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Abstract

An intuitive mathematical model describing the virus proliferation is presented and its
parameters estimated from time series of observed reported CoViD-19 cases in Germany.
The model replicates the main essential characteristics of the proliferation in a stylized form,
and thus can support the systematic reasoning about interventional measures (or their lift-
ing) that were discussed during summer and which currently become relevant again in some
countries. The model differs in form from elementary SIR models, but is contained in the
general Kermack-McKendrick (1927) model. It is maintained that (compared to elementary
SIR models) the model is more faithfully representing real proliferation at the instantaneous
level, leading to overall more plausible association of model parameters to physical trans-
mission and recovery parameters. The main policy-oriented results are that (1) mitigation
measures imposed in March 2020 in Germany were absolutely necessary to avoid health care
resource exhaustion, (2) fast response is key to containment in case of renewed outbreaks.
Two model generalizations aiming to better represent the true infectiousness profile and
aiming to incorporate recurring susceptibility are stated and numerical results for the latter
are presented.

Keywords: SARS-Cov-2 infection, proliferation dynamics, infectiousness profile, recurrence
cases, resusceptibility

1 Introduction
Construction of the model has been motivated in course of the analysis of intensive-care capacity
expenditure to be expected from sector-specific lifting of restrictions. This former analysis used
a budget-oriented argument to arrive at an indicative estimate of the resource expenditure,
but did not analyze dynamics. (Concretely it assumed a constant rate of new infections.) A
reasonable question to be posed is: If a sector was allowed to reopen, what would the trajectory
of infections actually look like, when surely it is not a linear increase? Further, can parameters
of the local transmission behaviour be derived from the aggregate observed numbers?

In the present text, a model capturing the dynamics of the number of infections is developed
towards answering these questions. It deliberately contains only few parameters and is in fact
not designed to a specific stage of the virus proliferation. Though models for tracing the
trajectory of infectious diseases exist, for example the intuitive SIR model [Ken56] which is
formulated as a system of scalar differential equations, it is maintained here that physically more
realistic descriptions are possible, which, moreover, lead to increased accuracy of estimated
parameters.
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Section 2 and 3 describe the model and underlying reasoning in detail, state scaling prop-
erties useful in fitting the model and explore qualitative features of resulting trajectories. In
section 4, the model is fitted to the evolution of the epidemic in Germany as observed via
reported CoViD-19 cases until mid-May 2020. Section 5 states policy insights. Finally, two
appendices describe model extensions, of which the first is relevant to taking into account
asymptomatic cases.

2 The model
We assume a homogeneous set of individuals which act as unwitting agents in the prolifera-
tion. We assume that infection spreads probabilistically from the infected (and still contagious)
individuals to any other individual of the set, wherein we assume that each individual is con-
nected randomly to others, but such that all individuals approximately have an equal number
of neighbours (=: A1). (In graph-theoretic terminology, the graph of contacts between indi-
viduals is a random undirected graph where each node has about the same edge degree d.)
No other assumptions are imposed on the global topology of interconnections. Individuals
who were once infected cannot be infected again (=: A2). Finally, an assumption here made
is that contagiousness lasts only for a duration tc, i.e. an infected individual is contagious
for the period [0, tc] after its infection and then not at all afterwards (A3). This simplified
characteristic is motivated by results on infectiousness found in epidemiological and clinical
investigations: In [HLWea20], infection incidence data of the Wuhan area is examined and
combined with clinical data to derive an infectiousness profile which has most of its weight
located at about 7 consecutive days around the symptom onset1. [WCG+20] recorded viral
RNA load data in sputum, throat swab and stool and report of nine patients viral peak loads
of 2.35 · 109 copies per ml sputum, declining rapidly starting from the first day of presenta-
tion in almost all patients, decreasing to 105 copies per ml within about 10 to 16 days after
symptom onset. (A level of below 105 copies per ml sputum, combined with no symptoms and
past day 10, has been regarded as warranting discharge of the patient from clinical care with
ensuing home isolation.) [TTL+20] (Fig 2) report viral load in posterior oropharyngeal saliva
samples decreasing monotonously to below 104 copies per ml in day 21 after symptom onset,
for the majority of 20 non-intubated patients (out of n = 23). Changes in population size
due to non-disease effects will be ignored, instead N will be considered constant; similarly the
changes in proliferation characteristic due to disease-related reduction of the population will
be deemed negligible. Assumptions A1 to A3 will be ”baseline” assumptions throughout the
text and substantial deviations from them will be discussed in the appendix only.

We aim for a numerical formulation of the aggregate evolution in which the randomness
is averaged out. For this, let N be the number of agents, and let at t = 0 the number of
infected agents x(t) be given as x0 < N . Before t = 0, the number of infected agents shall be
zero. To develop the model incrementally, lets momentarily assume that all infected agents are
contagious infinitely long. In a unit time interval, all infected agents are deemed to infect each
of respectively d other neighbours – stochastically independently – with probability p. The

1Caution in the usage of numbers from pure incidence analysis is required: As consequence of the way the raw
data is obtained in [HLWea20], only infectiousness around the moment of symptom onset is in fact fully observed.
This is because earlier transmission are likely usually not properly associated to the real primary case because the
primary case does not show symptoms yet. Later transmissions are simply inhibited because the primary case
is put into quarantine. An epidemiological analysis of incidence data alone therefore necessarily is insufficient
to determine ”pure” infectiousness. To emphasize the distinction between ”pure”/”medical” infectiousness and
infectiousness after taking into account the population’s socio-characteristics (household structures, current
mitigation policies), it is worthwhile to call the density of the latter an ”infection incidence profile”.
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expected total number of virus receivers, per unit time interval, then is x(t) · d · p. But not all
receivers get infected because some are already infected. The share of non-infected receivers
among all agents is (1−x(t)/N); therefore the expected number of new infections in unit time
is x(t) · d · p · (1− x(t)/N).

Approximating the model evolution as continuous process even at small time intervals (rea-
sonable given the size of the numbers involved), one concludes, under assumption of infinitely
enduring contagiousness, that x(t) follows

ẋ(t) = d · p · x(t) · (1− x(t)/N) (1)

for t ≥ 0, with x((−∞, 0)) = 0 and x(0) = x0. Obviously the function x(t) is non-decreasing.
For incorporating the finite duration contagiousness, one determines the number of conta-

gious individuals as the difference of the accumulated number of infected at time t minus the
accumulated number of infected prevailing at the earlier time t−tc, because that share of agents
had the infection already for at least duration tc, and will cease to be infectious at t. Conse-
quently, the expected total number of virus receivers is refined towards (x(t)− x(t− tc)) · d · p.
The model with the finite duration contagiousness thus reads, in expectation,

ẋ(t) = d · p · (x(t)− x(t− tc)) · (1− x(t)/N), (2)

with initial conditions as before. Both differential equations respectively have a unique solution.
2

2.1 Relation to existing models

The here presented model is not representable by the elementary SIR models that involve only
instantaneous evaluations of the state variables on the right-hand side of the differential equa-
tion, as e.g. equation (2) in [Ken56] (see [ZML+20] for a current example of its usage). It is
therefore also necessarily different for example from [MB20]. The reason for this is a restric-
tion imposed by such formulations, namely that the individual’s transition from infection to
recovery is modelled using a rate of transition proportional to the number of infected individ-
uals, which corresponds to a stochastic recovery occurrence and yields an exponential decay
characteristic on average. It is known however that, in reality, the SARS-CoV-2 shows a rather
deterministic disease progression with regards to infectiousness in time, leading to end of the
infectiousness after about two to three weeks after begin of infection, based on cell culture (see
earlier citations). This clinically supported characteristic is properly represented in equation
(2), but not in elementary SIR models.

On the other hand the here presented model is conceptually contained in the original
(i.e. general) compartmental model of Kermack and McKendrick [KM27] (which involves a
formulation using integrals; see comments in [Bra17] also), for example by setting there ψ = 0.
3 This holds also for the refinement given in section B.

2Instead of considering only a temporally finite and uniform infectiousness, more detail can be incorporated
into the differential equation using a convolution term, as shown in appendix B.

3With ψ = 0, have Cθ = 0. Consequently yt = N − xt for all t. It follows vt = dyt
dt

and

dyt
dt

= (N − yt)

(∫
R
Aθvt−θ dθ +Aty0

)
. (3)

With φθ = d · p · (1/N) · 1(0,tc](θ) obtain

dyt
dt

= d · p · (1 − yt/N)

(∫ t

t−tc
vθ dθ

)
= d · p · (1 − yt/N) (y(t) − y(t− tc)) . (4)
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The advantage of the here given formulation is that it allows for a mathematically relatively
simple description while still fully allowing accomodation of the infectiousness characteristic in
generalized form. This simplicity gives some room to incorporate other, hithertho unconsidered,
effects into the model and still retain a model complexity which is amenable to simulation for
parameter identification.

3 Analysis of the model and exploratory simulation
For later simulation, it is helpful to make use of the scale invariances inherent in the above
differential equations. If one denotes the equation (2) parametrized with d · p and tc and N
and initial value x0 as ”ODE(dp, tc, N, x0)”, then we have the following fact: If t 7→ x(t) is a
solution to ODE(dp, tc, N, x0), then t 7→ x(at) is a solution to ODE(a · dp, tc/a,N, x0) for any
a > 0. This means we can restrict analysis for example to tc = 1 and vary only d · p and x0.

The other scale invariance is described by ”x(·) solution of ODE(dp, tc, N, x0) then ν · x(·)
is solution of ODE(dp, tc, ν ·N, ν · x0)”, where ν 6= 0.

Instead of a further analytical proceeding, the above equation’s evolution was examined via
computer simulation, for various parameter choices d · p and initial values. The purpose is first
to explore the general (i.e. not real-data matched) behaviour of equation (2) (next subsection),
then to fit the parameters to observed real data (section 4). Throughout it was used N = 1.0,
tc = 1 and a (forward Euler) discretization step size of 0.01 (corresponding to resolution=100

in code).

3.1 General model behaviour

The below discusses general features of the model and its behaviour under parameter variations.
This is for demonstration only, and arguments on the proliferation phenomena should be taken
as schematic. (Whether the phenomena occur in the real parametrization is to be discussed in
section 4.)

Fig 1a shows the evolution behaviour for some arbitrary but temporally constant parameter
set. The most striking feature at this graph is that the number of infections asymptotically
does not reach the total number N of agents. Rather, the limit is a value x(∞) < N which
depends on the d · p and the initial value. For comparison, the evolution of the number of
infections as would arise when observing eqn. (1) [with same d · p parameter] is depicted as
grey dashed line; in it, the x(t) converges to N independent of the choice of d ·p. (In subsequent
text, this will be referred to as ”bounded exponential growth”.) The reason for including this
curve here and in following graphs is that it can give a hint on trajectories of future viruses
that may have a much more extended infectiousness interval. In fact, this curve would result
if infected individuals remained infinitely long infectious and were not quarantined.

Dependence on parameters:
In simulations, the dependence of the limit x(∞) on d · p appeared to be generally over-
proportional (see Fig 1b). This is well-known behaviour also in the instantaneous-state models.
On the other hand, the dependence of the limit on x0 was linear or sub-linear. In instantaneous-
state models, the limit does not depend on the size of the initiating jump of x at t = 0. (check)

Nearly linear growth of infections for a substantial time period can be represented:
Prolonged linear growth of infections, after initial exponential growth, is exhibited for suitable
parameter choices of d · p and x0. See section 4, Fig 4.
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(a) (b)

Figure 1: The solution obtained for equation (2) with x0 = 0.005 and using (a) d · p = 1.5 or (b)
d ·p = 1.0. The blue solid line shows the accumulated number of infections, and the orange solid line the
same curve but delayed by tc = 1 (which denotes the number of individuals once having been infected but
not anymore being contagious). The red line shows the number of instantaneously infectious. Crucially,
the accumulated number of infected does not increase to fully exhaust N . For comparison, the grey line
shows the accumulated infections if the infectiousness did not cease after tc.

Behaviour upon later occurrence of a second virus source:
An interesting question is how the system behaves if a second outbreak is occuring at a later
time when the number of infections x(t) already has grown substantially. Fig 2e and 2f show
the results for two different choices for the moment t2 of the second initiation. It is noteworthy
first that a second outbreak does not lead to substantially more infections. Second, the x(∞)
depends on this t2 only minorly. The values are x(∞) = 0.225490 for t2 = 14.0, x(∞) =
0.225491 for t2 = 7.0, x(∞) = 0.23732 for t2 = 2.0, and (for reference) x(∞) = 0.3114 for
t2 = 0.0.
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(a) (b)

(c)

(e) (f)

Figure 2: (a) Detail view of the solution in Figure 1a. (b) Solution obtained when using d · p = 1.5
for t ∈ [0, 3), then d · p = 1.0 for t ≥ 3. At t = 4 there is a ”bend” in the graph of the increment of
the number of infections (red line). The bend naturally occurs after duration tc after the switch of the
parameter values was made. (c) Solution as in 2b but using d · p = 0.8 for t ≥ 3.
(e) Solution obtained when simulating a second (overlaid) outbreak event (of same strength as the initial
one, i.e. ∆x = x0), at t2 = 14.0. (f) Solution when the second outbreak is at t2 = 7.0. Noteworthy
is (in both cases) that even though the same number of exogenously infected was used as initially, the
contagion effect is much smaller. The reason for this is that already about one fifth of the population
had been infected (thus was immune in this model).
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4 Modelling real infectedness trajectories (I)
We use here the number of reported CoViD-19 cases (as aggregated by the Robert-Koch-
Institut [1]) as a proxy for the number of infections in Germany.4 We fit parameters for the
interval until beginning of May 2020, assuming that the evolution proceeded within two different
parameter regimes: first a d ·p corresponding to no restrictions, then a d ·p corresponding to the
restrictions posed by contact disencouragement and store closure. (The observational interval
used for parameter estimation does cover only a few days of the time of obligatory indoor
face mask wearing.) We can derive parameters and based on them predict the trajectory of
infections way forward. Because of the simplicity of the examined model, there is the risk of
a high model error existing. Therefore, at the present state of this text, such estimation can
only serve to determine reasonable bounds on the parameters of the model, rather than to give
a reliable forecast of expect number of eventual infections.5

Parameter fitting:
Fitting of parameters is here conducted manually, focussing on moments in the time series
that are indicative of parameter changes. At the beginning of April 2020, the number of
weekly new CoViD-19 cases stood at about 40000 in Germany. If we regard the modelling
time unit to correspond to a real duration of 2 weeks (implying that each individual newly
infected is non-contagious two weeks after and onwards), then we have a new-infections rate
of 80000 individuals per such time unit which corresponds to an increment of approximately
∆x = 0.001 per unit time after normalizing to N = 1.0. Identifying the moment which was
one week after the initial wider lock-down in Germany (i.e. around 29th March) as moment
t = 3 in the modelling, parameters consequently need to be fitted such that ẋ(3.0+) = 0.001
(red line). (The t = 3.0 also implies that the model assumes around 6 weeks of initial evolution
under a low-restrictions scenario, which matches the timeline of the outbreak in Germany
approximately.) Fig 3a shows the trajectory of the system evolution using initially d · p = 1.34
and switching to d · p = 0.65 afterwards. Fig 3b shows the evolution if no parameter switch
(i.e. no intervention) had happened at t = 3.0.

Note: The matching is overly simplified for the interval t ∈ [0, 3.0], leading to an overes-
timated x(t), since for example x(3.0) ≈ 0.0020 –corresponding to 160000 individuals–, while
the actually reported number was around 52550. In reality, the d · p will have varied in that
interval, with the natural (but not proven) assumption being that towards the end of [0, 3.0],
the parameter was lower than its temporal average.

Intensive care capacity:
Assuming an infected individual occupies an intensive-care bed with ventilator (ICU) for one
to two weeks, the ICU capacity in Germany currently is about 12500 to 25000 ICU cases per
week. This allows for a maximum of 87500 to 175000 reported infections per week (assuming
share of cases needing intensive care around 14.28%), i.e. 175000 to 350000 reported infections
per two weeks. This in turn corresponds to a normalized increment of 0.0021875 to 0.0043750
per time unit (a horizontal line somewhere in the upper half of the graphs in Fig 3).

4The issue of distinguishing between actual and reported infections is not taken to full length in this text. An
ad-hoc approach is to scale the observed reported numbers to an ”actual infections” estimate using a hypothetical
factor, and then perform parameter estimation to match this hypothetical ”actual infections” time series.

5Two relevant aspects not represented in the model forecasts are the annual seasonality in the transmission
coefficient and parameter changes due to changes in the spatial distribution of infection hotspots. Vaccination
campaigns reduce d by an amount corresponding to the fraction of the population being vaccinated.
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(a) (b)

Figure 3: Tracing reported CoViD-19 infections in Germany. As in Figures 1 and 2, the ordinate values
denote the share of total population. The time scale is chosen such that [0, 1] corresponds to two weeks.
(a) As Fig 2, but using initial value x0 = 0.0001 and initial d · p = 1.34. For t ≥ 3 the d · p is 0.65. The
simulation yields x(∞) ≈ 0.00290. (b) Shows the evolution as would occur if the parameter switch at
t = 3.0 was omitted. Then x(∞) ≈ 0.44520.

Concerning evolution upon potential second outbreak:
It is necessary to remark that the conclusion drawn in connection with Fig 2e and 2f – i.e. that
a second outbreak of similar magnitude as initially would not effect a substantial increase in the
accumulated number of infected individuals – cannot be affirmed for the current scenario (in
Germany and elsewhere), since that number is rather about 0.25% to 0.5% of total population
currently, rather than the 1/5 prevailing in the demo scenario in Fig 2e and 2f at the onset of
the second outbreak.

5 Policy insights
The challenge with lockdown measures for the current corona virus is the following: When
imposing them, they will show effect only if the basic reproduction number is pushed below 1
sufficiently enough. Then, after the number of infected individuals has eventually dwindled, a
lift of the lockdown is tempting - however even a slight increase of R0 above one opens the way to
renewed catastrophic infections increase. One therefore has a binary evolution characteristic; to
control R0 by policy such that a steady stream of just managable new infections is maintained is
daunting, and likely impossible (in practice) if a policy requiring a constant set of restrictions
is targetted. The natural answer, at least from a theoretical point of view, is to consider
phases of lifted restrictions interleft with repeated adaptively switched phases of more stringent
restrictions or more stringent enforcement of existing restrictions. The need for such strategy
is not in principle altered by the local aspect of transmission, except that switched lockdowns
only need to be local and thus do not affect the whole population.

Further, the graphs suggest that a future virus having infectiousness lasting much longer
than the about 2 to 3 weeks for SARS-Cov-2 and also being as highly infectious would pose
serious challenges (if the effective infectiousness period also increases!), because of resource
exhaustion in the mid-stages of the pandemic.
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(a) (b)

Figure 4: (a) Solution for a parameter choice such that x(t) shows a pronounced phase of nearly linear
growth: it was d ·p = 1.42 initially, then d ·p = 1.02 from t = 3.0 onwards. Not depicted: Also with this
parameter choice the x(t) eventually converges: the linear growth phase extends until about t = 25.0,
and finally it is x(∞) ≈ 0.04948. (b) Solution obtained when using the same initial conditions, but
switching to d · p = 0.96 at t = 3.0.

6 Conclusion
In this study a partly novel model for virus proliferation dynamics was developed and with it
the SARS-Cov-2 outbreak in Germany retraced on an aggregate level, using CoViD-19 case
count data by the Robert-Koch Institute in Berlin. Elementary properties of the model were
identified. Predictions by the model for different levels of mitigation measures were hinted at
or stated in approximate manner, and put into context of available health care resources in
Germany.

Future policy oriented work would need to address better understanding of fine-grained and
adaptively activated mitigation measures, for which a spatial model should be favoured over
purely aggregate models as the present one. Further, for purpose of improving parameter and
state estimates, the issue of underreporting (i.e. #actual > #reported cases) must be taken
into account appropriately. Ideally, one can develop an estimate for the factor of underreporting
from more exact spatial analyses.

On the mathematical side, a more rigorous formulation of the instantaneous proliferation
dynamics is desirable, which allows to link parameters of the aggregate model to well-defined
elementary parameters and results in more systematic parameter estimation. The ultimate
goal is to be able to estimate more local structure from the observed time series.
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A Additional graphs
A.1 Data series on daily newly reported CoViD-19 cases

Figure 5: A ”smoothed” derivate of numbers of daily newly reported CoViD-19 cases in Germany
published by [Rob]. The blue squares and green triangles series show (for comparison) the sum of daily
new cases over a moving 7-day window. Orange diamonds and triangles show daily new cases after
scaled with a weekday-specific weight factor to remove the weekly pattern seen in the original data. The
weight factors were estimated from data corresponding to the squares and diamonds series, i.e. from the
interval from 1st April until 6th May 2020. Germany imposed face-mask wearing in stores starting from
27th April and allowed certain (moderate) shop reopening starting from 4th May 2020. The ”bend” at
around 14th April is remarkable because no changes in measures were effected at that time or within
the preceding one week.

B Refinement of the infectiousness mechanism
So far, a crude specification of the infectiousness has been used, putting focus on the typical
effective infectiousness interval of about two weeks. Further aspects in the virus transmission
which could be accounted for in a refinement are the transmission from longer lived remnants
of the virus in otherwise recovered individuals6, or – tractable along a similar line – the trans-
mission from asymptomatic cases.7

Examining the transmission from viral remnants first, imagine that individuals infected at
time t0 remain contagious until t0 + tc2 with reduced probability, additionally to the previously
used interval [0, tc]. Concretely, let p2 be the probability that an individual which has been
infected for a duration exceeding tc but not exceeding tc2, will transmit the virus in a unit time

6But see comments in next section also. Virus remants neither in self-infection nor in transmission seem to
play a major role.

7In asymptomatic cases, the effective infectiousness interval extends over the whole period of virus activity
in the subject.
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step. With p̃2 := p2/p the adjusted model equation then reads

ẋ(t) = d · p ·
(

(x(t)− x(t− tc)) + p̃2(x(t− tc)− x(t− tc2))
)
· (1− x(t)/N), (5)

since those individuals must be added to the instantaneous reservoir from which infections are
generated. The equation is better written as

ẋ(t) = d · p ·
(
x(t)− (1− p̃2) · x(t− tc)− p̃2 · x(t− tc2)

)
· (1− x(t)/N). (6)

If we denote by i(t) the infectiousness profile, which shall describe the relative infectiousness
of an infected individual8 at time increment +t after the infection moment (relative to infec-
tiousness at t = 0), then the above used specification for SARS-Cov-2 is expressed as

i(t) =


1, t ∈ [0, tc)

p̃2, t ∈ [tc, tc2)

0, otherwise.

(7)

Its derivative is (with Dirac notation) i′ = δ0− (1− p̃2) · δtc − p̃2 · δtc2 . One therefore finds that
the model equation (6) in fact is generally best written as

ẋ(t) = d · p · (x ∗ i′)(t) · (1− x(t)/N), (8)

where ”∗” denotes the function convolution. A Dirac notation-free representation derives from
(x∗ i′)(t) =

∫
R x(t−s)i′(s) ds =

∫
R x(t−s) di(s). Here the last integral signifies the well-known

Stieltjes integral.
Note: The infection from contaminated surfaces of objects can be represented in the same

framework. This is because initially and during the evolution of the spread, viruses are on
surfaces mostly there where infected individuals previously had been.

C Incorporating renewed susceptibility
In the literature, it was mentioned that a substantial fraction of previously deemed cured pa-
tients were testing positive again on viral RNA a short period after discharge from SARS-Cov-2
related treatment [HDG20] [YLea20]. In different context, the permanence of antibodies in the
blood after recovery has been questioned and found to last only two to three months [LTea20].
Relevant from the epidemiological viewpoint is whether ”re-positive” cases are infectious, and
according to the evidence this seems only to be true upon reinfection after decrease of antibody
levels. In this section, the model is to be extended to cover this reinfection mechanism, i.e.
focus here is on the route via resusceptibility after loss of antibodies.9

When transition from the recovered state to the susceptible state is to be accounted for, the
modelling using a univariate state variable cannot represent the new infections by a change of

8On the contrary, the profile in shown in Fig 1.c of [HLWea20] is best called an ”infection incidence profile”,
as explained on page 2.

9The mechanism of reactivation of the virus in former patients must be represented in markedly different
form, since individuals affected would pass directly from the ”cured” to the ”infected” state. For this, a further
summand must be included on the right-hand side of the evolution equation for x(t), i.e. in eqn. (2) or (9).
Note however that this refers only to the case of reattained infectiousness, which according to evidence [YLea20]
is not the typical course. On the contrary, the mere detection of viral RNA (i.e. positive RT-PCR test) after
cure typically indicates a shedding of inactive viral RNA, e.g. fragments.
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x(t), if that is to represent the total number of at time t ever infected people. Introduction of
a second state variable r(t), which shall denote the number of renewed susceptible individuals
(multiple times counted if multiple such ”resets” happen on one individual over time), will
allow to extend the original model to make it represent the new mechanism. With x(t) denoting
the number of infected individuals (again multiply counted if necessary), the x(t) − r(t) will
denote the number of individuals (at t) being either ”infected” or ”recovered and not newly
susceptible”. I.e., this is the share of the whole population in which virus transmission does not
effect an infection. (=: ”instantaneously non-susceptibles”) Therefore the updated equation
for evolution of x(t) reads

ẋ(t) = d · p · (x(t)− x(t− tc)) ·
(

1− x(t)− r(t)
N

)
. (9)

By definition, any individual counted in r(t) must have been counted in x(t) before, so x(t) ≥
r(t) for all t must be ensured in the modelling of the evolution of r(t). Beyond this minimal
requirement, it is assumed here a mechanism that demands: (A1’) the transition to renewed
susceptibility does not begin before a duration tr has elapsed starting at the infection moment,
and (A2’) the transition then proceeds with a constant rate αr per time unit.

Under these assumptions, an appropriate evolution equation for r(t) is given by10

ṙ(t) = αr · (x(t− tr)− r(t))+. (10)

The subscript ”+” denotes the ”positive part” of the argument. By construction, the share
of potentially reverting individuals that does actually revert to susceptibility in one time unit
is designed to be 1 − exp(−αr). (Example: αr = 0.2/week means about 18.1% of potentially
reverting do actually revert to susceptibility in one week.) For consistency, it must be ensured
tr > tc, or, when the adjusted generalized model with eqn. (8) were to be used, tr > max{s ∈
R, i(s) > 0}. The ”safe period”, i.e. from end of infectiousness to start of possible reversion to
susceptibility, lasts for a duration tr − tc.

With this model given by equations (9) and (10), employing again the time unit of two
weeks, and using the values tr = 4.0 and αr = 0.2 (corresponding to six weeks of safe period
rate of reversion of 0.2 per two weeks), one obtains numerical results as in Fig 6. The value
of d · p was: 1.34 until t = 3, then 0.77 until t = 7 (representing the major lockdown period
starting near end of March 2020 in Germany). The whole abscissa corresponds to somewhat
less than four years. The level of maximum intensive care capacity in Germany (posing a limit
to the red trajectory) again is represented by a horizontal line in the upper half of the graphs,
implied from a maximum of 12500 to 25000 ICU cases per week. As before, spatial pecularities
of the transmission or annual seasonal effects are not represented in the result. Possible future
vaccination campaigns, which are also not represented here, will effect a reduction of parameter
d.

Overall, even a qualitative difference in the evolution is visible in particular for the (here
focussed on) case of d · p ≈ 1.0: If resusceptibility is possible, then transmission coefficient
values slightly above 1.0 still lead to an increase of infectious cases (red line) close to or even
above the hospital maximum resource level. On the other hand, only a slight decrease of the
transmission coefficient (e.g. by slightly improved face mask discipline) will – according to the
model – take the evolution into safe regions. Side note: The outcome depended only little on
the parameter tr varied in [4.0, 8.0] (reflecting a hypothesized ”safe period” of six to 14 weeks).

10A (so far minor) shortcoming of this modelling approach is that different probabilities of infection risk in
first-time virus receivers and repeat virus receivers cannot be represented.
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(a) (b)

(c)

Figure 6: Proliferation evolution with renewed susceptibility possible. Abscissa: time with [0, 1]
corresponding to two weeks; ordinate: share of population. The differently shaded regions at the
bottom indicate phases of different d · p values. It was chosen d · p = 1.34 until t = 3, then = 0.77 until
t = 7. For t ≥ 7, it was d · p = 1.02 in Fig a and d · p = 1.04 in Fig b. Both figures assume parameters
tc = 1.0, tr = 4.0, and αr = 0.2. For comparison, Fig c shows the otherwise equal scenario as in Fig
a, but without resusceptibility (i.e. αr = 0). Not depicted: In Fig b, the number of instantaneously
non-susceptibles converges to about 3.9% of the population as t → 100.0; the number of ever infected
at that time is about one fourth of the population.
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