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Abstract—This article introduces the Emteq’s OCOsenseTM smart glasses equipped with a 
novel non-contact OCOTM sensor technology for measuring facial muscle activation and 
expressions based on high resolution tracking of skin movement. We demonstrate that the 
OCOTM sensor technology based on optomyography is a sensitive and accurate approach 
for assessing skin movement in 3 dimensions, providing a means for measuring the facial 
expressions used to assess emotional valence such as smile, frown, and eyebrow raise. 
We propose that glasses-based optomyography sensing has the potential to herald a 
paradigm shift in real-world facial expression monitoring, thus enabling real-time 
emotional analytics with healthcare and research applications.

oday, wearable technologies are shaping our 
everyday experiences. Leveraging familiar form 
factors, we witness an explosion of smart 

watches, jewelry-based wearable devices such as rings, 
earables and eyewear with diverse sensing capabilities [1]. 
We envision that future wearables cannot only be equipped 
with multimodal methods for high-accuracy real-time 
monitoring but could provide biofeedback-informed 
interventions for a wealth of healthcare and research 
applications. This will require a robust validation plan in 
naturalistic test environments. 

Compared to other bodily cues, facial expressions are 
considered the richest source of emotional information [2] 
(especially of valence; a psychological construct that 
describes the hedonic component of subjective 
experience). Facial expression-derived valence is highly 
dependent on context. Put simply, it is important to know 

what the person is doing to guide affective insights than an 
expression may convey [3]. We envision that continuous 
monitoring of facial activation combined with information 
about the users’ activities can offer insights on the wearer’s 
emotional state and behavioral changes [4].  

In this article we present the OCOsenseTM smart 
glasses equipped with optomyographic (OMG) sensors, 
which allow real-time monitoring of facial muscle 
activations. The glasses also include 9-axis Inertial 
Measurement Unit (IMU) and altimeter for activity and 
head movement tracking, and speech detection 
microphones. The OCOsenseTM system offers open data 
access for researchers via its API and a mobile application. 
In this paper, we present insights on OCOTM sensor 
performance in tracking skin movement in the laboratory 
and detecting facial expressions (smile, frown and eyebrow 
raise). 

           ArticleType:Description  
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RELATED WORK 
Studies using methodologies such as affective priming 
demonstrate that affective changes influence information 
processing, decision making and interpersonal interaction 
(e.g. [5], [6]). Therefore, understanding a person’s affect 
(instinctual emotional response) could be a valuable tool 
for understanding their behavior. There are several 
wearable technologies that recognize bodily features as 
biobehavioral fingerprints. The majority is focused on 
arousal metrics, using wrist-worn sensors for pulse-rate 
(e.g., Fitbit1, Apple Watch2) or electrodermal response 
(e.g. Empatica3). Head-worn devices, (e.g. Nokia's earable 
device [1]) are however limited and often in the research 
phase. 

The face and specifically the activation of the 
zygomaticus major and corrugator muscles has been 
extensively investigated as a means of recording valence 
changes [7]. Traditional techniques include surface 
electromyography (EMG) as the gold-standard measuring 
muscle contractions, and camera-based tracking [3]. 
Although monitoring facial activations in this way is 
commonplace, measuring facial expressions and valence 
changes naturalistically remains a challenge. There are 
two reasons for this. The first is the lack of 
generalizability. A smile can be ironic or even threatening, 
making the context in which it is elicited critical. Second, 
although discrete commercial wearables for recording 
physiological arousal do exist, there is no corresponding 
discrete method of passively measuring facial expressions 
reliably, that do not also necessitate a face-directed 
camera, tethered connection, or sensors placed directly on 
the skin [8]. In other words, traditional methods are 
conspicuous by necessity and thus ill-suited for everyday 
wearable integration.  

Recently, novel approaches have been pursued in 
facial wearables, combining various methods for facial 
tracking. Amongst those are glasses equipped with 
capacitive sensors [9], and those with face-mounted 
cameras [10], which however often suffer limitations with 
regards to electromagnetic interference and generalized 
immunity to different environmental conditions such as 
ambient light. Similarly, electrooculographic (EOG) 
glasses were developed to detect facial activations and by 
extension facial expressions [11]. When compared to our 

 

1 https://www.fitbit.com/global/us/technology 
2 https://www.apple.com/uk/watch/ 

approach, the EOG approach is limited by high sensitivity 
to head movements and low sensitivity to lower-face 
actions such as smiling. In our proposed solution, head 
movements do not influence the data to that level because 
the OCOTM sensors are contact-less. Additionally, due to 
the sensor type and the locations (around the eyes and on 
the cheeks) OCOTM sensors can easily distinguish facial 
expressions such as smiling. Another compelling system 
utilized photo-reflective sensors on glasses measuring skin 
proximity (Z-axis) [12]. The Z axis corresponds to the 
proximity to skin (distance) and the XY axes register 
movements in the cartesian plane of the skin. Facial 
muscles produce pulling forces on the skin towards the 
muscle’s orientation, resulting pronounced protrusions in 
high intensities [2]. Therefore, proximity alone can be 
insufficient [13]. We address these issues by introducing 
the OCOTM sensors capable of measuring skin movements 
in 3 dimensions, and the potential to detect a wider range 
of facial activation intensities, such as micro 
expressions[14] 

OCOSENSETM GLASSES 
The glasses contain seven OCOTM optomyographic sensors 
[15], a 9-axis IMU, altimeter and dual microphones. The 
sensors are built into a glasses frame to overlap key facial 
muscle groups associated with the affective changes (see 
OCOTM Sensors section) [13]. Figure 1 shows the 
OCOsenseTM glasses, the sensor and the system 
architecture.  

All sensors are sampled at 50Hz and streamed via 
Bluetooth low energy (BLE) to a mobile device. The 
glasses contain two 220mAh LIPO batteries, which can 
power the system for 4-6 hours depending on the how 
active the user is due to the OCOsenseTM glasses dynamic 
framerate power management strategy.  

Lastly, the real time clock (RTC) and additional 
RAM and FLASH memory are used to keep track of the 
current time and date and store data when the mobile app 
is not connected to the glasses respectively. A dedicated 
MCU has also been implemented for onboard real-time 
activity recognition using machine learning for future 
research. 

3 https://www.empatica.com/en-eu/research/e4/ 
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Glasses Design 
The OCOTM Sense glasses were designed around 
statistically generated head models [16] and optimized for 
comfort and stability whilst worn, thus limiting movement 
artifacts. Two OCOTM sensors are positioned over the 
frontalis on the left and right side of the forehead to pick 
up brow furrow and brow raise movements associated with 
frown, and eyebrow raise expressions respectively, and 
two OCOTM sensors are positioned over the zygomaticus 
major muscles (left and right side of the cheeks) to detect 
smile expressions. The OCOTM sensor positioned over the 
procerus (center brow) can be used to help distinguish 
between frown and brow-raise expressions, only its Z-axis 
(skin-proximity) measurements are used in this study. 
Additionally, movement artifacts are detected via two 
sensors positioned over the left and right temples as shown 
in Figure 1. The 9-axis IMU and altimeter are positioned 
in the right temple of the glasses frame. 

The OCOTM Sensor 
The OCOTM sensors are a proprietary sensor developed and 
patented by Emteq Labs (UK patent No.US11,003,899), 
and use an optical non-contact approach - Optomyography 
[15], that has advantages over EMG-based systems. EMG 
electrodes require firm and constant contact with skin to 
achieve an acceptable signal to noise ratio; the OCOTM 
sensors are optically based, therefore they do not require 
skin contact, and can function accurately from 4mm to 
30mm from the skin.  

OMG has high sensitivity to movement (<4um) and does 
not require a complex filtering procedure to extract useable 
signal, which would be computationally expensive and 
induce detection delays [17]. Furthermore, the output data 
from the OCOTM sensors are just three 16-bit coordinates 
positions (X, Y, Z), the sensors are polled at 50Hz by the 
MCU resulting in a data rate of 2.4kb/s per sensor.  

The data rate of all sensors (7 x OCOTM sensors, 9-
axis IMU, altimeter and dual speech-detection 
microphones) is 2.9kB/s, very low compared to camera-
based facial expression recognition (FER) systems. An 
analysis of sensing technologies for FER suggested that 
active stereoscopy cameras are the most suitable 
technologies [18]; for example the Intel® RealSense™ 
Depth Cameras which require a down-stream bandwidth 
ranging from 13.9MB/s to 146.5MB/s. Additionally, the 
OCOTM sensors are power-efficient, consuming between 
37-68mW depending on the state of the dynamic framerate 
power management strategy implemented.  

The principal operation of the OCOTM sensor and 
OMG in general, relies on infrared (IR) light sources and 
sensors to measure skin surface features in the reflected IR 
light resulting from muscles activating below and around 
the skin area of interest. The OCOTM sensors use an IR 
laser, lens-less pixel array, and optical flow logic built into 
the (ASIC) to calculate muscle-induced movement of the 
skin. 

 
 

 
FIGURE 1. (a) shows a 3D render showing a future OCOTM sensor application specific integrated circuit (ASIC) and 
its dimensions and fundamental components. (b) shows a 3D-render of the OCOTM glasses on an average head model. 
The OCOTM sensors (green rectangles), and the IMU (purple rectangle) are highlighted on the model. (c) diagram 
showing the main electronics components within the OCOsenseTM glasses. 
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OCOTM SENSOR 
CHARACTERIZATION  

Testing procedure  
To validate the OCOTM sensors we developed a specialized 
3-axis computer numerical controlled (CNC) movement 
testing rig, that could accurately move an OCOTM sensor 
development kit over human skin tissue samples in three 
dimensions. An example of the CNC test rig itself is shown 
in Figure 2. 

The OCOTM sensor development kits are mounted in 
the XY-axis carriage and moved using a CoreXY cartesian 
motion platform4. The navigation surface plate moves in 
the Z-axis and controls the proximity between the sensor 
and the skin samples. The movement resolution for each 
axis of the sensor test rig is as follows: X-axis = 12.5 μm, 
Y-axis = 12.5 μm and Z-axis = 2.5 μm. 

To evaluate the movement tracking accuracy of the 
OCOTM sensors over the skin plane (X&Y-axis) we 
conducted over 100 movement tests: using circular and 
linear moment profiles, different velocities (1,000mm/min, 
5,000mm/min and 10,000mm/min) and at different 
proximities from the skin (8mm, 18mm and 28mm). These 
parameters were chosen based on the maximum facial 
expression skin movement velocity values determined 
from literature (~40mm/s) [19], and by proximity ranges 
between each of the seven OCOTM sensors and the face that 
can reasonably occur within our glasses frame when worn 
correctly (8mm - 28mm).  

OCOTM sensor characterization results  
Each time the X&Y axis position is polled by the MCU, 
the OCOTM sensor outputs the (X, Y) coordinate position 
relative to the previously polled position. Because the 
measurements are relative and there is small amount of 
error associated with each reading, we get an accumulation 
of error overtime, normally expressed as a drift from the 
origin as shown in Figure 3. 

The output units of the OCOTM sensor X&Y-axis are 
referred to as ticks, the number of ticks per mm depends on 
the navigation surface and can be influence by skin tone, 
makeup, perspiration and other refractive influencers. The 

 

4 https://corexy.com/ 

average ticks per mm value from all the human skin tissue 
movement tests is 264 ticks/mm, resulting in a skin 
movement tracking resolution of 3.79μm. Thus, OCOTM 
sensors could be more accurate compared to alternative 
camera-based systems attempting use computer vison 
techniques to track facial landmarks and could allow the 
OCOTM Sense glasses to pick up micro expressions similar 
to facial EMG systems.  

 
FIGURE 2. The computer numerical controlled (CNC) 
skin testing machine developed by Emteq that can move an 
OCOTM sensor development kit over human skin tissue 
samples in 3 dimensions. The sensors are mounted in the 
XY-axis carriage and can be moved in the X&Y-axis, the 
skin samples can be placed on the navigation surface plate 
and can then be moved in the Z-axis. 

 
 

The error rate of skin tracking in the X&Y-axis is a unitless 
quantity (ticks/tick, mm/mm, inches/inch, etc.), the 
average error rate from all our movement tests is 
0.027mm/mm. The error-rate is minimal, but it does result 
in an accumulation of error overtime, which can be 
problematic if left unchecked. 

The OCOTM XY sensing error-rate was constant over 
the proximity range (8mm to 28mm) and over the 
movement velocity range (1,000mm/min to 10,000 
mm/min) tested, there was no significant difference in 
error-rate across the board. 
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FIGURE 3. (a) is an example the OCOTM sensor’s X&Y-axis output data, the sensor was moved in a circular motion 
(15mm radius) over a human skin tissue sample at a velocity of 5,000mm/min at a constant proximity of 18mm, for 
5 repetitions. (b) shows the OCOTM sensor’s Z-axis output data, the sensor was moved in the Z-axis from 4mm to 
50mm away from the skin sample in 0.2mm increments. 

A different testing method was required to evaluate the 
performance of the OCOTM sensor’s Z-axis movement 
measurement. The sensor was moved in the Z-axis from 
4mm to 50mm away from the human skin tissue sample in 
0.2mm increments, the resulting sensor output is shown in 
Figure 3. The relationship between the Z-axis OCOTM 

sensor output (16-bit) and proximity from the skin (mm) is 
not linear, but we can fit a 3rd degree polynomial to the 
data to establish a relationship between them (R2 = 0.998). 

FACIAL EXPRESSIONS 
VALIDATION 
To validate the sensors’ ability to detect expression 
activations on human faces, we performed a study with 18 
participants (10 males and 8 females with a mean age of 
25.6 ± 3.6 years). The glasses were paired with an iPad 
running the OCOsenseTM mobile application. After simple 
set-up of the glasses, volunteers were instructed using the 
mobile app to perform three naturalistic expressions with 
six repetitions each (six naturalistic smile expressions, 
followed by six frown expressions and six brow-raise 

expressions). An example of the data recording is 
displayed in Figure 4, using data collected from the OCOTM 
sensors for each of the three axes (X, Y and Z).  

For the analysis we investigated the relationships 
between the facial expressions and the values measured by 
the OCOTM sensors for each expression and direction (X, 
Y and Z) separately. Firstly, for each subject an average 
value was calculated for every sensor group (e.g., left and 
right cheek). The mean normalized amplitude was 
calculated, for each expression type and for each sensor 
direction (X, Y, and Z) separately.  

Wilcoxon signed-rank (paired) tests with Bonferroni 
correction were conducted to evaluate whether the OCOTM 
sensors detected significantly different activations across 
the sensors and axes. Three pairs of expressions were 
tested – smile versus frown, smile versus eyebrow raise, 
and frown versus eyebrow raise. Figure 5 shows that the 
difference in the normalized amplitude is statistically 
significant in the majority of the cases (15 out of 21). For 
each OCOsenseTM sensor-direction the results are 
discussed in the following subsections.  
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FIGURE 4. Graphs showing the OCOTM sensor raw data outputs for skin movement on three axes, X, Y and Z.  The wearers 
perform six smile expressions (green regions), then six frown expressions (yellow regions) and six brow-raise expressions 
(red region). 

 

OCOTM sensor X-axis – The boxplots for the X-axis sensor 
measurements positioned over the cheeks, show that 
during smile expression the values of the sensors are 
significantly different when compared to frown or eyebrow 
raise expressions. This is expected because the muscles in 
the cheeks are predominantly activated when smiling. The 
cheek sensor data during frown and eyebrow raise 
expressions showed no significant difference. 

For the brow sensors, we can see that the biggest 
activation is measured during the frown  expression. The 
difference between frown and the other two expressions 
was found to be significant. As expected, the muscle 
contracting between the brows, the corrugator, is 
inherently generating skin deformation along the X-axis 
which is considerably more dominant than in the other two 
expressions.  

 
OCOTM sensor Y-axis – Starting with the cheek sensors, the 
boxplots show that the largest activation is observed when 
smiling. This is expected because when smiling the 
zygomaticus and orbicularis muscles contract by pulling 
the skin along the Y-axis. As a result, all tests indicate 
significant difference when comparing smile with the other 
two expressions. Additionally, we observe a significant 
difference between frown and brow raise, showing that 
there is an identifiable upwards cheek movement during 
the frown expression. 

For the brow sensors, it can be clearly seen that the 
biggest activation on the Y-axis is when performing an 
eyebrow raise expression. Again, this is expected because 

the contraction of the frontalis muscle raises the eyebrows 
and the skin above them. As a result, the statistical tests 
show significant difference between the data when 
performing eyebrow raise expression and each of the other 
two expressions. Furthermore, when frowning, there is an 
activation of the corrugator muscle that moves the skin 
downwards. As result all tests were significant. 

 
OCOTM sensor Z-axis – For the smile expression the biggest 
activation is measured by the cheek sensors. This is 
expected because when smiling the activation of the 
muscles in the cheeks results in a closer proximity (Z-axis) 
between the skin and OCOTM sensors in the lower part of 
the glasses frame. This was also supported by the statistical 
tests. The cheek activation during frown and eyebrow raise 
was overall low (higher proximity distance) showing no 
significant difference. 

The boxplots of the OCOTM brow sensors showed 
increased distance between the sensors and the skin during 
the brow raise expression. This could be caused by the skin 
stretching thus reducing its volume. When comparing to 
the other expressions, the proximity value was different 
only between the eyebrow raise and the smile expression, 
where the distance was slightly lowered. 

The biggest overall activation on the central brow 
sensor was detected during frowning. This is expected 
because frowning activates the corrugator muscle which 
results in protruding the skin between the brows. 
Therefore, the distance from the sensor to the skin is 
reduced. Contrary to frowning, when raising the eyebrows, 

Please contact authors to access figure 4 
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the skin between the brows stretches, decreasing skin-
distance. The statistical tests also support this difference. 
However, when comparing the frowning and smile 
expression no significant difference was found. This is not 

completely expected because usually when we are smiling 
no activation occurs between the brows. Nonetheless, 
based on research done in this field [20], corrugator activity 
can be seen for some people when smiling.  

 

CONCLUSION 
In this paper we presented the OCOsenseTM smart glasses 
capable of continuous and accurate measurement of facial 
skin movement caused by muscle activation . The device 
features novel OCO™ sensors, OMG-based, which 
measure skin movement in three dimensions over key 
facial muscles.  

We performed CNC movement tests, which showed 
that the OCOTM sensor skin tracking resolution in the XY- 
plane is less 4 μm. Also, the error rate of the skin tracking 
along the XY-plane was consistently 0.027mm/mm over 
the sensor-skin proximity range (8mm-28mm), and over a 
velocity range synonymous to facial expressions 
(1,000mm/min to 10,000mm/min). Furthermore, we 
validated accurate measurement of proximity to the skin 
(Z-axis) from 4-50mm in 0.2mm increments. The 
combined rate required for seven OCOTM sensors (2.4kb/s 
per sensor) is significantly lower compared to FER 
camera-based systems and thus less computationally 
expensive.   

Further tests with participants confirmed that using 
the OCO™ data we can distinguish three facial 
expressions: smile, frown and brow-raise. The experiments 
indicated statistical differences in the sensor data when the 
3 expressions are performed, i.e., specific groups of 
sensors revealed elevated activations during expressions, 
e.g., cheek sensors during smile, center-brow sensor during 
frown and brow sensors during brow-raise. Also, the 

results showed that by using only X-axis sensor data or 
only the Z-axis, we cannot differentiate between all pairs 
of expressions. However, the Y-axis data analysis shows 
significant difference for all expressions. The combination 
of all axes could provide a robust method for accurate 
expressions detection [13]. 

Traditional methods for facial movement tracking are 
often conspicuous and difficult to use outside the lab; for 
example methods such as EMG and EOG require skin 
contact and are susceptible to motion artefacts, and 
camera-based methods directed at the face can impair the 
user’s interaction with the environment. The OCOsenseTM 
platform presented in this paper was designed to address 
limitations in previous wearable sensing eyewear and 
inform future research in the area. Further validation in 
longitudinal and naturalistic settings will be performed as 
part of our future work. With this system we envision 
informing solutions for viable non-invasive and 
inconspicuous wearable facial-activation measurement, 
which could be applied outside the laboratory, on a variety 
of applications and settings including augmented reality.  

LIMITATIONS AND FUTURE 
WORK 
One limitation of the glasses is that the X&Y-axis skin 
measurements are relative to each other, which results in 
cumulative error over time when calculating the XY-plane 
coordinates. This can be potentially addressed by 

FIGURE 5. Wilcoxon signed-rank (paired) test with Bonferroni correction for each OCOsenseTM sensor activation, for 
comparison of the following expressions: smile vs frown, smile vs eyebrow raise, and frown vs eyebrow raise. 
Statistical significance annotations: * if p ∈ [.05, 10−2); ** if p ∈ [10−2, 10−3); *** if p ∈ [10−3, 10−4); and **** if p≥ 
10−4. 
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recalibrating over time,  i.e., resetting the drift in the XY-
axis during periods of repose.  

In general, the OCOsenseTM glasses work well in 
varying ambient light conditions due to the presence of IR 
pass filters and ambient light compensation circuitry. 
However, in future studies we aim to quantify the 
limitations of the device in extreme lighting conditions. 
Furthermore, other environmental factors could affect 
sensor accuracy such as skin surface changes including 
perspiration, make-up, hair which will be investigated. 

We are currently conducting larger-scale data 
collection and clinical evaluation studies for measuring 
facial expressions, activities and emotional valence. These 
will allow us to develop machine-learning algorithms to 
recognize various expressions, activities of daily-living, 
and to validate how well the algorithms generalize over a 
large-scale population. These studies will also provide 
insights into the effect of population difference on product 
fit and emotional response. The glasses’ fit on the wearer 
is very important i.e., the data will differ on different 
people's faces. These require the development of 
calibration and personalization algorithms so that the 
models are adjusted to the wearer’s face characteristics.  

Future work could involve utilizing the integrated 
IMU and altimeter for recognizing activities of daily living 
[14]. Also, the dual microphone can be used for speech 
detection capabilities and vocal prosody analysis. All this 
could enable future research and development to create 
advanced machine learning algorithms for insights into 
context-aware valence, whilst supporting future ubiquitous 
applications in virtual and physical product evaluation, 
research, healthcare, and wellbeing. 
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