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Abstract 11 
Color vision deficiencies (CVDs) indicate potential genetic variations and can be important 12 
biomarkers of acquired impairment in many neuro-ophthalmic diseases. However, CVDs are 13 
typically measured with insensitive or inefficient tools that are designed to classify dichromacy 14 
subtypes rather than track changes in sensitivity. We introduce FInD (Foraging Interactive D-15 
prime), a novel computer-based, generalizable, rapid, self-administered vision assessment tool and 16 
applied it to color vision testing. This signal detection theory-based adaptive paradigm computes 17 
test stimulus intensity from d-prime analysis. Stimuli were chromatic gaussian blobs in dynamic 18 
luminance noise, and participants clicked on cells that contain chromatic blobs (detection) or blob 19 
pairs of differing colors (discrimination). Sensitivity and repeatability of FInD Color tasks were 20 
compared against HRR, FM100 hue tests in 19 color-normal and 18 color-atypical, age-matched 21 
observers. Rayleigh color match was completed as well. Detection and Discrimination thresholds 22 
were higher for atypical observers than for typical observers, with selective threshold elevations 23 
corresponding to unique CVD types. Classifications of CVD type and severity via unsupervised 24 
machine learning confirmed functional subtypes. FInD tasks reliably detect CVD and may serve 25 
as valuable tools in basic and clinical color vision science. 26 
 27 
 28 
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 33 
Introduction 34 
Conventional phenotypical categories for inherited color vision deficiency (CVD) are anomalous 35 
trichromats (AT), dichromats, and monochromacy, with mild to strong color vision defects, 36 
respectively. They can be further referred to as protan, deutan, or tritan types, with L-, M-, and S-37 
cone relevant deficiencies, respectively(1). Identification and diagnosis of CVD are critical in 38 
many respects. In clinical applications, abnormal color vision may reveal genetic dyschromatopsia 39 
or early signs of neural pathway or systemic diseases(2). However, widely employed color vision 40 
tests are not ideal for detecting and monitoring acquired CVD progression or remediation, owing 41 
to their insensitivity, long testing time, difficulty of administration, and interpretation of their 42 
results.  43 
 44 
Color matches conducted with an anomaloscope have been considered a gold standard for precise 45 
CVD diagnosis. An anomaloscope enables red-green Rayleigh matching and blue-green Moreland 46 
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matching tests, in which the observer adjusts the mixed light side of the bipartite field to match the 1 
light in the reference side(3). However, anomaloscopes are expensive and a full examination of 2 
the color matches requires extensive instruction, expert administration, and exhaustive testing time. 3 
In addition, matching ranges of an extreme anomalous trichromat can be indistinguishable from 4 
those of dichromats. Pseudoisochromatic plates are capable of rapid screening and classification 5 
of CVD. Ishihara plates contain pseudoisochromatic numbers and curved lines, as well as 6 
vanishing plates with stimuli seen by only CVD patients. Hardy-Rand-Rittler (HRR) plates(4) 7 
exceed Ishihara plates, in that they contain universal color symbols instead of Arabic numbers, 8 
have a three-step severity scale for each CVD subtype, use a two-step psychometric protocol (i.e., 9 
what symbol do you see in which quadrant) to reduce probability of guessing, and are able to 10 
classify tritan(5). However, printed pseudoisochromatic plates have a number of shortcomings. 11 
They require a trained clinician to administer the test, and are generally insensitive to detect subtle 12 
changes of color detection due to the absence of a severity scale (Ishihara), a coarse severity scale 13 
(HRR), and the lack of cone-isolated colors. The Farnsworth-Munsell 100 hue test (FM100) 14 
provides a relatively complete color discrimination measurement for Protan, Deutan, and Tritan, 15 
by asking participants to arrange 85 caps according to color, but the task is extremely time-16 
consuming, as is the analysis of FM100 error scores. These issues are addressed by D-15, an 17 
abridged version of FM100, however, interpretation of the error scores of both tests can be vague. 18 
CVD patients can also rely on luminance cues to pass the arrangement task or improve test 19 
scores(6). 20 
 21 
Attempts to improve performance of traditional color vision tests have been made with computer-22 
based tests. The Cambridge Color Test (CCT) adopted the pseudoisochromatic pattern from the 23 
above-described printed tests with a colored Landolt C orientation-identification stimulus 24 
embedded in static luminance noise, and utilizes forced-choice adaptive procedures(7). The Color 25 
Assessment and Diagnosis (CAD) test employs a moving chromatic square superimposed onto 26 
dynamic luminance noise(8). Resulting thresholds of both tests in vector length units can be used 27 
to classify the type and severity of CVD. In clinical contexts, testing duration is crucial. The CCT 28 
Trivector test shortened the testing procedure by assessing only the three confusion lines. Faster 29 
and simpler tablet-based tests which measure detectability along the three confusion lines were 30 
developed for better accessibility and for young children(9). The trade-off between testing speed 31 
and information collected has been the main cause of the disadvantages in these color vision tests.                    32 
 33 
In this article, we introduce and validate a generalizable, rapid, and self-administered computer-34 
based procedure named FInD (Foraging Interactive D-prime), and adapt it to assess color 35 
detectability and discriminability. FInD uses an adaptive algorithm that measures visual 36 
performance thresholds for a wide range of visual functions, e.g. contrast sensitivity, motion- and 37 
form-coherence(10, 11). The algorithm selects stimulus strength derived from d’, a signal-to-noise 38 
ratio metric referring to the detectability of the stimulus, and calculates a new d’ based on previous 39 
responses. 40 
 41 
FInD Color Detection measures detection thresholds to L, M and S cone-isolating stimuli, 42 
reflecting the performance of individual cone types, while FInD Color Discrimination measures 43 
hue discrimination thresholds around 6 directions on a HSV (Hue, Saturation, Value) or 44 
equiluminant color plane. The two color spaces are used for different purposes - while 45 
equiluminant colors satisfy accurate measurement of color discrimination, HSV colors do not 46 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 15, 2023. ; https://doi.org/10.1101/2023.06.14.23291402doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.14.23291402
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

require careful calibrations so can be readily applied. The detection and discrimination tasks 1 
together interrogate an observer’s color vision system: the detection task classifies photoreceptor-2 
level color sensitivity, and the discrimination task further quantifies the resolution of color 3 
perception. The computer-based Rabin Cone Contrast Test (RCCT) also adopted cone-isolating 4 
colors to screen CVD(12), in which color letters were presented without any background noise. 5 
FInD Color tasks instead use Gaussian blobs, therefore remove high frequency chromatic signals 6 
and avoid optotype familiarity. Dynamic luminance contrast noise is also added to mask potential 7 
luminance artifacts. Our first aim was to validate FInD Color detection and discrimination in terms 8 
of thresholds, testing duration and reliability in both color-normal (CN) and CVD groups.  The 9 
second aim was to determine CVD type and severity using unsupervised machine learning (UML) 10 
classification with FInD Color detection and discrimination thresholds. The classification of CVD 11 
subtypes is difficult because genetic testing is expensive and laborious, and results of current 12 
behavioral tests for thresholds vary due to different stimulus types and tasks. Personalized 13 
threshold results generated with FInD enable the deployment of UML approaches to determine 14 
groups based purely on the behavioral performance of detectability and discriminability. The third 15 
aim was to compare FInD results against that of conventional clinical tools— HRR and FM100. 16 
 17 
Methods 18 
The experiment protocol was approved by Northeastern University Institutional Review Board and 19 
followed the principles in the Declaration of Helsinki. 20 
 21 
Participants 22 
19 participants (mean ± SD age: 26.2 ± 10.0; age range: 18-50; 9 females) with self-reported 23 
normal color vision and 18 (mean ± SD age: 23.1 ± 7.8; age range: 18-54; 1 female) with self-24 
reported inherited color vision deficiency were recruited after providing informed consent and 25 
completing a demography and ocular history questionnaire. All participants had normal (20/20 or 26 
better) or corrected-to-normal visual acuity and had no history of eye diseases except for one 27 
participant with strabismus and two participants with amblyopia, among whom one amblyopia 28 
participant also had defective color vision. Two participants were diagnosed with attention deficit 29 
disorder and depression, respectively, and both received medical treatments. 30 
 31 
Apparatus 32 
Experimental procedures were programmed by Psychtoolbox(13) in MATLAB (MathWorks, 33 
Natick, MA), and presented on a 32” 4K LG display with a resolution of 3840×2160. The display 34 
was gamma-corrected with SpyderX elite colorimeter (Datacolor, Lawrenceville, NJ) and the 35 
spectra and luminance were measured with a Photo Research PR-650 spectroradiometer (Photo 36 
Research, Chatsworth, CA). Luminance of the mid-grey background was 90.3 cd/m2. Participants 37 
viewed the screen binocularly at a distance of 111 cm, subtending a visual angle of 35 deg × 20 38 
deg, with the head position stabilized in a chin rest. Standard illumination applied for HRR and 39 
FM100 administration was provided by a Sol•Source daylight lamp (117V, 50/60 Hz) 40 
manufactured by GretagMacbeth. The time was recorded using a standard mobile phone timer 41 
application or by the computer for FInD tests. 42 
 43 
Tasks and Stimuli 44 
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Four methods were compared in this study: Hardy-Rand-Rittler (HRR) Pseudoisochromatic Plates 1 
(4th Edition), Farnsworth-Munsell 100 hue test (FM100), Rayleigh color match, and FInD Color 2 
Detection and Discrimination tasks.  3 
 4 
Hardy-Rand-Rittler (HRR) Pseudoisochromatic Plates 5 
HRR was conducted by the experimenter flipping the plates and participants reporting the shape 6 
and location of test color symbols under controlled lighting.  7 
 8 
Farnsworth-Munsell 100 hue test (FM100) 9 
Participants were asked to arrange the 85 caps according to reference colors in each testing case. 10 
The four cases were completed in random order.  11 
 12 
Rayleigh Color Match 13 
Rayleigh color matching data were collected on 14/19 CN and 6/18 CVD with an Oculus HMC 14 
Anomaloscope (Oculus, Germany). Participants were asked to complete 8 measurements (4 with 15 
each eye) and an additional matching range identification trial. 16 
 17 
FInD Color detection 18 
Stimuli utilized in FInD Color Detection task were cone-isolated Gaussian blobs (σ=1°, support 19 
diameter = 4°) (Figure 4a left). L-, M-, and S-cone isolating directions in RGB unit were calculated 20 
by integrating Stockman-Sharpe cone fundamentals(14, 15) and the measured display spectra, then 21 
weighted by cone contrasts (detailed computation steps can be found in He, Taveras-Cruz (16) 22 
Appendix; see Supplementary materials for exact values used). Stimulus contrast was adaptively 23 
controlled by the FInD algorithm. 24 
 25 
FInD Color discrimination 26 
FInD Color Discrimination task measures discriminability of a pair of two small Gaussian blobs 27 
(σ=0.6°, support diameter=3.6°) with different colors (Figure 4a right). Each stimulus contains a 28 
pair of colors that were selected from the HSV color space (Figure 4b). Six hues (H = red, yellow, 29 
green, cyan, blue, magenta), 3 primary and 3 confusion axes, in the half-brightness (V=0.5) HSV 30 
plane were tested separately with two saturation levels (S = 100% or 50%). For each selected hue 31 
axis, two stimulus colors were selected at the same angular distance away from this hue axis in 32 
opposite directions. The angular distance between test colors in HSV space was adaptively 33 
controlled by the FInD algorithm. 34 
 35 
Procedures 36 
Each participant completed the four tasks once (test session) or twice (test-retest sessions) in 37 
random order after optometric screening. 38 
 39 
The FInD adaptive algorithm measures d’ to efficiently estimate thresholds. In short, d’ is a 40 
measure of detectability or discriminability in signal detection theory. As in Figure 4c, d’ is the 41 
distance between the noise and signal distribution means, and the location of the criterion (λ) 42 
directly affects the proportion of responses corresponding to “hit”, “miss”, “false alarm”, and 43 
“correct rejection”. The initial stimulus contrast (detection) or angle distance (discrimination) was 44 
determined by pre-defined approximate estimates of slope and threshold to derive the test range to 45 
span difficult (d’=0.1) to easy (d’=4.5) stimuli. The independent variable of the stimuli for the first 46 
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chart were sampled in log steps across this test range. Subsequent charts use the combined 1 
responses across all previous charts to re-estimate d’ (Figure 4e).  2 
 3 
Stimuli were presented in charts (Figure 4a) containing 4×4 cells (6°×6°) at the center of the screen 4 
with each cell containing one stimulus at pre-selected contrasts (detection) or hue difference 5 
(discrimination) embedded in 8 Hz dynamic luminance noise, with check size 10 arcmin and ±20% 6 
luminance contrast. A high stimulus-intensity example and instructions were provided at the upper 7 
left corner of the screen to help participants identify the targets to be foraged. Participants were 8 
informed that target stimuli were present in some but not all cells, and the number of targets varied 9 
from chart to chart. They were instructed to click on any cells that contained “faint versions” of 10 
the stimulus (detection) or on cells that contained blob pairs that have different colors 11 
(discrimination). The chart stayed on the screen until the observer completed the current chart by 12 
clicking on the exemplar. d’ was then calculated based on hit/ miss/ correct rejection/ false alarm 13 
classifications as a function of stimulus contrast (detection) or hue difference (discrimination). The 14 
estimate of d’ from all previous responses was used to generate the stimulus range (contrast or hue 15 
difference) in the next chart. A series of three charts for each stimulus were presented in interleaved 16 
order (Figure 4d). 17 
 18 

 19 
Figures 4. Illustration of FInD stimuli and experimental procedures. (a) FInD detection (top) and 20 
discrimination (bottom) task interfaces. (b) The top color wheel shows a cross-section of the HSV 21 
space for V=1, from which six hues (0° to 300° in 60° steps) and two saturation levels (0.5 and 1) 22 
were chosen and used in the discrimination task. If, for instance, yellow (60°) discrimination were 23 
tested, two colors are symmetrically selected the same angular hue distance (θ/2) away from 24 
yellow with a fixed saturation level. The bottom color wheel shows the equiluminance plane with 25 
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four primary axes representing the red-green and blue-yellow postreceptoral mechanisms (c) 1 
Illustration of signal detection theory. The noise distribution (blue) and signal distribution (grey) 2 
bell curves lie on the normalized Z-score abscissa. Detectability or discriminability (d’) and 3 
criterion (λ) are depicted. The areas under the curves correspond to “hit”, “miss”, “false alarm”, 4 
and “correct rejection”, respectively, according to stimulus presentation and response. (d) FInD 5 
experimental procedures with cone isolating direction detection stimuli as an example. The dashed 6 
arrow represents the adaptive procedure that selects a range of stimulus intensities on the 2nd chart 7 
based on analysis of the responses to stimuli on the 1st chart. (e) An example of a typical 8 
psychometric function: blue data show the probability that the observer reported the presence of a 9 
stimulus as a function of intensity, vertical lines show binomial standard deviation, red curve 10 
shows the best fitting function for Eq.1, and black dashed lines represent upper and lower 95% 11 
confidence intervals. The separate data point on the left of other data points indicates the false 12 
alarm rate. 13 
 14 
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𝑤ℎ𝑒𝑟𝑒	Φ	𝑖𝑠	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑛𝑜𝑟𝑚𝑎𝑙	𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.      Eq.1 16 
 17 
 18 
Results 19 
Data analyses were performed in MATLAB (MathWorks, Natick, MA). Descriptive statistics of 20 
FM100 and FInD tasks for the CN group are summarized in Table S1. The analyses below are 21 
based only on the test session data except for the repeatability analysis. 22 
 23 
HRR 24 
All CN observers passed the first ten diagnostic plates of HRR. The time recorded for 12 CNs to 25 
pass was 37 seconds on average. All CVDs self-reported to have color vision deficits failed HRR 26 
and were classified as protan or deutan with mild, medium, or strong defect (Table 1), and time 27 
spent for 13 CVDs was 2’53” on average to complete all 24 plates of HRR. One CVD observer 28 
with mild red-green deficiency achieved equal protan and deutan scores thus could not be classified. 29 
 30 
FM100 31 
Total error scores (TES) and right-half mid-point (MP) were reported for FM100. TES is 32 
calculated as the sum of the error scores for each color with 2 subtracted from each error score. 33 
For CNs, TES is expected to range from 0 to 100 where superior, average, and low discrimination 34 
abilities are indicated by error scores ranging from 0~16, 20~100, and more than 100. In our 35 
sample 42%, 53%, and 5% of the CN observers respectively fell in the three categories (Table 1). 36 
Mean and standard deviation of the TES of the CN group are reported in Table S1, and average 37 
error score pattern is shown in the left panel of Figure 1 for the CN group. Note the radial axis 38 
range, where the center of the error score pattern is 2, indicating perfect responses, with the largest 39 
error score scale being 3.5. Our TESs for CNs (2.42±0.24) are comparable to those reported in 40 
Knoblauch, Saunders (17). Error score pattern of one CVD participant (CVD#5) is shown in the 41 
right panel (note radial axis range is 2-16). Patterns for each CVD observer are provided in Figure 42 
S1. TES of 11% CVD observers exceeded the error score range of our CN group while 89% CVDs 43 
have TES larger than 100. The right-half MP contains the median of error scores of cap sequence 44 
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43 to 84, and was used to identify type of defect. The classification criteria are indicated in the 1 
right panel of Figure 1 according to the FM100 manual: protans, deutans, and tritans have right-2 
half mid-points in ranges 62~70, 56~61, or 46~52, respectively. TES and MP scores of the CVD 3 
group are reported in Table S2. Average time taken for testing participants were 13’32” for 18 4 
CNs and 13’23” for 17 CVDs. As for plotting the pattern and calculating TES and MP manually, 5 
3’17” for CNs and 14’48” for CVDs were taken on average. Computer-based data analysis 6 
algorithms can largely improve efficiency of FM100 test by reducing the data processing time. 7 
 8 
 9 

 10 
Figure 1: FM100 hue test results. Left: average error score pattern of 19 CNs. Hues of colored caps 11 
are numbered from 1 to 85 with the corresponding mean error score (black line) and standard error 12 
range indicated along radial coordinates for each hue. Upper and lower standard error ranges are 13 
depicted by the red and blue dashed lines, respectively. The outermost circle where the color dots 14 
reside represents an error score of 3.5, and the center error score is 2, indicating the lowest possible 15 
error score. Right: error score pattern (black line) of an example CVD observer (CVD#5). Note 16 
that the largest radial scale is 16. Mid-point and TES of this observer as well as diagnostic curves 17 
(color arcs) are also shown. Mid-point of this observer falls in the protan range. 18 
 19 
Rayleigh Color Match 20 
Testing time duration for Rayleigh match on an anomaloscope was 10.64 min on average for 14 21 
CNs to complete 8 measurements (4 with each eye) and 15.07 min for 6 CVDs to complete all 8 22 
measurements with an additional matching range identification trial. Detailed testing procedures 23 
and results are reported in the Supplementary material. All 14 CN participants produced normal 24 
anomalous quotients and all 8 CVDs produced atypical quotients. 6 CVD classifications agreed 25 
with HRR classification and 4 agreed with FM100 classifications (Table 1).  26 
 27 
FInD Color detection and discrimination thresholds and K-means clustering 28 
FInD Color detection thresholds for each CVD observer are shown in the top panels in Figure 2, 29 
and low-saturation discrimination thresholds are shown in bottom panels (Figure 2b; high-30 
saturation discrimination thresholds are shown in Figure S2). For both tasks, data of CNs tend to 31 
cluster at lower thresholds and have relatively small variance, whereas there are large individual 32 
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 8 

differences among CVD observers with different patterns and degrees of selective threshold 1 
elevation likely corresponding to CVD types. Average (±standard deviation) time durations taken 2 
for CN and CVD participants to complete all trials in the detection task were 4’57” (±1’59”) and 3 
5’08” (±1’45”), and were 19’57” (±5’33”) and 18’04” (±5’32”) to complete all trials in the 4 
discrimination task, respectively. Given that two saturation levels were investigated in the 5 
discrimination task, one test level takes only half of the time reported (less than 10 min). 6 
 7 
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(a) FInD Color detection thresholds 

 
(b) FInD HSV Color discrimination thresholds        

 
(c) FInD Equiluminant Color discrimination thresholds        
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 1 
Figure 2: FInD Color detection and discrimination thresholds. Thresholds of all CN participants 2 
are plotted as colored circles in all panels as references, and thresholds of each CVD observer are 3 
denoted by black squares (detection) or crosses (discrimination) in separate panels. (a) FInD Color 4 
detection thresholds (upper panels) are plotted as cone contrast vector length and (b) low-saturation 5 
discrimination (lower panels) thresholds are plotted in degrees of HSV color space angle. (c) shows 6 
results of 6 CVD participants for the FInD Color discrimination task with equiluminant, colored 7 
stimuli. 8 
 9 
To set up diagnostic criteria for FInD Color results, we sought to achieve an automated 10 
classification of CVD type and severity using unsupervised machine learning (UML). To that end, 11 
a K-means clustering algorithm was applied with inputs being subsets of the detection and 12 
discrimination threshold datasets. A two-step classification was performed (see details in 13 
Supplementary section: K-means classification). The first step took LM detection thresholds as 14 
inputs and was able to segregate a large group. Observers in this group include CN and potential 15 
anomalous trichromats (AT) with low LM thresholds (Figure 3a green circles). We refer to this 16 
group of participants who have defective color vision but low detection thresholds as ‘potential 17 
AT’ for simplicity in the following paragraphs. Three smaller clusters were also identified, one 18 
with high L and low M thresholds (CVD#1,5,14; likely protanopes; Figure 3a blue diamonds), one 19 
with high M and low L thresholds (CVD#2,4,6; likely deuteranopes; Figure 3a cyan squares), and 20 
one with intermediate M and low L thresholds (CVD#3,18; likely extreme deuteranomaly or 21 
deuteranopes; Figure 3a orange triangles). Observers who were classified in the three small groups 22 
received consistent classifications as from HRR, FM100, and anomaloscope data if available 23 
(Table 1). The second classification step took LMS detection thresholds and low-saturation yellow 24 
(Y), blue (B) and magenta (G) hue discrimination thresholds as inputs, and divided the large group 25 
from the first step to four smaller clusters: one CN group (Figure 3b-f: “1”s surrounded by green 26 
circles), one deutan group (likely deuteranomaly; Figure 3 b-f: “3”s surrounded by red squares; 2 27 
received consistent HRR and FM100 classifications, and 1 received inconsistent HRR and FM100 28 
classifications but was classified as deuteranomaly by the anomaloscope), one protan group (likely 29 
protanomaly; Figure 3 b-f: “4”s surrounded by red squares; 2 received consistent HRR and FM100 30 
classifications, and 1 received inconsistent HRR and FM100 classifications) and one unknown AT 31 
group (Figure 3 b-f: “2”s surrounded by red squares; 2 received inconsistent HRR and FM100 32 
classifications, and were classified as protanomaly and deuteranomaly, respectively, by the 33 
anomaloscope, and 1 received consistent HRR and FM100 classifications as protan). With the lack 34 
of genetic measurements available for the participants, however, we are not able to relate the 35 
subgroups to any specific genotype. 36 
 37 
 38 
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 1 
Figure 3. Classification of CN and CVD results. (a) Step one clustering results illustrated in LMS 2 
detection threshold space. All 37 individual data points are shown. CVD and CN individuals are 3 
represented by red and black asterisks, respectively. Four clusters, denoted in differently shaped 4 
and colored symbols (green circles, blue diamonds, cyan squares, and orange triangles) around the 5 
asterisks, are identified. (b)-(f) show step two clustering results. Only individual points surrounded 6 
by green circles (n=28) in (a) are taken and plotted. These thresholds were clustered as four groups 7 
denoted by numbers. Red squares and green circles represent CVD and CN, respectively. 8 
 9 
Test-retest reliability 10 
Thirteen CN and eight CVD participants completed the retest session. All CNs passed HRR on 11 
both tests. HRR categorization of two CVD observers were changed: one observer (CVD#14) 12 
stayed the same type (protan) but with a different severity (medium to strong), and the other 13 
observer (CVD#12) changed in both type and severity (strong protan to medium deutan). Bland-14 
Altman analyses(18) show no significant learning effect and bias (see details in the Supplementary 15 
material). 16 
 17 
Comparison of the methods 18 
Classification results with three methods for the 18 CVD observers are compared in Table 1. As 19 
we used consistent Rayleigh match, HRR and FM100 CVD type classification as references in the 20 
two-step unsupervised classification, agreement between FInD Color and the other tasks should 21 
be expected. For the observers classified as strong or medium protan or deutan (likely protanope 22 
or deutanope) using FInD Color LM detection thresholds, CVD type classification of the three 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 15, 2023. ; https://doi.org/10.1101/2023.06.14.23291402doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.14.23291402
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

methods agree perfectly (CVD#1,2,3,4,5,6,14,18). However, LM detection thresholds alone were 1 
not able to distinguish between CN and AT as they both have relatively low cone specific detection 2 
thresholds. With the addition of the hue discrimination thresholds, the algorithm successfully 3 
distinguished CN observers from anomalous trichromats (AT), and further assign potential AT to 4 
CVD subtypes. The second-step classification results agree for all 19 CN observers and 5 out of 9 5 
AT observers. The remaining four AT observers (CVD#7,11,15,17) received inconsistent 6 
diagnoses from HRR and FM100, therefore for FInD classification, we assign them to the CVD 7 
categories in which the members in their clusters fall, which necessarily agree with one of their 8 
HRR or FM100 diagnoses, but not both. It’s worth noting that in one cluster (CVD#:12,15,17), 9 
although one of the participants (CVD#12) received consistent HRR and FM100 diagnoses in the 10 
test session, the retest HRR diagnosis changed type, so all three participants received confusing 11 
HRR and FM100 diagnosis when the retest session results are considered. This cluster is then 12 
referred to as the unknown AT group. As for testing durations, a FInD Color detection task with 13 
three testing directions and three trials per direction (CN: 4’57”, CVD: 5’08”) took longer than 14 
HRR (CN: 37”, CVD: 2’53”), but quick screening with only one trial took shorter (1’43”) for CVD. 15 
A single level FInD Color discrimination task (CN: 9’59”, CVD: 9’02”) was more rapid than 16 
FM100 (CN: 13’32”, CVD: 13’23”). FM100 testing can be further prolonged due to the additional 17 
time spent on data processing. 18 
 19 

CVD# 
Anomaloscope HRR FM100 FInD Color K-means 

 Type Severity Type Type Severity 

1  Protan Strong Protan Protan Strong 
2 Deuteranopia Deutan Strong Deutan Deutan Strong 
3  Deutan Strong Deutan Deutan Medium 
4  Deutan Strong Deutan Deutan Strong 
5 Protanopia Protan Strong Protan Protan Strong 
6  Deutan Strong Deutan Deutan Strong 
7  Pro/Deu Mild Deutan Protan Mild 
8  Deutan Mild Deutan Deutan Mild 
9  Protan Strong Protan Protan Mild 
10  Protan Strong Protan Protan Strong 
11 Deuteranomaly Deutan Mild Protan Deutan Mild 
12  Protan Strong Protan unknown AT Mild 
13  Deutan Strong Deutan Deutan Mild 
14 Protanopia Protan Medium Protan Protan Strong 
15 Deuteranomaly Deutan Mild Protan unknown AT Mild 
16  Protan Medium Protan Protan Mild 
17 Protanomaly Deutan Mild Protan unknown AT Mild 
18  Deutan Strong Deutan Deutan Medium 

 20 
Table 1. Identification of CVD type and severity for 18 CVD observers for the three methods. 21 
 22 
Discussion 23 
The current study introduced and measured performance of the newly designed FInD Color 24 
detection and discrimination tasks, and compared them against HRR, FM100 hue and Rayleigh 25 
match tests. FInD is rapid, self-administered, and easy to use, without strict operating regulations 26 
other than the normal usage of a computer, so can be readily grasped by patients or children(19). 27 
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The combination of color detection and color discrimination performance also provides richer 1 
information about CVD color perception, and enables classification of color vision subtypes using 2 
unsupervised machine learning (UML) classification. In comparison, HRR, although rapid and 3 
easy, provides limited information about atypical color perception, and is not able to classify CVD 4 
type for very mild cases (CVD#7). FM100 measures color discrimination but does not have strict 5 
and precise diagnostic metrics. Even in such a small sample, some CVD observers obtained lower 6 
error scores than observers with normal color vision but poor discrimination. Moreover, the actual 7 
error score pattern shows large degree of variation instead of a clearly classifiable pattern. FInD 8 
Color tasks afford a remedy for these shortcomings, which may be critical for detecting and 9 
tracking progression or remediation of acquired CVD in neuro-ophthalmic disease(2). 10 
Furthermore, FInD discrimination task significantly reduces testing and analysis duration 11 
compared to FM100, and FInD detection task, although taking similar amount of time compared 12 
to HRR for CVD testing, is more informative.  13 
 14 
In the present implementation of FInD Color detection, we calibrated the monitor to generate and 15 
test detection thresholds for short-, medium- and long-wavelength sensitive cone-isolating stimuli, 16 
based on standard cone fundamentals (see Methods). For FInD Color discrimination, we employed 17 
HSV color space to generate stimulus pairs of differing colors. HSV is based on subjective 18 
estimates of distance in perceptual color space, which is convenient for measurement of color 19 
perception on standard computer displays. However, different color hues in HSV may not be 20 
equiluminant, and therefore participants could utilize luminance differences instead of color 21 
differences to select cells that contained blobs of differing color. We attempted to mask any such 22 
cues with 20% contrast dynamic luminance noise, and in the Supplementary materials we report 23 
the magnitude of luminance artifacts in our display. The results show that artifacts differ with test 24 
hue angle in a pattern that is inconsistent with differences in discrimination threshold and are less 25 
than 6 cd/m2 for all test axes at the highest discrimination difference for CN participants. A 26 
separate luminance-matched achromatic blob discrimination task was conducted to evaluate 27 
magnitude of luminance artifacts, and thresholds for luminance difference are reported in Table 28 
S7. Sensitivities of CN observers to low-saturation luminance differences never exceed the artifact 29 
generated at a threshold level of 5° hue angle. However, Sensitivities to high-saturation luminance 30 
differences along three hue axes (R, C, G) exceed the threshold at 5° hue angle. In this case, the 31 
results of the FInD Color discrimination test are conservative, and we would expect color 32 
discrimination thresholds to be even higher for CVD participants. To assess performance of the 33 
discrimination task in a color space free of luminance artefacts, a subset of participants (6 CVDs 34 
and 14 CNs) were available to complete the discrimination task but with colors chosen from an 35 
equiluminant plane (See Figure 2(c), and details in Supplementary, FInD Color discrimination 36 
task with an equiluminant color plane). Eight color axes were measured. Results show that 37 
response patterns using the equiluminant plane are similar to that of the HSV space: both protans 38 
and deutans have significantly elevated thresholds at yellow, green, blue/purple axes, with 39 
thresholds for red and other intermediate axes being more variable (see p-value tables in 40 
Supplementary). 41 
 42 
Widely used CVD categories adopted by many color vision screening tests were predicated on 43 
color vision phenotype which allows rapid detection of abnormal performance. Albeit simple, the 44 
conventional categories disguise the variable nature of CVD. The well-known large individual 45 
variations in CVD make the diagnostic groups less distinguishable, and their relationship to 46 
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genotypes remains unclear(20, 21). For instance, in addition to the protanomaly category, one 1 
CVD type (Pseudo-protanomaly), while having LM photopigment peak similar to protanopes, is 2 
able to produce trichromacy with differed optical density(22). The story can become more 3 
complicated when interactions between postreceptoral signals are considered. Brain plasticity 4 
seems to elicit compensatory adjustments so that the actual perceptual color ability loss for CVD 5 
can be reduced, further blurring boundaries between discrete phenotypes(23). UML has the ability 6 
to group individuals with similar features to the same category, and has previously been used to 7 
successfully identify subtypes of other diseases(24). Finding categories for groups is a non-trivial 8 
challenge for the following reasons: using prior information such as self-report of CVD or clinical 9 
results to classify data is dependent on the methods used in the clinical tests; Furthermore, treating 10 
CN and CVDs as one distribution and using multiple standard deviations away from the mean of 11 
CNs does not consider the known CVD subtypes that belong in separate distributions. Hence, we 12 
decided to use UML technique — k-means to address these problems to classify groups without 13 
assigning a group a priori. The novel application of using k-means clustering algorithm to establish 14 
CVD classification criteria in the present work, sheds light on the competence of machine learning 15 
techniques in capturing obscure response patterns in psychophysical measurements of typical and 16 
atypical color vision, thus possessing the potential to reveal the continuous and variable nature of 17 
CVD. As a result, the CVD group can be better categorized into subtypes, and inconclusive CVD 18 
cases that received confusing diagnoses from traditional tests can be better understood and treated. 19 
 20 
The addition of hue discrimination thresholds in the second-step classification was essential to 21 
discern potential ATs, as detection thresholds alone did not effectively differentiate potential 22 
anomalous trichromats from normal trichromats (Note that the LMS cone isolating directions used 23 
in the detection task are computed based on a standard observer with normal color vision, therefore 24 
certain degree of individual differences should always be considered). This finding suggests 25 
complexity in AT phenotypes, echoing the previous evidence(20). We caution that inferences 26 
about AT features made based upon current results should remain provisional until larger datasets 27 
are acquired, which would also benefit the comprehensive evaluation of the FInD method. As 28 
discussed above, even though the HSV plane in the discrimination task is not equiluminant, our 29 
classification results demonstrate its ability to assay response pattern differences between CN and 30 
CVD, with significantly different discrimination patterns observed and the pattern of findings was 31 
the same for an equiluminant color space. Apart from HSV, the FInD tasks implemented in this 32 
study required careful display calibration to generate cone-isolating directions (for an ideal 33 
observer model) and equiluminant color planes. The same concerns prevail for the anomaloscope 34 
and for the light source and pigment decay of HRR and FM100 tests. Therefore, deployment of 35 
these approaches will depend on calibration of the use of specific model specifications. The ability 36 
of FInD Color tasks to detect and classify tritan deficiencies, inherited or acquired, was not tested 37 
in the current study. Future efforts are needed to verify whether the unused features, S detection 38 
and the rest of the hue discrimination thresholds, are critical for the categorization of tritans.  39 
 40 
In summary, this proof-of-concept study has shown that FInD Color tasks can provide continuous 41 
color detection and discrimination threshold estimates that may track change in CVD and could 42 
therefore serve as a rapid and easy-to-use tool for clinical monitoring and diagnosis. The HSV 43 
colors are equally diagnostic compared to the equiluminant colors. FInD also has potential in basic 44 
color vision research, in that the combination of FInD Color tasks with UML technique might 45 
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provide insights about hidden structures in the data and further assist the understanding of 1 
defective color mechanisms.  2 
 3 
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