk denotes 100% bootstrap or 1.00 posterior probability.
Jof 08 00225 g001
Figure 2. ML phylogeny of Aspergillus subgen. Circumdati inferred from combined BenA, CaM and RPB2 dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. *Asterisk denotes 100% bootstrap or 1.00 posterior probability.
Figure 2. ML phylogeny of Aspergillus subgen. Circumdati inferred from combined BenA, CaM and RPB2 dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. *Asterisk denotes 100% bootstrap or 1.00 posterior probability.
Jof 08 00225 g002
Figure 3. Colonial and microscopic morphology of Aspergillus hainanicus (ZC79). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA, MEA, YES and PDA); (BF) Conidiophores; (G) Conidia. Bars: (D) = 15 µm, applies to (B,C); (G) = 10 µm, applies to (E,F).
Figure 3. Colonial and microscopic morphology of Aspergillus hainanicus (ZC79). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA, MEA, YES and PDA); (BF) Conidiophores; (G) Conidia. Bars: (D) = 15 µm, applies to (B,C); (G) = 10 µm, applies to (E,F).
Jof 08 00225 g003
Figure 4. Colonial and microscopic morphology of Aspergillus neoterreus (ZC111). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA, MEA, YES and PDA); (BF) Conidiophores; (G) Conidia. Bars: (C) = 20 µm, applies to (B); (E) = 12.5 µm, applies to (D); (F) = 10 µm, applies to (G).
Figure 4. Colonial and microscopic morphology of Aspergillus neoterreus (ZC111). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA, MEA, YES and PDA); (BF) Conidiophores; (G) Conidia. Bars: (C) = 20 µm, applies to (B); (E) = 12.5 µm, applies to (D); (F) = 10 µm, applies to (G).
Jof 08 00225 g004
Figure 5. Colonial and microscopic morphology of Aspergillus qilianyuensis (ZC101). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA, MEA, YES and PDA); (BF) Conidiophores; (G) Conidia. Bars: (D) = 12.5 µm, applies to (B,C); (G) = 10 µm, applies to (E,F).
Figure 5. Colonial and microscopic morphology of Aspergillus qilianyuensis (ZC101). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA, MEA, YES and PDA); (BF) Conidiophores; (G) Conidia. Bars: (D) = 12.5 µm, applies to (B,C); (G) = 10 µm, applies to (E,F).
Jof 08 00225 g005
Figure 6. Colonial and microscopic morphology of Aspergillus xishaensis (ZC108). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA and YES, obverse PDA with 3% NaCl and OA); (BF) Conidiophores; (G) Conidia. Bars: (B) = 20 µm, applies to (C,D); (E) = 15 µm; (F) = 10 µm, applies to (G).
Figure 6. Colonial and microscopic morphology of Aspergillus xishaensis (ZC108). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA and YES, obverse PDA with 3% NaCl and OA); (BF) Conidiophores; (G) Conidia. Bars: (B) = 20 µm, applies to (C,D); (E) = 15 µm; (F) = 10 µm, applies to (G).
Jof 08 00225 g006
Table 1. Fungal species and sequences used in phylogenetic analyses of Aspergillus subgen. Nidulantes.
Table 1. Fungal species and sequences used in phylogenetic analyses of Aspergillus subgen. Nidulantes.
SectionSeriesSpeciesStrainLocalitySubstrateITSBenACaMRPB2
AeneiAeneiA. aeneus Sappa 1954CBS 128.54 TSomaliaforest soilEF652474EF652298EF652386EF652210
A. bicolor M. Chr. and States 1978CBS 425.77 TUSAsoilEF652511EF652335EF652423EF652247
BisporiBisporiA. bisporus Kwon-Chung and Fennell 1971CBS 707.71 TUSAsoilEF661208EF661121EF661139EF661077
CavernicolarumCavernicolarumA. californicus Frisvad et al. 2011CBS 123895 TUSAchaparral of Adenostoma fasciculatumFJ531153FJ531180FJ531128MN969065
A. cavernicola Lörinczi 1969CBS 117.76 TRomaniaon walls of caveEF652508EF652332EF652420EF652244
A. kassunensis Baghd. 1968CBS 419.69 TSyriasoilEF652461EF652285EF652373EF652197
A. subsessilis Raper and Fennell 1965CBS 502.65 TUSAdesert soilEF652485EF652309EF652397EF652221
EgyptiaciA. egyptiacus Moub. and Moustafa 1972CBS 656.73 TEgyptsandy soilEF652504EF652328EF652416EF652240
HainaniciA. hainanicus X.C. Wang and W.Y. Zhuang, sp. nov.ZC79 TChina: Hainansandy soilOM414846OM475626OM475630OM475634
NidulantesAurantiobrunneiA. aurantiobrunneus Raper and Fennell 1965CBS 465.65 TAustraliacanvas haversack for respiratorEF652465EF652289EF652377EF652201
MulticoloresA. multicolor Sappa 1954CBS 133.54 TSomaliaforest soilEF652477EF652301EF652389EF652213
NidulantesA. nidulans (Eidam) G. Winter 1884CBS 589.65 TBelgiumunknownEF652427EF652251EF652339EF652163
SpelunceiA. spelunceus Raper and Fennell 1965CBS 497.65 TUSAsoil and dead OrthopteraEF652490EF652314EF652402EF652226
StellatiA. stellatus Curzi 1934CBS 598.65 TPanamasoilEF652426EF652250EF652338EF652162
UnguiumA. unguis (Émile-Weill and L. Gaudin) Thom and Raper 1934CBS 132.55 TUSAshoe leatherEF652443EF652267EF652355EF652179
VersicoloresA. amoenus M. Roberg 1931CBS 111.32 TGermanyfruit of Berberis sp.EF652480JN853946JN854035JN853824
A. austroafricanus Jurjević et al. 2012CBS 145748 TSouth AfricasoilJQ301891JN853963JN854025JN853814
A. creber Jurjević et al. 2012CBS 145749 TUSAairJQ301889JN853980JN854043JN853832
A. cvjetkovicii Jurjević et al. 2012CBS 599.65 TUSAsoilEF652440EF652264EF652352EF652176
A. fructus Jurjević et al. 2012CBS 584.65 TUSAfruit of date palmEF652449EF652273EF652361EF652185
A. griseoaurantiacus Visagie et al. 2014CBS 138191 TMicronesiahouse dustKJ775553KJ775086KJ775357KU866988
A. hongkongensis C.C. Tsang et al. 2016CBS 145671 TChina: Hong Kongnails of Homo sapiensAB987907LC000552MN969320LC000578
A. jensenii Jurjević et al. 2012NRRL 58600 TUSAsoilJQ301892JN854007JN854046JN853835
A. pepii Despot et al. 2016CBS 142028 TCroatiaairKU613368KU613371KU613365n.a.
A. protuberus Munt.-Cvetk. 1968CBS 602.74 Tformer Yugoslaviarubber coated electric cablesEF652460EF652284EF652372EF652196
A. puulaauensis Jurjević et al. 2012CBS 145750 TUSA: Hawaiidead hardwoodJQ301893JN853979JN854034JN853823
A. qilianyuensis X.C. Wang and W.Y. Zhuang, sp. nov.ZC101 TChina: Hainansandy soilOM414847OM475627OM475631OM475635
A. subversicolor Jurjević et al. 2012CBS 145751 TIndiagreen berries of coffeeJQ301894JN853970JN854010JN853799
A. sydowii (Bainier and Sartory) Thom and Church 1926CBS 593.65 TFranceunknownEF652450EF652274EF652362EF652186
A. tabacinus Nakaz. et al. 1934CBS 122718 TunknowntobaccoEF652478EF652302EF652390EF652214
A. tennesseensis Jurjević et al. 2012CBS 145752 TUSAtoxic dairy feedJQ301895JN853976JN854017JN853806
A. venenatus Jurjević et al. 2012CBS 145753 TUSAtoxic dairy feedJQ301896JN854003JN854014JN853803
A. versicolor (Vuill.) Tirab. 1908CBS 583.65 TunknownunknownEF652442EF652266EF652354EF652178
OchraceoroseiFuniculosiA. funiculosus G. Sm. 1956NRRL 4744 TNigerialoam soilEF661223EF661112EF661175EF661078
A. lannaensis N. Suwannarach et al. 2021SDBR-CMUO8 TThailandsoilMW588211MW219783MW219781MW219785
OchraceoroseiA. ochraceoroseus Bartoli and Maggi 1979CBS 550.77 TCôte d’Ivoireforest soilEF661224EF661113EF661137EF661074
RaperorumRaperorumA. ivoriensis Bartoli and Maggi 1979CBS 551.77 TCôte d’Ivoireforest soilEF652441EF652265EF652353EF652177
A. raperi Stolk and J.A. Mey. 1957CBS 123.56 TCongosoilEF652454EF652278EF652366EF652190
SilvaticiSilvaticiA. silvaticus Fennell and Raper 1955CBS 128.55 TGhanasoilEF652448EF652272EF652360EF652184
SparsiBiplaniA. biplanus Raper and Fennell 1965CBS 468.65 TCosta RicasoilEF661210EF661116EF661130EF661036
ConjunctiA. conjunctus Kwon-Chung and Fennell 1965CBS 476.65 TCosta RicasoilEF661179EF661111EF661133EF661042
ImplicatiA. implicatus Persiani and Maggi 1994CBS 484.95 TCôte d’Ivoireforest soilFJ491656FJ491667FJ491650MN969078
SparsiA. sparsus Raper and Thom 1944CBS 139.61 TCosta RicasoilEF661181EF661125EF661173EF661071
UstiCalidoustiA. calidoustus Varga et al. 2008CBS 121601 TNetherlandsbronchoalveolar lavage fluid of Homo sapiensHE616558FJ624456HE616559MN969061
DeflectiA. deflectus Fennell and Raper 1955CBS 109.55 TBrazilsoilEF652437EF652261EF652349EF652173
MonodiorumA. monodii (Locq.-Lin.) Varga et al. 2011CBS 435.93 TChaddung of AgnusFJ531150FJ531171FJ531142MN969082
UstiA. ustus (Bainier) Thom and Church 1926CBS 261.67 TUSAculture contaminantEF652455EF652279EF652367EF652191
outgroup A. flavus Link 1809CBS 569.65 TSouth PacificcellophaneAF027863EF661485EF661508EF661440
GenBank accession numbers in bold indicate the newly generated sequences.
Table 2. Fungal species and sequences used in phylogenetic analyses of Aspergillus subgen. Circumdati.
Table 2. Fungal species and sequences used in phylogenetic analyses of Aspergillus subgen. Circumdati.
SectionSeriesSpeciesStrainLocalitySubstrateITSBenACaMRPB2
FlavipedesFlavipedesA. ardalensis A. Nováková et al. 2015CBS 134372 TSpainsoilFR733808HG916683HG916725HG916704
A. capensis Visagie et al. 2014CBS 138188 TSouth Africahouse dustKJ775550KJ775072KJ775279KP987020
A. flavipes (Bainier and R. Sartory) Thom and Church 1926NRRL 302 TFrancedung of dogEF669591EU014085EF669549EF669633
A. iizukae Sugiy 1967CBS 541.69 TJapancore sample from stratigraphic drillingEF669597EU014086EF669555EF669639
A. micronesiensis Visagie et al. 2014CBS 138183 TMicronesiahouse dustKJ775548KJ775085KP987067KP987023
A. neoflavipes Hubka et al. 2015CBS 260.73 TThailandforest soilEF669614EU014084EF669572EF669656
A. okavangoensis Visagie and Nkwe 2021CBS 147420 TBotswanabat guano contaminated soil in caveMW480880MW480788MW480706MW480790
A. suttoniae J.P.Z. Siqueira et al. 2018FMR 13523 TUSAsputum of Homo sapiensLT899487LT899536LT899589LT899644
A. templicola Visagie et al. 2014CBS 138181 TMexicochurch dustKJ775545KJ775092KJ775394KP987017
A. urmiensis Arzanlou et al. 2016CBS 139558 TIransoilKP987073KP987041KP987056KP987030
A. xishaensis X.C. Wang and W.Y. Zhuang, sp. nov.ZC108 TChina: Hainansandy soilOM414848OM475628OM475632OM475636
TerreiTerreiA. alabamensis Balajee et al. 2009CBS 125693 TUSAwound of Homo sapiensKP987071KP987049EU147583KP987018
A. aureoterreus Samson et al. 2011CBS 503.65 TUSAsoilEF669580EF669524EF669538EF669622
A. citrinoterreus J. Guinea et al. 2015CBS 138921 TSpainsputum of Homo sapiensKP175260LN680657LN680685MN969155
A. floccosus (Y.K. Shih) Samson et al. 2011CBS 116.37 TChina: Hubeiwaste clothKP987086FJ491714KP987066KP987021
A. heldtiae Visagie 2020PPRI 4229 TSouth Africaseed of Pennisetum glaucumMK450656MK450981MK451518MK450809
A. hortae (Langeron) C.W. Dodge 1935CBS 124230 TBrazilear of Homo sapiensKP987087FJ491706KP987054KP987022
A. neoafricanus Samson et al. 2011CBS 130.55 TGhanasoilEF669585EF669516EF669543EF669627
A. neoterreus X.C. Wang and W.Y. Zhuang, sp. nov.ZC111 TChina: Hainansandy soilOM414849OM475629OM475633OM475637
A. pseudoterreus S.W. Peterson et al. 2011CBS 123890 TArgentinasoilEF669598EF669523EF669556EF669640
A. terreus Thom 1918CBS 601.65 TUSAsoilEF669586EF669519EF669544EF669628
FlaviFlaviA. flavus Link 1809CBS 569.65 TSouth PacificcellophaneAF027863EF661485EF661508EF661440
GenBank accession numbers in bold indicate the newly generated sequences.
Table 3. Detailed characteristics of datasets of Aspergillus.
Table 3. Detailed characteristics of datasets of Aspergillus.
SubgenusLocusNo. of Seq.Length of Alignment (bp)No. of Variable SitesNo. of Parsimony-Informative SitesModel for BI
NidulantesBenA48528292235
CaM48829477408
RPB2471014429377
combined48237111981020TIM + I + G
CircumdatiBenA22541273199
CaM22589286218
RPB222998301216
combined222128860633TIM + I + G
Full names of the used models: TIM + I + G (transition model with invariable sites and gamma distribution).
Table 4. Morphological comparisons of new species and their closely related species.
Table 4. Morphological comparisons of new species and their closely related species.
SpeciesCYA 25 °C (mm)CYA 37 °C (mm)MEA (mm)YES (mm)Conidia ShapeConidia WallConidia Size (µm)Reference
A. cavernicola10–12no growth12–1314–15subglobosesmooth to echinulate5–6 × 3.5–4.5[19]
A. californicus20–24no growth19–2026–27subglobose to ellipsoidalsmooth to finely roughened3–4.5 × 2.5–4.5[19]
A. kassunensis15–16no growth18–2021–22globosesmooth2–3[19]
A. subsessilis16–17no growth12–1318–19globosesmooth3–4[19]
A. egyptiacus13–2021–2429–3032–45globose to subglobosesmooth4.5–6.5 × 3.5–6[19]
A. hainanicus18–20no growth16–1721–22subglobosestrongly echinulate6–9.5This study
A. versicolor28–36821–31n.a.spherical to subsphericalfinely roughened2.5–3.5[32]
A. qilianyuensis21–23no growth17–2029–30subglobosesmooth2–3This study
A. micronesiensis22–2817–2520–2535–44globose to subglobosesmooth to finely roughened2.5–3.5[33]
A. neoflavipes30–3320–2234–35n.a.globose to subglobosesmooth2.5–3[34]
A. xishaensis19–2219–2116–2025–29globose to subglobosesmooth3–4This study
A. citrinoterreus33–35n.a.23–25n.a.globose to subglobosesmooth2–3 × 1.5–3[35]
A. neoterreus26–2857–5821–2337–40subglobose to broad ellipsoidsmooth2–2.5This study
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Wang, X.-C.; Zhuang, W.-Y. New Species of Aspergillus (Aspergillaceae) from Tropical Islands of China. J. Fungi 2022, 8, 225. https://doi.org/10.3390/jof8030225

AMA Style

Wang X-C, Zhuang W-Y. New Species of Aspergillus (Aspergillaceae) from Tropical Islands of China. Journal of Fungi. 2022; 8(3):225. https://doi.org/10.3390/jof8030225

Chicago/Turabian Style

Wang, Xin-Cun, and Wen-Ying Zhuang. 2022. "New Species of Aspergillus (Aspergillaceae) from Tropical Islands of China" Journal of Fungi 8, no. 3: 225. https://doi.org/10.3390/jof8030225

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop