# Breaking down the barriers: first steps in herpes simplex virus reactivation

Angus Wilson Department of Microbiology New York University School of Medicine

# HSV-1 establishes latency in the human peripheral nervous system



- Widespread human pathogen associated with a broad spectrum of disease states
- Recurrent reactivation of latent virus is a major contributor to persistence and pathogenesis
- Currently lack effective vaccines or drugs to control latency/reactivation
- Latent viral genomes reside in the neuronal nucleus, which in turn is hidden in the nerve ganglion.
- The latent genome is circularized and associated with chromatin carrying repressive histone modifications and factors that limit viral gene expression.

# Control of latency is tightly coupled to neuronal physiology **PRIMARY INFECTION** Epithelia/exterior Ganglion LATENCY "Stress" REACTIVATION

## Modeling HSV-1 latency in cultured primary neurons



Camarena et al. 2010 Cell Host & Microbe; Kobayashi et al. 2012 JoVE; Jurak et al. 2013 JVI; Kim et al. 2014 Methods Mol Biol.

#### Sustained cap-dependent translation governs HSV-1 latency



Camarena et al. 2010 Cell Host & Microbe; Kobayashi et al. 2012 Genes & Dev

#### <u>Acute</u> infections of SCG neurons follow the canonical cascade



#### Inducing reactivation results in two waves of viral gene transcription





#### Fundamental differences between Phase I & Phase II

E & L gene transcription independent of protein synthesis

#### L gene transcription independent of DNA replication



#### Phase II not due to spread

• Biphasic profile unaffected by DNA encapsidation inhibitor (WAY150138)

#### VP16-HCF complex drives IE gene transcription



#### 25-30% neurons VP16<sup>+</sup>

\*



Ju Youn Kim et al. 2012 PLoS Pathogens

hours + LY

### LY treatment promotes HCF-1 nuclear accumulation



Kristie TM, Vogel JL, Sears AE (1999) Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency. *PNAS* 96: 1229–1233.

Ju Youn Kim et al. 2012 PLoS Pathogens

## shRNA depletion of VP16 results in reduced Phase II lytic mRNA levels



Ju Youn Kim et al. 2012 PLoS Pathogens

### JNK activation connects Phase I to neuronal stress response pathways



Cliffe & Wilson 2016 JVI

## Phase I provides latent HSV-1 with missing tegument factors



#### Latency can be established without ACV by infection at low MOI



HSV-1 Us11-GFP at MOI of 0.001 (7 days post infection <u>without</u> ACV)

#### Efficient establishment of latency at low MOI

#### Detection of LAT ncRNA in GFP negative wells 7 days after infection

*Concordance between input virus and # of neurons supporting reactivation* 



MOI = 0.001 (50 pfu/well) <u>without</u> ACV



#### **Biphasic reactivation from latency established without ACV**



## HSV-specific T-cells infiltrate ganglia and prevent reactivation without destroying the neurons



#### Exogenous interferon inhibits reactivation in neuron-only cultures



#### Not shown: Reactivation signal not impaired by IFN

Jessica Linderman et al. 2017 Cell Reports

#### Interferon is less effective after Phase I



Linderman et al. 2017 Cell Reports

# HSV-1 encodes multiple IFN antagonists



ICP0





#### **ICP0**

- SUMO-dependent Ub E3 ligase
- Disrupts ND10 bodies
- Impairs activation of sensors
- Blocks induction of ISGs
  ICP34.5
- Inhibits IFN-mediated eIF-2α phosphorylation

#### **ICP27**

• Inhibits IFN & ISG expression

#### Us11

 Inhibits 2'-5 OAS synthesis & eIF-2α phosphorylation

#### Vhs

 Inhibits STAT signaling & eIF-2α phosphorylation

#### Us3

Inhibits IFN receptor signaling & ISG synthesis

# Ectopic ICP0 allows HSV-1 reactivation in the presence of IFN-y



Jessica Linderman et al. 2017 Cell Reports

#### Phase I also provides viral factors that block innate defenses



Jessica Linderman et al. 2017 Cell Reports

# Limitations of the Rat Model

- Few molecular reagents, neurons expensive
- Molecular mismatches: human virus in non-human cells.



## Differentiation of human embryonic stem cells into neurons



Aldo Pourchet et al. 2017 Pathogens

## Establishment of non-productive infections in human neurons using IFN-α in combination with ACV and low pfu/neuron ratio



Aldo Pourchet et al. 2017 Pathogens

#### Non-productive infections reactivate to produce infectious virus



Aldo Pourchet et al. 2017 Pathogens

# Take Home Lessons

- HSV latency in cultured neurons requires sustained NGF signaling and cap-dependent protein synthesis.
- Reactivation involves 2 mechanistically distinct steps, initiated by activation of JNK and release of epigenetic suppression.
- Requirement for Phase I ('animation') makes sense for HSV in light of the minimal viral protein expression during latency.
- Controlled localization of VP16 and HCF-1 provides another additional host control.
- IFN suppresses reactivation in a neurons by blocking Phase I transcription.
- Phase I products such as ICPO antagonize IFN, allowing reactivation.
- Latency can now be modeled in human neurons, the appropriate species matched environment for this human virus.

# **Acknowledgements**







# Ju Youn Kim

# Jessica Linderman Mariko Kobayashi

**Aldo Pourchet Aram Modrek Dimitris Placantonakis** 



Ian Mohr



**Moses Chao** 

